Disease-targeted sequencing: a cornerstone in the clinic (original) (raw)
Yu, B., Sawyer, N. A., Chiu, C., Oefner, P. J. & Underhill, P. A. DNA mutation detection using denaturing high-performance liquid chromatography (DHPLC). Curr. Protoc. Hum. Genet.48, 7.10.1–7.10.14 (2006). Article Google Scholar
Gowrisankar, S. et al. Evaluation of next generation sequencing of 19 dilated cardiomyopathy genes for clinical applications. J. Mol. Diagn.12, 818–827 (2010). ArticleCASPubMedPubMed Central Google Scholar
Teekakirikul, P., Cox, S. W., Funke, B. & Rehm, H. L. Targeted sequencing using Affymetrix CustomSeq arrays. Curr. Protoc. Hum. Genet.69, 7.18.1–7.18.17 (2011). Article Google Scholar
Palomaki, G. E. et al. DNA sequencing of maternal plasma reliably identifies trisomy 18 and trisomy 13 as well as Down syndrome: an international collaborative study. Genet. Med.14, 296–305 (2012). ArticleCASPubMedPubMed Central Google Scholar
O'Sullivan, J. et al. A paradigm shift in the delivery of services for diagnosis of inherited retinal disease. J. Med. Genet.49, 322–326 (2012). ArticlePubMed Google Scholar
Teekakirikul, P., Kelly, M. A., Rehm, H. L., Lakdawala, N. K. & Funke, B. H. Inherited cardiomyopathies: molecular genetics and clinical genetic testing in the postgenomic era. J. Mol. Diagn. 27 Dec 2012 (10.1016/j.jmoldx.2012.09.002).
Valencia, C. A. et al. Comprehensive mutation analysis for congenital muscular dystrophy: a clinical PCR-based enrichment and next-generation sequencing panel. PLoS ONE.8, e53083 (2013). ArticleCASPubMedPubMed Central Google Scholar
Morel, C. F. & Clarke, J. T. The use of agalsidase alfa enzyme replacement therapy in the treatment of Fabry disease. Expert Opin. Biol. Ther.9, 631–639 (2009). ArticleCASPubMed Google Scholar
Motwani, M., Banypersad, S., Woolfson, P. & Waldek, S. Enzyme replacement therapy improves cardiac features and severity of Fabry disease. Mol. Genet. Metab.107, 197–202 (2012). ArticleCASPubMed Google Scholar
Ledbetter, D. H. Cytogenetic technology—genotype and phenotype. N. Engl. J. Med.359, 1728–1730 (2008). ArticleCASPubMed Google Scholar
Ledbetter, D. H. Response to Saul and Moeschler “How best to use CGH arrays in the clinical setting”. Genet. Med.11, 371 (2009). Article Google Scholar
Schrauwen, I. et al. A sensitive and specific diagnostic test for hearing loss using a microdroplet PCR-based approach and next generation sequencing. Am. J. Med. Genet. A61, 145–152 (2013). Article Google Scholar
Bamshad, M. J. et al. Exome sequencing as a tool for Mendelian disease gene discovery. Nature Rev. Genet.27, 745–755 (2011). Article Google Scholar
Francey, L. J. et al. Genome-wide SNP genotyping identifies the stereocilin (STRC) gene as a major contributor to pediatric bilateral sensorineural hearing impairment. Am. J. Med. Genet. A158, 298–308 (2012). ArticleCAS Google Scholar
Phylipsen, M. et al. Fine-tiling array CGH to improve diagnostics for α- and β-thalassemia rearrangements. Hum. Mutat.33, 272–280 (2012). ArticleCASPubMed Google Scholar
ACMG Board of Directors. Points to consider in the clinical application of genomic sequencing. Genet. Med.14, 759–761 (2012).
Johnston, J. J. et al. Secondary variants in individuals undergoing exome sequencing: screening of 572 individuals identifies high-penetrance mutations in cancer-susceptibility genes. Am. J. Hum. Genet.91, 97–108 (2012). ArticleCASPubMedPubMed Central Google Scholar
The 1000 Genomes Project Consortium. An integrated map of genetic variation from 1,092 human genomes. Nature491, 56–65 (2012).
Fu, W. et al. Analysis of 6,515 exomes reveals the recent origin of most human protein-coding variants. Nature493, 216–220 (2013). ArticleCASPubMed Google Scholar
Alasti, F., Van Camp, G. & Smith, R. J. H. Pendred syndrome/DFNB4. GeneReviews[online], (updated 20 Dec 2012).
Smith, R. J. H., Gurrola, J. G. & Kelley, P. M. _OTOF_-related deafness. GeneReviews[online], (updated 14 Jun 2011).
Köhler, S. et al. Clinical diagnostics in human genetics with semantic similarity searches in ontologies. Am. J. Hum. Genet.85, 457–464 (2009). ArticlePubMedPubMed Central Google Scholar
Segal, M. How doctors think, and how software can help avoid cognitive errors in diagnosis. Acta Paediatr.96, 1720–1722 (2007). ArticlePubMed Google Scholar
Green, R. C. et al. Exploring concordance and discordance for return of incidental findings from clinical sequencing. Genet. Med.14, 405–410 (2012). ArticleCASPubMedPubMed Central Google Scholar
Teutsch, S. M. et al. The Evaluation of Genomic Applications in Practice and Prevention (EGAPP) Initiative: methods of the EGAPP Working Group. Genet. Med.11, 3–14 (2009). ArticlePubMedPubMed Central Google Scholar
Palomaki, G. E., McClain, M. R., Melillo, S., Hampel, H. L. & Thibodeau, S. N. EGAPP supplementary evidence review: DNA testing strategies aimed at reducing morbidity and mortality from Lynch syndrome. Genet. Med.11, 42–65 (2009). ArticlePubMedPubMed Central Google Scholar
Veenstra, D. L. et al. Improving efficiency and relevance of evidence-based recommendations in the era of whole-genome sequencing: an EGAPP methods update. Genet. Med.15, 14–34 (2013). ArticlePubMed Google Scholar
Baker M. One-stop shop for disease genes: NIH database integrates data from clinical genetic testing labs and literature. Nature491, 171 (2012). ArticleCASPubMed Google Scholar
Quigley, F., Greene, M., O'Connor, D. & Kelly, F. A survey of the causes of sudden cardiac death in the under 35-year-age group. Ir. Med. J.98, 232–235 (2005); erratum 98, 282 (2005). CASPubMed Google Scholar
Monserrat L et al. Prevalence of Fabry disease in a cohort of 508 unrelated patients with hypertrophic cardiomyopathy. J. Am. Coll. Cardiol.50, 2399–2403 (2007). ArticlePubMed Google Scholar
Terryn, W. et al. Prevalence of Fabry disease in a predominantly hypertensive population with left ventricular hypertrophy. Int. J. Cardiol. 15 Jul 2012 (10.1016/j.ijcard.2012.06.069).