The art and design of genetic screens: Drosophila melanogaster (original) (raw)
References
Kohler, R. E. Lords of the Fly: Drosophila Genetics and the Experimental Life Vol. 15 (Univ. Chicago Press, Chicago, Illinois, 1994). Google Scholar
Rubin, G. M. & Lewis, E. B. A brief history of Drosophila's contributions to genome research. Science287, 2216–2218 (2000). CASPubMed Google Scholar
Holley, S. A. et al. A conserved system for dorsal–ventral patterning in insects and vertebrates involving sog and chordin. Nature376, 249–253 (1995). CASPubMed Google Scholar
Pearse, R. V. & Tabin, C.J. The molecular ZPA. J. Exp. Zool.282, 677–690 (1998). CASPubMed Google Scholar
Adams, M. D. et al. The genome sequence of Drosophila melanogaster. Science287, 2185–2195 (2000). PubMed Google Scholar
Friedman, R. & Hughes, A. L. Pattern and timing of gene duplication in animal genomes. Genome Res.11, 1842–1847 (2001). CASPubMedPubMed Central Google Scholar
Fortini, M. E., Skupski, M. P., Boguski, M. S. & Hariharan, I. K. A survey of human disease gene counterparts in the Drosophila genome. J. Cell Biol.150, F23–F30 (2000). CASPubMed Google Scholar
Feany, M. B. & Bender, W. W. A Drosophila model of Parkinson's disease. Nature404, 394–398 (2000). CASPubMed Google Scholar
Lewis, E. B. & Bacher, F. Methods of feeding ethyl methane sulphonate (EMS) to Drosophila males. Drosoph. Inf. Serv.43, 193 (1968). Google Scholar
Nüsslein-Volhard, C. & Wieschaus, E. Mutations affecting segment number and polarity in Drosophila. Nature287, 795–801 (1980).A classic paper describing some of the mutants from the first large-scale screens that set out to saturate the genome for mutations that affect a particular process. PubMed Google Scholar
Nüsslein-Volhard, C., Wieschaus, E. & Kluding, H. Mutations affecting the pattern of the larval cuticle in Drosophila melanogaster: zygotic loci on the second chromosome. Roux's Arch. Dev. Biol.193, 267–282 (1984).A more detailed description of the large-scale screens for embryonic patterning mutants; it contains a valuable discussion on how to assess the degree of saturation. Google Scholar
Lawrence, P. A. The Making of the Fly: the Genetics of Animal Design (Blackwell, Oxford, 1992).
Nüsslein-Volhard, C., Frohnhöfer, H. G. & Lehmann, R. Determination of anteroposterior polarity in Drosophila. Science238, 1675–1681 (1987). PubMed Google Scholar
Schüpbach, T. & Wieschaus, E. Maternal-effect mutations altering the anterior–posterior pattern of the Drosophila embryo. Roux's Arch. Dev. Biol.195, 302–317 (1986). Google Scholar
Seeger, M., Tear, G., Ferres-Marco, D. & Goodman, C. S. Mutations affecting growth cone guidance in Drosophila: genes necessary for guidance toward or away from the midline. Neuron10, 409–426 (1993). CASPubMed Google Scholar
Kolodziej, P. A., Jan, L. Y. & Jan, Y. N. Mutations that affect the length, fasciculation, or ventral orientation of specific sensory axons in the Drosophila embryo. Neuron15, 273–286 (1995). CASPubMed Google Scholar
Kidd, T. et al. Roundabout controls axon crossing of the CNS midline and defines a novel subfamily of evolutionarily conserved guidance receptors. Cell92, 205–215 (1998). CASPubMed Google Scholar
Tear, G. et al. commissureless controls growth cone guidance across the CNS midline in Drosophila and encodes a novel membrane protein. Neuron16, 501–514 (1996). CASPubMed Google Scholar
Gao, F. B., Brenman, J. E., Jan, L. Y. & Jan, Y. N. Genes regulating dendritic outgrowth, branching, and routing in Drosophila. Genes Dev.13, 2549–2561 (1999).A recent example of how the traditional screening approach can be combined with sophisticated labelling techniques to find mutants that affect a specific process. CASPubMedPubMed Central Google Scholar
Gao, F. B., Kohwi, M., Brenman, J. E., Jan, L. Y. & Jan, Y. N. Control of dendritic field formation in Drosophila: the roles of flamingo and competition between homologous neurons. Neuron28, 91–101 (2000). CASPubMed Google Scholar
Brenman, J. E., Gao, F. B., Jan, L. Y. & Jan, Y. N. Sequoia, a tramtrack-related zinc finger protein, functions as a pan-neural regulator for dendrite and axon morphogenesis in Drosophila. Dev. Cell1, 667–677 (2001). CASPubMed Google Scholar
Muller, H., Samanta, R. & Wieschaus, E. Wingless signaling in the Drosophila embryo: zygotic requirements and the role of the frizzled genes. Development126, 577–586 (1999). CASPubMed Google Scholar
Brunner, E., Peter, O., Schweizer, L. & Basler, K. pangolin encodes a Lef-1 homologue that acts downstream of Armadillo to transduce the Wingless signal in Drosophila. Nature385, 829–833 (1997). CASPubMed Google Scholar
Van de Wetering, M. et al. Armadillo coactivates transcription driven by the product of the Drosophila segment polarity gene dTCF. Cell88, 789–799 (1997). CASPubMed Google Scholar
Wehrli, M. et al. arrow encodes an LDL-receptor-related protein essential for Wingless signalling. Nature407, 527–530 (2000). CASPubMed Google Scholar
Zusman, S. B. & Wieschaus, E. F. Requirements for zygotic gene activity during gastrulation in Drosophila melanogaster. Dev. Biol.111, 359–371 (1985). CASPubMed Google Scholar
Merrill, P. T., Sweeton, D. & Wieschaus, E. Requirements for autosomal gene activity during precellular stages of Drosophila melanogaster. Development104, 495–509 (1988). CASPubMed Google Scholar
Lee, L. A., Elfring, L. K., Bosco, G. & Orr-Weaver, T. L. A genetic screen for suppressors and enhancers of the Drosophila PAN GU cell cycle kinase identifies cyclin B as a target. Genetics158, 1545–1556 (2001). CASPubMedPubMed Central Google Scholar
Simon, M. A. Signal transduction during the development of the Drosophila R7 photoreceptor. Dev. Biol.166, 431–442 (1994).A review that describes several of the classic enhancer and suppressor screens that identified components of the Sevenless pathway. CASPubMed Google Scholar
Simon, M. A., Dodson, G. S. & Rubin, G. M. An SH3–SH2–SH3 protein is required for p21Ras1 activation and binds to Sevenless and Sos proteins in vitro. Cell73, 169–177 (1993). CASPubMed Google Scholar
Simon, M. A. et al. Signal transduction pathway initiated by activation of the Sevenless tyrosine kinase receptor. Cold Spring Harb. Symp. Quant. Biol.57, 375–380 (1992). CASPubMed Google Scholar
Simon, M. A., Bowtell, D. D., Dodson, G. S., Laverty, T. R. & Rubin, G. M. Ras1 and a putative guanine nucleotide exchange factor perform crucial steps in signaling by the Sevenless protein tyrosine kinase. Cell67, 701–716 (1991). CASPubMed Google Scholar
Allard, J. D., Chang, H. C., Herbst, R., McNeill, H. & Simon, M. A. The SH2-containing tyrosine phosphatase corkscrew is required during signaling by Sevenless, Ras1 and Raf. Development122, 1137–1146 (1996). CASPubMed Google Scholar
Rogge, R. D., Karlovich, C. A. & Banerjee, U. Genetic dissection of a neurodevelopmental pathway: Son of sevenless functions downstream of the sevenless and EGF receptor tyrosine kinases. Cell64, 39–48 (1991). CASPubMed Google Scholar
Olivier, J. P. et al. A Drosophila SH2–SH3 adaptor protein implicated in coupling the Sevenless tyrosine kinase to an activator of Ras guanine nucleotide exchange, Sos. Cell73, 179–191 (1993). CASPubMed Google Scholar
Karim, F. D. et al. A screen for genes that function downstream of Ras1 during Drosophila eye development. Genetics143, 315–329 (1996). CASPubMedPubMed Central Google Scholar
Dickson, B. J., Van der Straten, A., Dominguez, M. & Hafen, E. Mutations modulating Raf signaling in Drosophila eye development. Genetics142, 163–171 (1996). CASPubMedPubMed Central Google Scholar
Therrien, M., Morrison, D. K., Wong, A. M. & Rubin, G. M. A genetic screen for modifiers of a kinase suppressor of Ras-dependent rough eye phenotype in Drosophila. Genetics156, 1231–1242 (2000). CASPubMedPubMed Central Google Scholar
Therrien, M., Wong, A. M. & Rubin, G. M. CNK, a RAF-binding multidomain protein required for RAS signaling. Cell95, 343–353 (1998). CASPubMed Google Scholar
Chen, F. & Rebay, I. split ends, a new component of the Drosophila EGF receptor pathway, regulates development of midline glial cells. Curr. Biol.10, 943–946 (2000). CASPubMed Google Scholar
Rebay, I. et al. A genetic screen for novel components of the Ras/mitogen-activated protein kinase signaling pathway that interact with the yan gene of Drosophila identifies split ends, a new RNA recognition motif-containing protein. Genetics154, 695–712 (2000). CASPubMedPubMed Central Google Scholar
Raftery, L. A., Twombly, V., Wharton, K. & Gelbart, W. M. Genetic screens to identify elements of the Decapentaplegic signaling pathway in Drosophila. Genetics139, 241–254 (1995). CASPubMedPubMed Central Google Scholar
Casci, T., Vinos, J. & Freeman, M. Sprouty, an intracellular inhibitor of Ras signaling. Cell96, 655–665 (1999). CASPubMed Google Scholar
Kaminker, J. S., Singh, R., Lebestky, T., Yan, H. & Banerjee, U. Redundant function of Runt domain binding partners, Big brother and Brother, during Drosophila development. Development128, 2639–2648 (2001). CASPubMed Google Scholar
Barrett, K., Leptin, M. & Settleman, J. The Rho GTPase and a putative RhoGEF mediate a signaling pathway for the cell shape changes in Drosophila gastrulation. Cell91, 905–915 (1997). CASPubMed Google Scholar
Perrimon, N., Engstrom, L. & Mahowald, A. P. The effects of zygotic lethal mutations on female germ-line functions in Drosophila. Dev. Biol.105, 404–414 (1984). CASPubMed Google Scholar
Perrimon, N., Mohler, D., Engstrom, L. & Mahowald, A. X-linked female-sterile loci in Drosophila melanogaster. Genetics113, 695–712 (1986). CASPubMedPubMed Central Google Scholar
Golic, K. G. & Lindquist, S. The FLP recombinase of yeast catalyzes site-specific recombination in the Drosophila genome. Cell59, 499–509 (1989). CASPubMed Google Scholar
Xu, T., Wang, W., Zhang, S., Stewart, R. A. & Yu, W. Identifying tumor suppressors in genetic mosaics: the Drosophila lats gene encodes a putative protein kinase. Development121, 1053–1063 (1995).An excellent example of how clonal screens can identify types of mutation that cannot be found in traditional screens. CASPubMed Google Scholar
Jiang, J. & Struhl, G. Regulation of the Hedgehog and Wingless signalling pathways by the F-box/WD40-repeat protein Slimb. Nature391, 493–496 (1998). CASPubMed Google Scholar
Theodosiou, N. A., Zhang, S., Wang, W. Y. & Xu, T. slimb coordinates wg and dpp expression in the dorsal–ventral and anterior–posterior axes during limb development. Development125, 3411–3416 (1998). CASPubMed Google Scholar
Prout, M., Damania, Z., Soong, J., Fristrom, D. & Fristrom, J. W. Autosomal mutations affecting adhesion between wing surfaces in Drosophila melanogaster. Genetics146, 275–285 (1997). CASPubMedPubMed Central Google Scholar
Walsh, E. P. & Brown, N. H. A screen to identify Drosophila genes required for integrin-mediated adhesion. Genetics150, 791–805 (1998). CASPubMedPubMed Central Google Scholar
Gregory, S. L. & Brown, N. H. kakapo, a gene required for adhesion between and within cell layers in Drosophila, encodes a large cytoskeletal linker protein related to Plectin and Dystrophin. J. Cell Biol.143, 1271–1282 (1998). CASPubMedPubMed Central Google Scholar
Chou, T.-B. & Perrimon, N. The autosomal FLP–DFS technique for generating germline mosaics in Drosophila melanogaster. Genetics144, 1673–1679 (1996).This powerful technique has made it possible to carry out germ-line clone screens to find the missing genes that are involved in embryonic pattern formation (described in references57–62). CASPubMedPubMed Central Google Scholar
Chou, T.-B., Noll, E. & Perrimon, N. Autosomal P[ovo _D1_] dominant female-sterile insertions in Drosophila and their use in generating germ-line chimeras. Development119, 1359–1369 (1993). CASPubMed Google Scholar
Perrimon, N., Lanjuin, A., Arnold, C. & Noll, E. Zygotic lethal mutations with maternal effect phenotypes in Drosophila melanogaster. II. Loci on the second and third chromosomes identified by _P_-element-induced mutations. Genetics144, 1681–1692 (1996). CASPubMedPubMed Central Google Scholar
Bellaiche, Y., The, I. & Perrimon, N. Tout-velu is a Drosophila homologue of the putative tumour suppressor EXT-1 and is needed for Hh diffusion. Nature394, 85–88 (1998). CASPubMed Google Scholar
Häcker, U., Lin, X. & Perrimon, N. The Drosophila sugarless gene modulates Wingless signaling and encodes an enzyme involved in polysaccharide biosynthesis. Development124, 3565–3573 (1997). PubMed Google Scholar
Lin, X., Buff, E. M., Perrimon, N. & Michelson, A. M. Heparan sulfate proteoglycans are essential for FGF receptor signaling during Drosophila embryonic development. Development126, 3715–3723 (1999). CASPubMed Google Scholar
The, I., Bellaiche, Y. & Perrimon, N. Hedgehog movement is regulated throughtout _velu_-dependent synthesis of a heparan sulfate proteoglycan. Mol. Cell4, 633–639 (1999). CASPubMed Google Scholar
Luschnig, S., Krauss, J., Bohmann, K., Desjeux, I. & Nusslein-Volhard, C. The Drosophila SHC adaptor protein is required for signaling by a subset of receptor tyrosine kinases. Mol. Cell5, 231–241 (2000). CASPubMed Google Scholar
Duffy, J. B., Harrison, D. A. & Perrimon, N. Identifying loci required for follicular patterning using directed mosaics. Development125, 2263–2271 (1998). CASPubMed Google Scholar
Bai, J., Uehara, Y. & Montell, D. J. Regulation of invasive cell behavior by Taiman, a Drosophila protein related to AIB1, a steroid receptor coactivator amplified in breast cancer. Cell103, 1047–1058 (2000). CASPubMed Google Scholar
Liu, Y. & Montell, D. J. Identification of mutations that cause cell migration defects in mosaic clones. Development126, 1869–1878 (1999). CASPubMed Google Scholar
Liu, Y. & Montell, D. J. jing: a downstream target of slbo required for developmental control of border cell migration. Development128, 321–330 (2001). CASPubMed Google Scholar
Pai, L. M., Barcelo, G. & Schupbach, T. D-cbl, a negative regulator of the Egfr pathway, is required for dorsoventral patterning in Drosophila oogenesis. Cell103, 51–61 (2000). CASPubMed Google Scholar
Newsome, T. P., Asling, B. & Dickson, B. J. Analysis of Drosophila photoreceptor axon guidance in eye-specific mosaics. Development127, 851–860 (2000).Describes an elegant technique for carrying out clonal screens in the eye usingeye–FLPand selection against non-mutant clones. CASPubMed Google Scholar
Stowers, R. S. & Schwarz, T. L. A genetic method for generating Drosophila eyes composed exclusively of mitotic clones of a single genotype. Genetics152, 1631–1639 (1999). CASPubMedPubMed Central Google Scholar
Morata, G. & Ripoll, P. Minutes: mutants of Drosophila autonomously affecting cell division rate. Dev. Biol.42, 211–221 (1975). CASPubMed Google Scholar
Maurel-Zaffran, C., Suzuki, T., Gahmon, G., Treisman, J. E. & Dickson, B. J. Cell-autonomous and non-autonomous functions of Lar in R7 photoreceptor axon targeting. Neuron32, 225–235 (2001). CASPubMed Google Scholar
Clandinin, T. R. et al. Drosophila LAR regulates R1–R6 and R7 target specificity in the visual system. Neuron32, 237–248 (2001). CASPubMed Google Scholar
Lee, C. H., Herman, T., Clandinin, T. R., Lee, R. & Zipursky, S. L. N-cadherin regulates target specificity in the Drosophila visual system. Neuron30, 437–450 (2001). CASPubMed Google Scholar
Moberg, K. H., Bell, D. W., Wahrer, D. C., Haber, D. A. & Hariharan, I. K. Archipelago regulates cyclin E levels in Drosophila and is mutated in human cancer cell lines. Nature413, 311–316 (2001). CASPubMed Google Scholar
Tapon, N., Ito, N., Dickson, B. J., Treisman, J. E. & Hariharan, I. K. The Drosophila Tuberous sclerosis complex gene homologs restrict cell growth and cell proliferation. Cell105, 345–355 (2001). CASPubMed Google Scholar
Potter, C. J., Huang, H. & Xu, T. Drosophila Tsc1 functions with Tsc2 to antagonize insulin signaling in regulating cell growth, cell proliferation, and organ size. Cell105, 357–368 (2001).References75–77show how clonal screens can identify phenotypes that could not be found using other strategies. CASPubMed Google Scholar
Pichaud, F. & Desplan, C. A new visualization approach for identifying mutations that affect differentiation and organization of the Drosophila ommatidia. Development128, 815–826 (2001). CASPubMed Google Scholar
Rørth, P. A modular misexpression screen in Drosophila detecting tissue-specific phenotypes. Proc. Natl Acad. Sci. USA93, 12418–12422 (1996).References 79 and 80 describe how the Gal4/UASsystem has been adapted to carry out screens for genes that give a phenotype when misexpressed in a particular tissue. PubMedPubMed Central Google Scholar
Rørth, P. et al. Systematic gain-of-function genetics in Drosophila. Development125, 1049–1057 (1998). PubMed Google Scholar
Duchek, P., Somogyi, K., Jekely, G., Beccari, S. & Rørth, P. Guidance of cell migration by the Drosophila PDGF/VEGF receptor. Cell107, 17–26 (2001). CASPubMed Google Scholar
Duchek, P. & Rørth, P. Guidance of cell migration by EGF receptor signaling during Drosophila oogenesis. Science291, 131–133 (2001). CASPubMed Google Scholar
Abdelilah-Seyfried, S. et al. A gain-of-function screen for genes that affect the development of the Drosophila adult external sensory organ. Genetics155, 733–752 (2000). CASPubMedPubMed Central Google Scholar
Kraut, R., Menon, K. & Zinn, K. A gain-of-function screen for genes controlling motor axon guidance and synaptogenesis in Drosophila. Curr. Biol.11, 417–430 (2001). CASPubMed Google Scholar
Mata, J., Curado, S., Ephrussi, A. & Rorth, P. Tribbles coordinates mitosis and morphogenesis in Drosophila by regulating string/CDC25 proteolysis. Cell101, 511–522 (2000). CASPubMed Google Scholar
Carthew, R. W. Gene silencing by double-stranded RNA. Curr. Opin. Cell Biol.13, 244–248 (2001). CASPubMed Google Scholar
Fraser, A. G. et al. Functional genomic analysis of C. elegans chromosome I by systematic RNA interference. Nature408, 325–330 (2000). CASPubMed Google Scholar
Gonczy, P. et al. Functional genomic analysis of cell division in C. elegans using RNAi of genes on chromosome III. Nature408, 331–336 (2000). CASPubMed Google Scholar
Spradling, A. C. et al. The Berkeley Drosophila Genome Project gene disruption project: single _P_-element insertions mutating 25% of vital Drosophila genes. Genetics153, 135–177 (1999). CASPubMedPubMed Central Google Scholar
Sokolowski, M. B. Drosophila: genetics meets behaviour. Nature Rev. Genet.2, 879–890 (2001). CASPubMed Google Scholar
Micklem, D. R. et al. The mago nashi gene is required for the polarisation of the oocyte and the formation of perpendicular axes in Drosophila. Curr. Biol.7, 468–478 (1997). CASPubMed Google Scholar
Shulman, J. M., Benton, R. & St Johnston, D. The Drosophila homolog of C. elegans PAR-1 organizes the oocyte cytoskeleton and directs oskar mRNA localisation to the posterior pole. Cell101, 1–20 (2000). Google Scholar
Greenspan, R. J. Fly Pushing: the Theory and Practice of Drosophila Genetics (Cold Spring Harbor Laboratory Press, New York, 1997).
Berger, J. et al. Genetic mapping with SNP markers in Drosophila. Nature Genet.29, 475–481 (2001). CASPubMed Google Scholar
Martin, S. G., Dobi, K. C. & St Johnston, D. A rapid method to map mutations in Drosophila. Genome Biol.2, 0036 (2001). Google Scholar
Fischer, J. A., Giniger, E., Maniatis, T. & Ptashne, M. GAL4 activates transcription in Drosophila. Nature332, 853–856 (1988). CASPubMed Google Scholar
Brand, A. H. & Perrimon, N. Targeted gene expression as a means of altering cell fates and generating dominant phenotypes. Development118, 401–415 (1993). CASPubMed Google Scholar
Golic, K. Site-specific recombination between homologous chromosomes in Drosophila. Science252, 958–961 (1991).The first demonstration that the yeast Flp recombinase can be used to generate mitotic clones inDrosophila. CASPubMed Google Scholar
Xu, T. & Rubin, G. Analysis of genetic mosaics in developing and adult Drosophila tissues. Development117, 1223–1237 (1993).The first Flp/FRTclonal screen inDrosophila. CASPubMed Google Scholar
Kidd, T., Russell, C., Goodman, C. S. & Tear, G. Dosage-sensitive and complementary functions of roundabout and commissureless control axon crossing of the CNS midline. Neuron20, 25–33 (1998). CASPubMed Google Scholar