Phillips, P. C., Otto, S. P. & Whitlock, M. C. in Epistasis and the Evolutionary Process (eds Wolf, J. D., Brodie, E. D., III & Wade, M. J.) 20–38 (Oxford Univ. Press, Oxford, 2000). Google Scholar
Malmberg, R. L. & Mauricio, R. QTL-based evidence for the role of epistasis in evolution. Genet. Res.86, 89–95 (2005). CASPubMed Google Scholar
Otto, S. P. & Gerstein, A. C. Why have sex? The population genetics of sex and recombination. Biochem. Soc. Trans.34, 519–522 (2006). CASPubMed Google Scholar
Weinreich, D. M., Watson, R. A. & Chao, L. Perspective: sign epistasis and genetic constraint on evolutionary trajectories. Evolution59, 1165–1174 (2005). CASPubMed Google Scholar
Carlborg, O. & Haley, C. S. Epistasis: too often neglected in complex trait studies? Nature Rev. Genet.5, 618–625 (2004). CASPubMed Google Scholar
Holland, J. B. Genetic architecture of complex traits in plants. Curr. Opin. Plant Biol.10, 156–161 (2007). CASPubMed Google Scholar
Wade, M. J. Epistasis, complex traits, and mapping genes. Genetica112–113, 59–69 (2001). PubMed Google Scholar
Azevedo, L., Suriano, G., van Asch, B., Harding, R. M. & Amorim, A. Epistatic interactions: how strong in disease and evolution? Trends Genet.22, 581–585 (2006). CASPubMed Google Scholar
Nadeau, J. H. Modifier genes in mice and humans. Nature Rev. Genet.2, 165–174 (2001). CASPubMed Google Scholar
Moore, J. H. The ubiquitous nature of epistasis in determining susceptibility to common human diseases. Hum. Hered.56, 73–82 (2003). PubMed Google Scholar
Cordell, H. J. Epistasis: what it means, what it doesn't mean, and statistical methods to detect it in humans. Hum. Mol. Genet.11, 2463–2468 (2002). A clear review of the limitations in moving from statistical estimates of epistatic effects to understanding genetic causation. CASPubMed Google Scholar
Demuth, J. P. & Wade, M. J. Experimental methods for measuring gene interactions. Ann. Rev. Ecol. Evol. Systematics37, 289–316 (2006). Google Scholar
Musani, S. K. et al. Detection of gene × gene interactions in genome-wide association studies of human population data. Hum. Hered.63, 67–84 (2007). CASPubMed Google Scholar
McKinney, B. A., Reif, D. M., Ritchie, M. D. & Moore, J. H. Machine learning for detecting gene–gene interactions: a review. Appl. Bioinformatics5, 77–88 (2006). CASPubMedPubMed Central Google Scholar
Marchini, J., Donnelly, P. & Cardon, L. R. Genome-wide strategies for detecting multiple loci that influence complex diseases. Nature Genet.37, 413–417 (2005). CASPubMed Google Scholar
Alvarez-Castro, J. M., Le Rouzic, A. & Carlborg, O. How to perform meaningful estimates of genetic effects. PLoS Genet.4, e1000062 (2008). PubMedPubMed Central Google Scholar
Boone, C., Bussey, H. & Andrews, B. J. Exploring genetic interactions and networks with yeast. Nature Rev. Genet.8, 437–449 (2007). A comprehensive review of existing work on using high-throughput approaches in yeast to dissect complex gene interaction networks. Includes a good discussion of the overall conceptual framework. CASPubMed Google Scholar
Costanzo, M., Giaever, G., Nislow, C. & Andrews, B. Experimental approaches to identify genetic networks. Curr. Opin. Biotechnol.17, 472–480 (2006). CASPubMed Google Scholar
Hansen, T. F. & Wagner, G. P. Modeling genetic architecture: a multilinear theory of gene interaction. Theoretical Popul. Biol.59, 61–86 (2001). CAS Google Scholar
Elena, S. F. & Lenski, R. E. Test of synergistic interactions among deleterious mutations in bacteria. Nature390, 395–398 (1997). Uses randomly generated mutations inEscherichia colito demonstrate that epistatic effects between loci can be highly variable and frequently cancel one another out. CASPubMed Google Scholar
Routman, E. J. & Cheverud, J. M. Gene effects on a quantitative trait: two-locus epistatic effects measured at microsatellite markers and at estimated QTL. Evolution51, 1654–1662 (1995). Google Scholar
Bateson, W., Saunders, E. R., Punnett, R. C. & Hurst, C. C. Reports to the Evolution Committee of the Royal Society, Report II (Harrison and Sons, London, 1905). Google Scholar
Beadle, G. W. Genetics and metabolism in Neurospora. Physiol. Rev.25, 643–663 (1945). CASPubMed Google Scholar
Avery, L. & Wasserman, S. Ordering gene function: the interpretation of epistasis in regulatory hierarchies. Trends Genet.8, 312–316 (1992). CASPubMedPubMed Central Google Scholar
Huang, L. S. & Sternberg, P. W. Genetic dissection of developmental pathways. (doi: 10.1895/wormbook.1.88.2) WormBook [online], (2005). A comprehensive treatment of how to use classical epistasis analysis to reconstruct genetic pathways. Google Scholar
Goodwin, E. B. & Ellis, R. E. Turning clustering loops: sex determination in Caenorhabditis elegans. Curr. Biol.12, R111–R120 (2002). CASPubMed Google Scholar
Sternberg, P. W. & Horvitz, H. R. The combined action of two intercellular signaling pathways specifies three cell fates during vulval induction in C. elegans. Cell58, 679–693 (1989). CASPubMed Google Scholar
Thomas, J. H., Birnby, D. A. & Vowels, J. J. Evidence for parallel processing of sensory information controlling dauer formation in Caenorhabditis elegans. Genetics134, 1105–1117 (1993). CASPubMedPubMed Central Google Scholar
Tong, A. H. et al. Systematic genetic analysis with ordered arrays of yeast deletion mutants. Science294, 2364–2368 (2001). A landmark paper that established the high-throughput double-deletion approach to detecting epistatic interactions. CASPubMed Google Scholar
Tong, A. H. et al. Global mapping of the yeast genetic interaction network. Science303, 808–813 (2004). CASPubMed Google Scholar
Hartman, J. L., Garvik, B. & Hartwell, L. Principles for the buffering of genetic variation. Science291, 1001–1004 (2001). CASPubMed Google Scholar
Segrè, D., Deluna, A., Church, G. M. & Kishony, R. Modular epistasis in yeast metabolism. Nature Genet.37, 77–83 (2005). PubMed Google Scholar
St. Onge, R. P. et al. Systematic pathway analysis using high-resolution fitness profiling of combinatorial gene deletions. Nature Genet.39, 199–206 (2007). References 33 and 34 show how quantitative information can be incorporated into high-throughput interaction studies to yield deeper insights into the nature of genetic networks. CASPubMed Google Scholar
Kroll, E. S., Hyland, K. M., Hieter, P. & Li, J. J. Establishing genetic interactions by a synthetic dosage lethality phenotype. Genetics143, 95–102 (1996). CASPubMedPubMed Central Google Scholar
Sopko, R. et al. Mapping pathways and phenotypes by systematic gene overexpression. Mol. Cell21, 319–330 (2006). CASPubMed Google Scholar
Greenspan, R. J. The flexible genome. Nature Rev. Genet.2, 383–387 (2001). CASPubMed Google Scholar
Lehner, B., Crombie, C., Tischler, J., Fortunato, A. & Fraser, A. G. Systematic mapping of genetic interactions in Caenorhabditis elegans identifies common modifiers of diverse signaling pathways. Nature Genet.38, 896–903 (2006). CASPubMed Google Scholar
Davierwala, A. P. et al. The synthetic genetic interaction spectrum of essential genes. Nature Genet.37, 1147–1152 (2005). CASPubMed Google Scholar
Tischler, J., Lehner, B. & Fraser, A. G. Evolutionary plasticity of genetic interaction networks. Nature Genet.40, 390–391 (2008). CASPubMed Google Scholar
Wong, S. L. et al. Combining biological networks to predict genetic interactions. Proc. Natl Acad. Sci. USA101, 15682–15687 (2004). CASPubMedPubMed Central Google Scholar
Beyer, A., Bandyopadhyay, S. & Ideker, T. Integrating physical and genetic maps: from genomes to interaction networks. Nature Rev. Genet.8, 699–710 (2007). CASPubMed Google Scholar
Pattin, K. A. & Moore, J. H. Exploiting the proteome to improve the genome-wide genetic analysis of epistasis in common human diseases. Hum. Genet.124, 19–29 (2008). CASPubMedPubMed Central Google Scholar
Zhu, J. et al. Integrating large-scale functional genomic data to dissect the complexity of yeast regulatory networks. Nature Genet.40, 854–861 (2008). Shows how interaction information from many sources can be combined to provide a more comprehensive picture of interaction networks. CASPubMed Google Scholar
Collins, S. R. et al. Functional dissection of protein complexes involved in yeast chromosome biology using a genetic interaction map. Nature446, 806–810 (2007). CASPubMed Google Scholar
Carlborg, O., Jacobsson, L., Ahgren, P., Siegel, P. & Andersson, L. Epistasis and the release of genetic variation during long-term selection. Nature Genet.38, 418–420 (2006). CASPubMed Google Scholar
Stylianou, I. M. et al. Quantitative trait locus analysis for obesity reveals multiple networks of interacting loci. Mamm. Genome17, 22–36 (2006). PubMed Google Scholar
Ehrenreich, I. M., Stafford, P. A. & Purugganan, M. D. The genetic architecture of shoot branching in Arabidopsis thaliana: a comparative assessment of candidate gene associations vs. quantitative trait locus mapping. Genetics176, 1223–1236 (2007). CASPubMedPubMed Central Google Scholar
Alvarez-Castro, J. M. & Carlborg, O. A unified model for functional and statistical epistasis and its application in quantitative trait loci analysis. Genetics176, 1151–1167 (2007). PubMedPubMed Central Google Scholar
Cheverud, J. M. in Epistasis and the Evolutionary Process (eds Wolf, J., Brodie, E. D., III & Wade, M. J.) 58–81 (Oxford Univ. Press, Oxford, 2000). Google Scholar
Sambandan, D., Yamamoto, A., Fanara, J. J., Mackay, T. F. & Anholt, R. R. Dynamic genetic interactions determine odor-guided behavior in Drosophila melanogaster. Genetics174, 1349–1363 (2006). CASPubMedPubMed Central Google Scholar
Causse, M., Chaïb, J., Lecomte, L., Buret, M. & Hospital, F. Both additivity and epistasis control the genetic variation for fruit quality traits in tomato. Theor. Appl. Genet.115, 429–442 (2007). CASPubMed Google Scholar
Rowe, H. C., Hansen, B. G., Halkier, B. A. & Kliebenstein, D. J. Biochemical networks and epistasis shape the Arabidopsis thaliana metabolome. Plant Cell20, 1199–1216 (2008). CASPubMedPubMed Central Google Scholar
Wolf, J. B., Leamy, L. J., Routman, E. J. & Cheverud, J. M. Epistatic pleiotropy and the genetic architecture of covariation within early and late-developing skull trait complexes in mice. Genetics171, 683–694 (2005). CASPubMedPubMed Central Google Scholar
Sinha, H., Nicholson, B. P., Steinmetz, L. M. & McCusker, J. H. Complex genetic interactions in a quantitative trait locus. PLoS Genet.2, e13 (2006). PubMedPubMed Central Google Scholar
Nogami, S., Ohya, Y. & Yvert, G. Genetic complexity and quantitative trait loci mapping of yeast morphological traits. PLoS Genet.3, e31 (2007). PubMedPubMed Central Google Scholar
Storey, J. D., Akey, J. M. & Kruglyak, L. Multiple locus linkage analysis of genomewide expression in yeast. PLoS Biol.3, e267 (2005). PubMedPubMed Central Google Scholar
Brem, R. B., Storey, J. D., Whittle, J. & Kruglyak, L. Genetic interactions between polymorphisms that affect gene expression in yeast. Nature436, 701–703 (2005). Shows how genetical genomics can be used to infer patterns of gene interaction. CASPubMedPubMed Central Google Scholar
Hill, W. G., Goddard, M. E. & Visscher, P. M. Data and theory point to mainly additive genetic variance for complex traits. PLoS Genet.4, e1000008 (2008). PubMedPubMed Central Google Scholar
Cheverud, J. M. & Routman, E. J. Epistasis and its contribution to genetic variance components. Genetics139, 1455–1461 (1995). CASPubMedPubMed Central Google Scholar
Wellcome Trust Case Control Consortium. Genome-wide association study of 14,000 cases of seven common diseases and 3,000 shared controls. Nature447, 661–678 (2007).
Tsai, C. T. et al. Renin-angiotensin system gene polymorphisms and coronary artery disease in a large angiographic cohort: detection of high order gene–gene interaction. Atherosclerosis195, 172–180 (2007). CASPubMed Google Scholar
Wiltshire, S. et al. Epistasis between type 2 diabetes susceptibility loci on chromosomes 1q21–25 and 10q23–26 in northern Europeans. Ann. Hum. Genet.70, 726–737 (2006). CASPubMed Google Scholar
Abou Jamra, R. et al. The first genomewide interaction and locus-heterogeneity linkage scan in bipolar affective disorder: strong evidence of epistatic effects between loci on chromosomes 2q and 6q. Am. J. Hum. Genet.81, 974–986 (2007). PubMedPubMed Central Google Scholar
Coutinho, A. M. et al. Evidence for epistasis between SLC6A4 and ITGB3 in autism etiology and in the determination of platelet serotonin levels. Hum. Genet.121, 243–256 (2007). CASPubMed Google Scholar
Gregersen, J. W. et al. Functional epistasis on a common MHC haplotype associated with multiple sclerosis. Nature443, 574–577 (2006). Illustrates how functional hypotheses regarding gene interaction within human populations can be tested using model systems. CASPubMed Google Scholar
Trowsdale, J. Multiple sclerosis: putting two and two together. Nature Med.12, 1119–1121 (2006). CASPubMed Google Scholar
Svejgaard, A. The immunogenetics of multiple sclerosis. Immunogenetics60, 275–286 (2008). CASPubMed Google Scholar
Gauderman, W. J. Sample size requirements for association studies of gene–gene interaction. Am. J. Epidemiol.155, 478–484 (2002). PubMed Google Scholar
Carlson, C. S., Eberle, M. A., Kruglyak, L. & Nickerson, D. A. Mapping complex disease loci in whole-genome association studies. Nature429, 446–452 (2004). CASPubMed Google Scholar
Xu, S. & Jia, Z. Genomewide analysis of epistatic effects for quantitative traits in barley. Genetics175, 1955–1963 (2007). CASPubMedPubMed Central Google Scholar
Demant, P. Cancer susceptibility in the mouse: genetics, biology and implications for human cancer. Nature Rev. Genet.4, 721–734 (2003). CASPubMed Google Scholar
Lynch, M. The frailty of adaptive hypotheses for the origins of organismal complexity. Proc. Natl Acad. Sci. USA104 (Suppl. 1), 8597–8604 (2007). CASPubMedPubMed Central Google Scholar
Crow, J. F. How important is detecting interaction? Behav. Brain. Sci.13, 126–127 (1990). Google Scholar
Fisher, R. A. The Genetical Theory of Natural Selection (Clarendon, Oxford, 1930). Google Scholar
Kauffman, S. A. The Origins of Order: Self-Organisation and Selection in Evolution (Oxford Univ. Press, New York, 1993). Google Scholar
Wu, C.-I. & Palopoli, M. F. Genetics of postmating reproductive isolation in animals. Annu. Rev. Genet.27, 283–208 (1994). Google Scholar
de Visser, J. A. et al. Perspective: evolution and detection of genetic robustness. Evolution57, 1959–1972 (2003). PubMed Google Scholar
Bridgham, J. T., Carroll, S. M. & Thornton, J. W. Evolution of hormone-receptor complexity by molecular exploitation. Science312, 97–101 (2006). CASPubMed Google Scholar
Ortlund, E. A., Bridgham, J. T., Redinbo, M. R. & Thornton, J. W. Crystal structure of an ancient protein: evolution by conformational epistasis. Science317, 1544–1548 (2007). A good example of moving between detailed functional analysis and long-term evolutionary inference. CASPubMedPubMed Central Google Scholar
Miller, S. P., Lunzer, M. & Dean, A. M. Direct demonstration of an adaptive constraint. Science314, 458–461 (2006). CASPubMed Google Scholar
Weinreich, D. M., Delaney, N. F., Depristo, M. A. & Hartl, D. L. Darwinian evolution can follow only very few mutational paths to fitter proteins. Science312, 111–114 (2006). CASPubMed Google Scholar
Poelwijk, F. J., Kiviet, D. J., Weinreich, D. M. & Tans, S. J. Empirical fitness landscapes reveal accessible evolutionary paths. Nature445, 383–386 (2007). CASPubMed Google Scholar
Karlin, S. General two locus selection models: some objectives, results and interpretations. Theoret. Popul. Biol.7, 364–398 (1975). CAS Google Scholar
Encode Project Consortium. Identification and analysis of functional elements in 1% of the human genome by the ENCODE pilot project. Nature447, 799–816 (2007).
Moore, J. H. & Williams, S. M. Traversing the conceptual divide between biological and statistical epistasis: systems biology and a more modern synthesis. Bioessays27, 637–646 (2005). CASPubMed Google Scholar
Wagner, G. P., Pavlicev, M. & Cheverud, J. M. The road to modularity. Nature Rev. Genet.8, 921–931 (2007). CASPubMed Google Scholar
Gjuvsland, A. B., Hayes, B. J., Omholt, S. W. & Carlborg, O. Statistical epistasis is a generic feature of gene regulatory networks. Genetics175, 411–420 (2007). PubMedPubMed Central Google Scholar
Deutscher, D., Meilijson, I., Kupiec, M. & Ruppin, E. Multiple knockout analysis of genetic robustness in the yeast metabolic network. Nature Genet.38, 993–998 (2006). CASPubMed Google Scholar
Jansen, R. C. Studying complex biological systems using multifactorial perturbation. Nature Rev. Genet.4, 145–151 (2003). A perspective on how complex genetic systems can be best interrogated using multiple, rather than single, perturbations. CASPubMed Google Scholar
Carter, G. W. et al. Prediction of phenotype and gene expression for combinations of mutations. Mol. Syst. Biol.3, 96 (2007). PubMedPubMed Central Google Scholar
Bateson, W. Mendel's Principles of Heredity (Cambridge Univ. Press, Cambridge, 1909). Google Scholar
Fisher, R. A. The correlations between relatives on the supposition of Mendelian inheritance. Trans. R. Soc. Edinb.52, 399–433 (1918). Google Scholar
Tachida, H. & Cockerham, C. C. A building block model for quantitative genetics. Genetics121, 839–844 (1989). A greatly underappreciated paper that provides a quantitative framework for moving between different perspectives for how phenotypes are built and how genetic effects can be estimated. CASPubMedPubMed Central Google Scholar
Karlin, S. & Feldman, M. W. Simultaneous stability of D=0 and D≠0 for multiplicative viabilities at two loci. Genetics90, 813–825 (1978). CASPubMedPubMed Central Google Scholar
Mani, R., St. Onge, R. P., Hartman, J. L. IV, Giaever, G. & Roth, F. P. Defining genetic interaction. Proc. Natl Acad. Sci. USA105, 3461–3466 (2008). Shows how dependent the inference of epistasis is upon the scale of measurement. CASPubMedPubMed Central Google Scholar
Aylor, D. L. & Zeng, Z. B. From classical genetics to quantitative genetics to systems biology: modeling epistasis. PLoS Genet.4, e1000029 (2008). PubMedPubMed Central Google Scholar
Feldman, M. W., Otto, S. P. & Christiansen, F. B. Population genetic perspectives on the evolution of recombination. Annu. Rev. Genet.30, 261–295 (1997). Google Scholar
Bennett, D. C. & Lamoreux, M. L. The color loci of mice — a genetic century. Pigment Cell Res.16, 333–344 (2003). CASPubMed Google Scholar
Steiner, C. C., Weber, J. N. & Hoekstra, H. E. Adaptive variation in beach mice produced by two interacting pigmentation genes. PLoS Biol.5, e219 (2007). PubMedPubMed Central Google Scholar
Silvers, W. The Coat Colors of Mice: A model for mammalian gene action and interaction (Springer, Berlin, 1979). Google Scholar
Hoekstra, H. E. Genetics, development and evolution of adaptive pigmentation in vertebrates. Heredity97, 222–234 (2006). CASPubMed Google Scholar
Wright, S. The roles of mutation, inbreeding, crossbreeding and selection in evolution. Proc. 6th Int. Cong. Genet.1, 356–366 (1932). Google Scholar
Gavrilets, S. Fitness landscapes and the Origin of Species (Princeton Univ. Press, Princeton, 2004). Google Scholar