The art and design of genetic screens: Drosophila melanogaster (original) (raw)

References

  1. Kohler, R. E. Lords of the Fly: Drosophila Genetics and the Experimental Life Vol. 15 (Univ. Chicago Press, Chicago, Illinois, 1994).
    Google Scholar
  2. Rubin, G. M. & Lewis, E. B. A brief history of Drosophila's contributions to genome research. Science 287, 2216–2218 (2000).
    CAS PubMed Google Scholar
  3. Holley, S. A. et al. A conserved system for dorsal–ventral patterning in insects and vertebrates involving sog and chordin. Nature 376, 249–253 (1995).
    CAS PubMed Google Scholar
  4. Pearse, R. V. & Tabin, C.J. The molecular ZPA. J. Exp. Zool. 282, 677–690 (1998).
    CAS PubMed Google Scholar
  5. Adams, M. D. et al. The genome sequence of Drosophila melanogaster. Science 287, 2185–2195 (2000).
    PubMed Google Scholar
  6. Friedman, R. & Hughes, A. L. Pattern and timing of gene duplication in animal genomes. Genome Res. 11, 1842–1847 (2001).
    CAS PubMed PubMed Central Google Scholar
  7. Fortini, M. E., Skupski, M. P., Boguski, M. S. & Hariharan, I. K. A survey of human disease gene counterparts in the Drosophila genome. J. Cell Biol. 150, F23–F30 (2000).
    CAS PubMed Google Scholar
  8. Feany, M. B. & Bender, W. W. A Drosophila model of Parkinson's disease. Nature 404, 394–398 (2000).
    CAS PubMed Google Scholar
  9. Lewis, E. B. & Bacher, F. Methods of feeding ethyl methane sulphonate (EMS) to Drosophila males. Drosoph. Inf. Serv. 43, 193 (1968).
    Google Scholar
  10. Nüsslein-Volhard, C. & Wieschaus, E. Mutations affecting segment number and polarity in Drosophila. Nature 287, 795–801 (1980).A classic paper describing some of the mutants from the first large-scale screens that set out to saturate the genome for mutations that affect a particular process.
    PubMed Google Scholar
  11. Nüsslein-Volhard, C., Wieschaus, E. & Kluding, H. Mutations affecting the pattern of the larval cuticle in Drosophila melanogaster: zygotic loci on the second chromosome. Roux's Arch. Dev. Biol. 193, 267–282 (1984).A more detailed description of the large-scale screens for embryonic patterning mutants; it contains a valuable discussion on how to assess the degree of saturation.
    Google Scholar
  12. Lawrence, P. A. The Making of the Fly: the Genetics of Animal Design (Blackwell, Oxford, 1992).
  13. Wieschaus, E. Embryonic transcription and the control of developmental pathways. Genetics 142, 5–10 (1996).
    CAS PubMed PubMed Central Google Scholar
  14. Nüsslein-Volhard, C., Frohnhöfer, H. G. & Lehmann, R. Determination of anteroposterior polarity in Drosophila. Science 238, 1675–1681 (1987).
    PubMed Google Scholar
  15. Schüpbach, T. & Wieschaus, E. Maternal-effect mutations altering the anterior–posterior pattern of the Drosophila embryo. Roux's Arch. Dev. Biol. 195, 302–317 (1986).
    Google Scholar
  16. Seeger, M., Tear, G., Ferres-Marco, D. & Goodman, C. S. Mutations affecting growth cone guidance in Drosophila: genes necessary for guidance toward or away from the midline. Neuron 10, 409–426 (1993).
    CAS PubMed Google Scholar
  17. Kolodziej, P. A., Jan, L. Y. & Jan, Y. N. Mutations that affect the length, fasciculation, or ventral orientation of specific sensory axons in the Drosophila embryo. Neuron 15, 273–286 (1995).
    CAS PubMed Google Scholar
  18. Kidd, T. et al. Roundabout controls axon crossing of the CNS midline and defines a novel subfamily of evolutionarily conserved guidance receptors. Cell 92, 205–215 (1998).
    CAS PubMed Google Scholar
  19. Tear, G. et al. commissureless controls growth cone guidance across the CNS midline in Drosophila and encodes a novel membrane protein. Neuron 16, 501–514 (1996).
    CAS PubMed Google Scholar
  20. Gao, F. B., Brenman, J. E., Jan, L. Y. & Jan, Y. N. Genes regulating dendritic outgrowth, branching, and routing in Drosophila. Genes Dev. 13, 2549–2561 (1999).A recent example of how the traditional screening approach can be combined with sophisticated labelling techniques to find mutants that affect a specific process.
    CAS PubMed PubMed Central Google Scholar
  21. Gao, F. B., Kohwi, M., Brenman, J. E., Jan, L. Y. & Jan, Y. N. Control of dendritic field formation in Drosophila: the roles of flamingo and competition between homologous neurons. Neuron 28, 91–101 (2000).
    CAS PubMed Google Scholar
  22. Brenman, J. E., Gao, F. B., Jan, L. Y. & Jan, Y. N. Sequoia, a tramtrack-related zinc finger protein, functions as a pan-neural regulator for dendrite and axon morphogenesis in Drosophila. Dev. Cell 1, 667–677 (2001).
    CAS PubMed Google Scholar
  23. Muller, H., Samanta, R. & Wieschaus, E. Wingless signaling in the Drosophila embryo: zygotic requirements and the role of the frizzled genes. Development 126, 577–586 (1999).
    CAS PubMed Google Scholar
  24. Brunner, E., Peter, O., Schweizer, L. & Basler, K. pangolin encodes a Lef-1 homologue that acts downstream of Armadillo to transduce the Wingless signal in Drosophila. Nature 385, 829–833 (1997).
    CAS PubMed Google Scholar
  25. Van de Wetering, M. et al. Armadillo coactivates transcription driven by the product of the Drosophila segment polarity gene dTCF. Cell 88, 789–799 (1997).
    CAS PubMed Google Scholar
  26. Wehrli, M. et al. arrow encodes an LDL-receptor-related protein essential for Wingless signalling. Nature 407, 527–530 (2000).
    CAS PubMed Google Scholar
  27. Zusman, S. B. & Wieschaus, E. F. Requirements for zygotic gene activity during gastrulation in Drosophila melanogaster. Dev. Biol. 111, 359–371 (1985).
    CAS PubMed Google Scholar
  28. Merrill, P. T., Sweeton, D. & Wieschaus, E. Requirements for autosomal gene activity during precellular stages of Drosophila melanogaster. Development 104, 495–509 (1988).
    CAS PubMed Google Scholar
  29. Lee, L. A., Elfring, L. K., Bosco, G. & Orr-Weaver, T. L. A genetic screen for suppressors and enhancers of the Drosophila PAN GU cell cycle kinase identifies cyclin B as a target. Genetics 158, 1545–1556 (2001).
    CAS PubMed PubMed Central Google Scholar
  30. Simon, M. A. Signal transduction during the development of the Drosophila R7 photoreceptor. Dev. Biol. 166, 431–442 (1994).A review that describes several of the classic enhancer and suppressor screens that identified components of the Sevenless pathway.
    CAS PubMed Google Scholar
  31. Simon, M. A., Dodson, G. S. & Rubin, G. M. An SH3–SH2–SH3 protein is required for p21Ras1 activation and binds to Sevenless and Sos proteins in vitro. Cell 73, 169–177 (1993).
    CAS PubMed Google Scholar
  32. Simon, M. A. et al. Signal transduction pathway initiated by activation of the Sevenless tyrosine kinase receptor. Cold Spring Harb. Symp. Quant. Biol. 57, 375–380 (1992).
    CAS PubMed Google Scholar
  33. Simon, M. A., Bowtell, D. D., Dodson, G. S., Laverty, T. R. & Rubin, G. M. Ras1 and a putative guanine nucleotide exchange factor perform crucial steps in signaling by the Sevenless protein tyrosine kinase. Cell 67, 701–716 (1991).
    CAS PubMed Google Scholar
  34. Allard, J. D., Chang, H. C., Herbst, R., McNeill, H. & Simon, M. A. The SH2-containing tyrosine phosphatase corkscrew is required during signaling by Sevenless, Ras1 and Raf. Development 122, 1137–1146 (1996).
    CAS PubMed Google Scholar
  35. Rogge, R. D., Karlovich, C. A. & Banerjee, U. Genetic dissection of a neurodevelopmental pathway: Son of sevenless functions downstream of the sevenless and EGF receptor tyrosine kinases. Cell 64, 39–48 (1991).
    CAS PubMed Google Scholar
  36. Olivier, J. P. et al. A Drosophila SH2–SH3 adaptor protein implicated in coupling the Sevenless tyrosine kinase to an activator of Ras guanine nucleotide exchange, Sos. Cell 73, 179–191 (1993).
    CAS PubMed Google Scholar
  37. Karim, F. D. et al. A screen for genes that function downstream of Ras1 during Drosophila eye development. Genetics 143, 315–329 (1996).
    CAS PubMed PubMed Central Google Scholar
  38. Dickson, B. J., Van der Straten, A., Dominguez, M. & Hafen, E. Mutations modulating Raf signaling in Drosophila eye development. Genetics 142, 163–171 (1996).
    CAS PubMed PubMed Central Google Scholar
  39. Therrien, M., Morrison, D. K., Wong, A. M. & Rubin, G. M. A genetic screen for modifiers of a kinase suppressor of Ras-dependent rough eye phenotype in Drosophila. Genetics 156, 1231–1242 (2000).
    CAS PubMed PubMed Central Google Scholar
  40. Therrien, M., Wong, A. M. & Rubin, G. M. CNK, a RAF-binding multidomain protein required for RAS signaling. Cell 95, 343–353 (1998).
    CAS PubMed Google Scholar
  41. Chen, F. & Rebay, I. split ends, a new component of the Drosophila EGF receptor pathway, regulates development of midline glial cells. Curr. Biol. 10, 943–946 (2000).
    CAS PubMed Google Scholar
  42. Rebay, I. et al. A genetic screen for novel components of the Ras/mitogen-activated protein kinase signaling pathway that interact with the yan gene of Drosophila identifies split ends, a new RNA recognition motif-containing protein. Genetics 154, 695–712 (2000).
    CAS PubMed PubMed Central Google Scholar
  43. Raftery, L. A., Twombly, V., Wharton, K. & Gelbart, W. M. Genetic screens to identify elements of the Decapentaplegic signaling pathway in Drosophila. Genetics 139, 241–254 (1995).
    CAS PubMed PubMed Central Google Scholar
  44. Casci, T., Vinos, J. & Freeman, M. Sprouty, an intracellular inhibitor of Ras signaling. Cell 96, 655–665 (1999).
    CAS PubMed Google Scholar
  45. Kaminker, J. S., Singh, R., Lebestky, T., Yan, H. & Banerjee, U. Redundant function of Runt domain binding partners, Big brother and Brother, during Drosophila development. Development 128, 2639–2648 (2001).
    CAS PubMed Google Scholar
  46. Barrett, K., Leptin, M. & Settleman, J. The Rho GTPase and a putative RhoGEF mediate a signaling pathway for the cell shape changes in Drosophila gastrulation. Cell 91, 905–915 (1997).
    CAS PubMed Google Scholar
  47. Perrimon, N., Engstrom, L. & Mahowald, A. P. The effects of zygotic lethal mutations on female germ-line functions in Drosophila. Dev. Biol. 105, 404–414 (1984).
    CAS PubMed Google Scholar
  48. Perrimon, N., Mohler, D., Engstrom, L. & Mahowald, A. X-linked female-sterile loci in Drosophila melanogaster. Genetics 113, 695–712 (1986).
    CAS PubMed PubMed Central Google Scholar
  49. Golic, K. G. & Lindquist, S. The FLP recombinase of yeast catalyzes site-specific recombination in the Drosophila genome. Cell 59, 499–509 (1989).
    CAS PubMed Google Scholar
  50. Xu, T., Wang, W., Zhang, S., Stewart, R. A. & Yu, W. Identifying tumor suppressors in genetic mosaics: the Drosophila lats gene encodes a putative protein kinase. Development 121, 1053–1063 (1995).An excellent example of how clonal screens can identify types of mutation that cannot be found in traditional screens.
    CAS PubMed Google Scholar
  51. Jiang, J. & Struhl, G. Regulation of the Hedgehog and Wingless signalling pathways by the F-box/WD40-repeat protein Slimb. Nature 391, 493–496 (1998).
    CAS PubMed Google Scholar
  52. Theodosiou, N. A., Zhang, S., Wang, W. Y. & Xu, T. slimb coordinates wg and dpp expression in the dorsal–ventral and anterior–posterior axes during limb development. Development 125, 3411–3416 (1998).
    CAS PubMed Google Scholar
  53. Prout, M., Damania, Z., Soong, J., Fristrom, D. & Fristrom, J. W. Autosomal mutations affecting adhesion between wing surfaces in Drosophila melanogaster. Genetics 146, 275–285 (1997).
    CAS PubMed PubMed Central Google Scholar
  54. Walsh, E. P. & Brown, N. H. A screen to identify Drosophila genes required for integrin-mediated adhesion. Genetics 150, 791–805 (1998).
    CAS PubMed PubMed Central Google Scholar
  55. Gregory, S. L. & Brown, N. H. kakapo, a gene required for adhesion between and within cell layers in Drosophila, encodes a large cytoskeletal linker protein related to Plectin and Dystrophin. J. Cell Biol. 143, 1271–1282 (1998).
    CAS PubMed PubMed Central Google Scholar
  56. Chou, T.-B. & Perrimon, N. The autosomal FLP–DFS technique for generating germline mosaics in Drosophila melanogaster. Genetics 144, 1673–1679 (1996).This powerful technique has made it possible to carry out germ-line clone screens to find the missing genes that are involved in embryonic pattern formation (described in references 57–62).
    CAS PubMed PubMed Central Google Scholar
  57. Chou, T.-B., Noll, E. & Perrimon, N. Autosomal P[ovo _D1_] dominant female-sterile insertions in Drosophila and their use in generating germ-line chimeras. Development 119, 1359–1369 (1993).
    CAS PubMed Google Scholar
  58. Perrimon, N., Lanjuin, A., Arnold, C. & Noll, E. Zygotic lethal mutations with maternal effect phenotypes in Drosophila melanogaster. II. Loci on the second and third chromosomes identified by _P_-element-induced mutations. Genetics 144, 1681–1692 (1996).
    CAS PubMed PubMed Central Google Scholar
  59. Bellaiche, Y., The, I. & Perrimon, N. Tout-velu is a Drosophila homologue of the putative tumour suppressor EXT-1 and is needed for Hh diffusion. Nature 394, 85–88 (1998).
    CAS PubMed Google Scholar
  60. Häcker, U., Lin, X. & Perrimon, N. The Drosophila sugarless gene modulates Wingless signaling and encodes an enzyme involved in polysaccharide biosynthesis. Development 124, 3565–3573 (1997).
    PubMed Google Scholar
  61. Lin, X., Buff, E. M., Perrimon, N. & Michelson, A. M. Heparan sulfate proteoglycans are essential for FGF receptor signaling during Drosophila embryonic development. Development 126, 3715–3723 (1999).
    CAS PubMed Google Scholar
  62. The, I., Bellaiche, Y. & Perrimon, N. Hedgehog movement is regulated throughtout _velu_-dependent synthesis of a heparan sulfate proteoglycan. Mol. Cell 4, 633–639 (1999).
    CAS PubMed Google Scholar
  63. Luschnig, S., Krauss, J., Bohmann, K., Desjeux, I. & Nusslein-Volhard, C. The Drosophila SHC adaptor protein is required for signaling by a subset of receptor tyrosine kinases. Mol. Cell 5, 231–241 (2000).
    CAS PubMed Google Scholar
  64. Duffy, J. B., Harrison, D. A. & Perrimon, N. Identifying loci required for follicular patterning using directed mosaics. Development 125, 2263–2271 (1998).
    CAS PubMed Google Scholar
  65. Bai, J., Uehara, Y. & Montell, D. J. Regulation of invasive cell behavior by Taiman, a Drosophila protein related to AIB1, a steroid receptor coactivator amplified in breast cancer. Cell 103, 1047–1058 (2000).
    CAS PubMed Google Scholar
  66. Liu, Y. & Montell, D. J. Identification of mutations that cause cell migration defects in mosaic clones. Development 126, 1869–1878 (1999).
    CAS PubMed Google Scholar
  67. Liu, Y. & Montell, D. J. jing: a downstream target of slbo required for developmental control of border cell migration. Development 128, 321–330 (2001).
    CAS PubMed Google Scholar
  68. Pai, L. M., Barcelo, G. & Schupbach, T. D-cbl, a negative regulator of the Egfr pathway, is required for dorsoventral patterning in Drosophila oogenesis. Cell 103, 51–61 (2000).
    CAS PubMed Google Scholar
  69. Newsome, T. P., Asling, B. & Dickson, B. J. Analysis of Drosophila photoreceptor axon guidance in eye-specific mosaics. Development 127, 851–860 (2000).Describes an elegant technique for carrying out clonal screens in the eye using eye FLP and selection against non-mutant clones.
    CAS PubMed Google Scholar
  70. Stowers, R. S. & Schwarz, T. L. A genetic method for generating Drosophila eyes composed exclusively of mitotic clones of a single genotype. Genetics 152, 1631–1639 (1999).
    CAS PubMed PubMed Central Google Scholar
  71. Morata, G. & Ripoll, P. Minutes: mutants of Drosophila autonomously affecting cell division rate. Dev. Biol. 42, 211–221 (1975).
    CAS PubMed Google Scholar
  72. Maurel-Zaffran, C., Suzuki, T., Gahmon, G., Treisman, J. E. & Dickson, B. J. Cell-autonomous and non-autonomous functions of Lar in R7 photoreceptor axon targeting. Neuron 32, 225–235 (2001).
    CAS PubMed Google Scholar
  73. Clandinin, T. R. et al. Drosophila LAR regulates R1–R6 and R7 target specificity in the visual system. Neuron 32, 237–248 (2001).
    CAS PubMed Google Scholar
  74. Lee, C. H., Herman, T., Clandinin, T. R., Lee, R. & Zipursky, S. L. N-cadherin regulates target specificity in the Drosophila visual system. Neuron 30, 437–450 (2001).
    CAS PubMed Google Scholar
  75. Moberg, K. H., Bell, D. W., Wahrer, D. C., Haber, D. A. & Hariharan, I. K. Archipelago regulates cyclin E levels in Drosophila and is mutated in human cancer cell lines. Nature 413, 311–316 (2001).
    CAS PubMed Google Scholar
  76. Tapon, N., Ito, N., Dickson, B. J., Treisman, J. E. & Hariharan, I. K. The Drosophila Tuberous sclerosis complex gene homologs restrict cell growth and cell proliferation. Cell 105, 345–355 (2001).
    CAS PubMed Google Scholar
  77. Potter, C. J., Huang, H. & Xu, T. Drosophila Tsc1 functions with Tsc2 to antagonize insulin signaling in regulating cell growth, cell proliferation, and organ size. Cell 105, 357–368 (2001).References 75–77 show how clonal screens can identify phenotypes that could not be found using other strategies.
    CAS PubMed Google Scholar
  78. Pichaud, F. & Desplan, C. A new visualization approach for identifying mutations that affect differentiation and organization of the Drosophila ommatidia. Development 128, 815–826 (2001).
    CAS PubMed Google Scholar
  79. Rørth, P. A modular misexpression screen in Drosophila detecting tissue-specific phenotypes. Proc. Natl Acad. Sci. USA 93, 12418–12422 (1996).References 79 and 80 describe how the Gal4/ UAS system has been adapted to carry out screens for genes that give a phenotype when misexpressed in a particular tissue.
    PubMed PubMed Central Google Scholar
  80. Rørth, P. et al. Systematic gain-of-function genetics in Drosophila. Development 125, 1049–1057 (1998).
    PubMed Google Scholar
  81. Duchek, P., Somogyi, K., Jekely, G., Beccari, S. & Rørth, P. Guidance of cell migration by the Drosophila PDGF/VEGF receptor. Cell 107, 17–26 (2001).
    CAS PubMed Google Scholar
  82. Duchek, P. & Rørth, P. Guidance of cell migration by EGF receptor signaling during Drosophila oogenesis. Science 291, 131–133 (2001).
    CAS PubMed Google Scholar
  83. Abdelilah-Seyfried, S. et al. A gain-of-function screen for genes that affect the development of the Drosophila adult external sensory organ. Genetics 155, 733–752 (2000).
    CAS PubMed PubMed Central Google Scholar
  84. Kraut, R., Menon, K. & Zinn, K. A gain-of-function screen for genes controlling motor axon guidance and synaptogenesis in Drosophila. Curr. Biol. 11, 417–430 (2001).
    CAS PubMed Google Scholar
  85. Mata, J., Curado, S., Ephrussi, A. & Rorth, P. Tribbles coordinates mitosis and morphogenesis in Drosophila by regulating string/CDC25 proteolysis. Cell 101, 511–522 (2000).
    CAS PubMed Google Scholar
  86. Carthew, R. W. Gene silencing by double-stranded RNA. Curr. Opin. Cell Biol. 13, 244–248 (2001).
    CAS PubMed Google Scholar
  87. Fraser, A. G. et al. Functional genomic analysis of C. elegans chromosome I by systematic RNA interference. Nature 408, 325–330 (2000).
    CAS PubMed Google Scholar
  88. Gonczy, P. et al. Functional genomic analysis of cell division in C. elegans using RNAi of genes on chromosome III. Nature 408, 331–336 (2000).
    CAS PubMed Google Scholar
  89. Spradling, A. C. et al. The Berkeley Drosophila Genome Project gene disruption project: single _P_-element insertions mutating 25% of vital Drosophila genes. Genetics 153, 135–177 (1999).
    CAS PubMed PubMed Central Google Scholar
  90. Sokolowski, M. B. Drosophila: genetics meets behaviour. Nature Rev. Genet. 2, 879–890 (2001).
    CAS PubMed Google Scholar
  91. Micklem, D. R. et al. The mago nashi gene is required for the polarisation of the oocyte and the formation of perpendicular axes in Drosophila. Curr. Biol. 7, 468–478 (1997).
    CAS PubMed Google Scholar
  92. Shulman, J. M., Benton, R. & St Johnston, D. The Drosophila homolog of C. elegans PAR-1 organizes the oocyte cytoskeleton and directs oskar mRNA localisation to the posterior pole. Cell 101, 1–20 (2000).
    Google Scholar
  93. Greenspan, R. J. Fly Pushing: the Theory and Practice of Drosophila Genetics (Cold Spring Harbor Laboratory Press, New York, 1997).
  94. Berger, J. et al. Genetic mapping with SNP markers in Drosophila. Nature Genet. 29, 475–481 (2001).
    CAS PubMed Google Scholar
  95. Martin, S. G., Dobi, K. C. & St Johnston, D. A rapid method to map mutations in Drosophila. Genome Biol. 2, 0036 (2001).
    Google Scholar
  96. Fischer, J. A., Giniger, E., Maniatis, T. & Ptashne, M. GAL4 activates transcription in Drosophila. Nature 332, 853–856 (1988).
    CAS PubMed Google Scholar
  97. Brand, A. H. & Perrimon, N. Targeted gene expression as a means of altering cell fates and generating dominant phenotypes. Development 118, 401–415 (1993).
    CAS PubMed Google Scholar
  98. Golic, K. Site-specific recombination between homologous chromosomes in Drosophila. Science 252, 958–961 (1991).The first demonstration that the yeast Flp recombinase can be used to generate mitotic clones in Drosophila.
    CAS PubMed Google Scholar
  99. Xu, T. & Rubin, G. Analysis of genetic mosaics in developing and adult Drosophila tissues. Development 117, 1223–1237 (1993).The first Flp/ FRT clonal screen in Drosophila.
    CAS PubMed Google Scholar
  100. Kidd, T., Russell, C., Goodman, C. S. & Tear, G. Dosage-sensitive and complementary functions of roundabout and commissureless control axon crossing of the CNS midline. Neuron 20, 25–33 (1998).
    CAS PubMed Google Scholar

Download references