The evolutionary causes and consequences of sex-biased gene expression (original) (raw)
References
Ellegren, H. & Parsch, J. The evolution of sex-biased genes and sex-biased gene expression. Nature Rev. Genet.8, 689–698 (2007). ArticleCAS Google Scholar
Arnqvist, G. & Rowe, L. Sexual Conflict (Princeton Univ. Press, 2005). Book Google Scholar
Chippindale, A. K., Gibson, J. R. & Rice, W. R. Negative genetic correlation for adult fitness between sexes reveals ontogenetic conflict in Drosophila. Proc. Natl Acad. Sci. USA98, 1671–1675 (2001). ArticleCAS Google Scholar
Innocetti, P. & Morrow, E. H. The sexually antagonistic genes of Drosophila melanogaster. PLoS Biol.16, e1000335 (2010). Article Google Scholar
Connallon, T. & Clark, A. G. Association between sex-biased gene expression and mutations with sex-specific phenotypic consequences in Drosophila. Genome Biol. Evol.3, 151–155 (2011). ArticleCAS Google Scholar
Telonis-Scott, M., Kopp, A., Wayne, M. L., Nuzhdin, S. V. & McIntyre, L. M. Sex-specific splicing in Drosophila: widespread occurrence, tissue specificity and evolutionary conservation. Genetics181, 421–434 (2009). ArticleCAS Google Scholar
Hartmann, B. et al. Distinct regulatory programs establish widespread sex-specific alternative splicing in Drosophila melanogaster. RNA17, 453–468 (2011). ArticleCAS Google Scholar
Gallach, M., Chandrasekaran, C. & Betran, E. Analyses of nuclearly encoded mitochondrial genes suggest gene duplication as a mechanism for resolving intralocus sexually antagonistic conflict in Drosophila. Genome Biol. Evol.2, 835–850 (2010). Article Google Scholar
Connallon, T. & Clark, A. G. The resolution of sexual antagonism by gene duplication. Genetics187, 919–937 (2011). Article Google Scholar
Gallach, M. & Betrán, E. Intralocus sexual conflict resolved through gene duplication. Trends Ecol. Evol.26, 222–228 (2011). Article Google Scholar
Wyman, M. J., Cutter, A. D. & Rowe, L. Gene duplication in the evolution of sexual dimorphism. Evolution66, 1556–1566 (2012). Article Google Scholar
Chen, S. et al. Reshaping of global gene expression networks and sex-biased gene expression by integration of a young gene. EMBO J.31, 2798–2809 (2012). ArticleCAS Google Scholar
Cocquet, J. et al. A genetic basis for a postmeiotic X versus Y chromosome intragenomic conflict in the mouse. PLoS Genet.8, e1002900 (2012). ArticleCAS Google Scholar
Parisi, M. et al. Paucity of genes on the D. melanogaster X chromosome showing male-biased expression. Science299, 697–700 (2003). ArticleCAS Google Scholar
Meisel, R. P., Malone, J. H. & Clark, A. G. Disentangling the relationship between sex-biased gene expression and X-linkage. Genome Res.22, 1255–1265 (2012). ArticleCAS Google Scholar
Assis, R., Zhou, Q. & Bachtrog, D. Sex-biased transcriptome evolution in Drosophila. Genome Biol. Evol.4, 1189–1200 (2012). Article Google Scholar
Reinius, B. et al. Abundance of female-biased and paucity of male-biased somatically expressed genes on the mouse X-chromosome. BMC Genomics13, 607 (2012). ArticleCAS Google Scholar
Itoh, Y. et al. Dosage compensation is less effective in birds than in mammals. J. Biol.6, 2 (2007). Article Google Scholar
Ellegren, H. et al. Faced with inequality: chicken do not have a general dosage compensation of sex-linked genes. BMC Biol.5, 40 (2007). Article Google Scholar
Zha, X. et al. Dosage analysis of Z chromosome genes using microarray in silkworm, Bombyx mori. Insect Biochem. Mol. Biol.39, 315–321 (2009). ArticleCAS Google Scholar
Vicoso, B. & Bachtrog, D. Lack of global dosage compensation in Schistosoma mansoni, a female-heterogametic parasite. Genome Biol. Evol.3, 230–235 (2011). ArticleCAS Google Scholar
Kaiser, V. B. & Ellegren, H. Nonrandom distribution of genes with sex-biased expression in the chicken genome. Evolution60, 1945–1951 (2006). ArticleCAS Google Scholar
Arunkumar, K. P., Mita, K. & Nagaraju, J. The silkworm Z chromosome is enriched in testis-specific genes. Genetics182, 493–501 (2009). ArticleCAS Google Scholar
Leder, E. H. et al. Female-biased expression on the X chromosome as a key step in sex chromosome evolution in threespine sticklebacks. Mol. Biol. Evol.27, 1495–1503 (2010). ArticleCAS Google Scholar
Prince, E. G., Kirkland, D. & Demuth, J. P. Hyperexpression of the X chromosome in both sexes results in extensive female bias of X-linked genes in the flour beetle. Genome Biol. Evol.2, 336–346 (2010). Article Google Scholar
Gupta, V. et al. Global analysis of X-chromosome dosage compensation. J. Biol.5, 3 (2006). Article Google Scholar
Meiklejohn, C. D., Landeen, E. L., Cook, J. M., Kingan, S. B. & Presgraves, D. C. Sex chromosome-specific regulation in the Drosophila male germline but little evidence for chromosomal dosage compensation or meiotic inactivation. PLoS Biol.9, e1001126 (2011). ArticleCAS Google Scholar
Meiklejohn, C. D. & Presgraves, D. C. Little evidence for demasculinization of the Drosophila X chromosome among genes expressed in the male germline. Genome Biol. Evol.4, 895–904 (2012). Article Google Scholar
Chang, P. L., Dunham, J. P., Nuzhdin, S. V. & Arbeitman, M. N. Somatic sex-specific transcriptome differences in Drosophila revealed by whole transcriptome sequencing. BMC Genomics12, 364 (2011). ArticleCAS Google Scholar
Catalán, A., Hutter, S. & Parsch, J. Population and sex differences in Drosophila melanogaster brain gene expression. BMC Genomics13, 654 (2012). Article Google Scholar
Lemos, B., Araripe, L. O. & Hartl, D. L. Polymorphic Y chromosomes harbor cryptic variation with manifold functional consequences. Science319, 91–93 (2008). ArticleCAS Google Scholar
Lemos, B., Branco, A. T. & Hartl, D. L. Epigenetic effects of polymorphic Y chromosomes modulate chromatin components, immune response, and sexual conflict. Proc. Natl Acad. Sci. USA107, 15826–15831 (2010). ArticleCAS Google Scholar
Kashimada, K. & Koopman, P. Sry: the master switch in mammalian sex determination. Development137, 3921–3930 (2010). ArticleCAS Google Scholar
Mank, J. E., Nam, K., Brunström, B. & Ellegren, H. Ontogenetic complexity of sexual dimorphism and sex-specific selection. Mol. Biol. Evol.27, 1570–1578 (2010). ArticleCAS Google Scholar
Baker, D. A. et al. A comprehensive gene expression atlas of sex- and tissue-specificity in the malaria vector, Anopheles gambiae. BMC Genomics12, 296 (2011). Article Google Scholar
Haerty, W. et al. Evolution in the fast lane: rapidly evolving sex-related genes in Drosophila. Genetics177, 1321–1335 (2007). ArticleCAS Google Scholar
Demuth, J. P. & Wade, M. J. Maternal expression increases the rate of bicoid evolution by relaxing selective constraint. Genetica129, 37–43 (2007). Article Google Scholar
Meisel, R. P. Towards a more nuanced understanding of the relationship between sex-biased gene expression and rates of protein-coding sequence evolution. Mol. Biol. Evol.28, 1893–1900 (2011). ArticleCAS Google Scholar
Grath, S. & Parsch, J. Rate of amino acid substitution is influenced by the degree and conservation of male-biased transcription over 50 myr of Drosophila evolution. Genome Biol. Evol.4, 346–359 (2012). Article Google Scholar
Swanson, W. J. & Vacquier, V. D. The rapid evolution of reproductive proteins. Nature Rev. Genet.3, 137–144 (2002). ArticleCAS Google Scholar
Charlesworth, B., Coyne, J. A. & Barton, N. H. The relative rates of evolution of sex chromosomes and autosomes. Am. Nat.130, 113–146 (1987). Article Google Scholar
Orr, H. A. & Betancourt, A. J. Haldane's sieve and adaptation from the standing genetic variation. Genetics157, 875–884 (2001). CASPubMedPubMed Central Google Scholar
Vicoso, B. & Charlesworth, B. Effective population size and the faster-X effect, an extended model. Evolution63, 2413–2426 (2009). Article Google Scholar
Baines, J. F., Sawyer, S. A., Hartl, D. L. & Parsch, J. Effects of X-linkage and sex-biased gene expression on the rate of adaptive protein evolution in Drosophila. Mol. Biol. Evol.25, 1639–1650 (2008). ArticleCAS Google Scholar
Sella, G., Petrov, D. A., Przeworski, M. & Andolfatto, P. Pervasive natural selection in the Drosophila genome? PLoS Genet.5, e1000495 (2009). Article Google Scholar
Eyre-Walker, A. & Keightley, P. D. Estimating the rate of adaptive molecular evolution in the presence of slightly deleterious mutations and population size change. Mol. Biol. Evol.26, 2097–2108 (2009). ArticleCAS Google Scholar
Wilson, D. J., Hernandez, R. D., Andolfatto, P. & Przeworski, M. A population genetics-phylogenetics approach to inferring natural selection in coding sequences. PLoS Genet.7, e1002395 (2011). ArticleCAS Google Scholar
Mank, J. E., Axelsson, E. & Ellegren, H. Fast-X on the Z: rapid evolution of sex-linked genes in birds. Genome Res.17, 618–624 (2007). ArticleCAS Google Scholar
Mank, J. E., Nam, K. & Ellegren, H. Faster-Z evolution is predominantly due to genetic drift. Mol. Biol. Evol.27, 661–670 (2010). ArticleCAS Google Scholar
Mank, J. E., Vicoso, B., Berlin, S. & Charlesworth, B. Effective population size and the faster-X effect, empirical results and their interpretation. Evolution64, 663–674 (2010). Article Google Scholar
Llopart, A. The rapid evolution of X-linked male-biased gene expression and the large-X effect in Drosophila yakuba, D. santomea, and their hybrids. Mol. Biol. Evol.29, 3873–3886 (2012). ArticleCAS Google Scholar
Meisel, R. P., Malone, J. H. & Clark, A. G. Faster-X evolution of gene expression in Drosophila. PLoS Genet.8, e1003013 (2012). ArticleCAS Google Scholar
Gnad, F. & Parsch, J. Sebida: a database for the functional and evolutionary analysis of genes with sex-biased expression. Bioinformatics22, 2577–2579 (2006). ArticleCAS Google Scholar