- Lawrence, J. G. Shared strategies in gene organization among prokaryotes and eukaryotes. Cell 110, 407–413 (2002).
Article CAS Google Scholar
- Langer, D. et al. Transcription in archaea: similarity to that in eucarya. Proc. Natl Acad. Sci. USA 92, 5768–5772 (1995). One of several papers that report the same operon architecture in bacteria and archaea, especially for operons that contain components of the gene expression machinery.
Article CAS Google Scholar
- Jacob, F. & Monod, J. On the regulation of gene activity. Cold Spring Harb. Symp. Quant. Biol. 26, 193–211 (1962).
Article Google Scholar
- Spieth, J. et al. Operons in C. elegans: polycistronic mRNA precursors are processed by _trans_-splicing of SL2 to downstream coding regions. Cell 73, 521–532 (1993). The original report of operons in the C. elegans genome.
Article CAS Google Scholar
- Blumenthal, T. & Steward, K. in C. elegans II (eds Riddle, D. et al.) 117–145 (Cold Spring Harbor Laboratory Press, New York, 1997).
Google Scholar
- Blumenthal, T. _Trans_-splicing and polycistronic transcription in Caenorhabditis elegans. Trends Genet. 11, 132–136 (1995).
Article CAS Google Scholar
- Blumenthal, T. & Spieth, J. Gene structure and organization in Caenorhabditis elegans. Curr. Opin. Genet. Dev. 6, 692–698 (1996).
Article CAS Google Scholar
- Huang, T. et al. Intercistronic region required for polycistronic pre-mRNA processing in Caenorhabditis elegans. Mol. Cell. Biol. 21, 1111–1120 (2001).
Article CAS Google Scholar
- Sutton, R. E. & Boothroyd, J. C. Evidence for trans splicing in trypanosomes. Cell 47, 527–535 (1986).
Article CAS Google Scholar
- Murphy, W. J., Watkins, K. P. & Agabian, N. Identification of a novel Y branch structure as an intermediate in trypanosome mRNA processing: evidence for trans splicing. Cell 47, 517–525 (1986).
Article CAS Google Scholar
- Davis, R. E. Surprising diversity and distribution of spliced leader RNAs in flatworms. Mol. Biochem. Parasitol. 87, 29–48 (1997).
Article CAS Google Scholar
- Stover, N. A. & Steele, R. E. _Trans_-spliced leader addition to mRNAs in a cnidarian. Proc. Natl Acad. Sci. USA 98, 5693–5698 (2001).
Article CAS Google Scholar
- Vandenberghe, A. E., Meedel, T. H. & Hastings, K. E. mRNA 5'-leader _trans-_splicing in the chordates. Genes Dev. 15, 294–303 (2001).
Article CAS Google Scholar
- Nilsen, T. W. _Trans_-splicing of nematode premessenger RNA. Annu. Rev. Microbiol. 47, 413–440 (1993).
Article CAS Google Scholar
- Denker, J. A. et al. New components of the spliced leader RNP required for nematode _trans_-splicing. Nature 417, 667–670 (2002).
Article CAS Google Scholar
- Nilsen, T. W. Evolutionary origin of SL-addition _trans_-splicing: still an enigma. Trends Genet. 17, 678–680 (2001).
Article CAS Google Scholar
- Zorio, D. A. et al. Operons as a common form of chromosomal organization in C. elegans. Nature 372, 270–272 (1994).
Article CAS Google Scholar
- Blumenthal, T. et al. A global analysis of Caenorhabditis elegans operons. Nature 417, 851–854 (2002). The paper presents a microarray and cDNA analysis of the C. elegans genome to identify most of the operons. It also reports the co-regulation of functionally related genes through their presence in the same operon.
Article CAS Google Scholar
- Kamath, R. S. et al. Systematic functional analysis of the C. elegans genome using RNAi. Nature 421, 231–237 (2003). The authors analyse most of the C. elegans genes by RNAi, and divide them into functional categories on the basis of their knockdown phenotypes.
Article CAS Google Scholar
- Evans, D. et al. Operons and SL2 _trans_-splicing exist in nematodes outside the genus Caenorhabditis. Proc. Natl Acad. Sci. USA 94, 9751–9756 (1997).
Article CAS Google Scholar
- Muhich, M. L. & Boothroyd, J. C. Polycistronic transcripts in trypanosomes and their accumulation during heat shock: evidence for a precursor role in mRNA synthesis. Mol. Cell. Biol. 8, 3837–3846 (1988).
Article CAS Google Scholar
- Davis, R. E. & Hodgson, S. Gene linkage and steady state RNAs suggest _trans_-splicing may be associated with a polycistronic transcript in Schistosoma mansoni. Mol. Biochem. Parasitol. 89, 25–39 (1997).
Article CAS Google Scholar
- Blumenthal, T. Gene clusters and polycistronic transcription in eukaryotes. Bioessays 20, 480–487 (1998).
Article CAS Google Scholar
- Dufourcq, P. et al. lir-2, lir-1 and lin-26 encode a new class of zinc-finger proteins and are organized in two overlapping operons both in Caenorhabditis elegans and in Caenorhabditis briggsae. Genetics 152, 221–235 (1999).
CAS PubMed PubMed Central Google Scholar
- Zorio, D. A. & Blumenthal, T. U2AF35 is encoded by an essential gene clustered in an operon with RRM/cyclophilin in Caenorhabditis elegans. RNA 5, 487–494 (1999).
Article CAS Google Scholar
- Mazroui, R., Puoti, A. & Kramer, A. Splicing factor SF1 from Drosophila and Caenorhabditis: presence of an N-terminal RS domain and requirement for viability. RNA 5, 1615–1631 (1999).
Article CAS Google Scholar
- Zhou, Z. et al. Comprehensive proteomic analysis of the human spliceosome. Nature 419, 182–185 (2002).
Article CAS Google Scholar
- Jurica, M. S. et al. Purification and characterization of native spliceosomes suitable for three-dimensional structural analysis. RNA 8, 426–439 (2002).
Article CAS Google Scholar
- Rappsilber, J. et al. Large-scale proteomic analysis of the human spliceosome. Genome Res. 12, 1231–1245 (2002).
Article CAS Google Scholar
- Nomura, M. Organization of bacterial genes for ribosomal components: studies using novel approaches. Cell 9, 633–644 (1976). One of several papers reporting the co-expression of genes that encode RNA polymerase subunits and ribosomal proteins in the same bacterial operons.
Article CAS Google Scholar
- Treinin, M. et al. Two functionally dependent acetylcholine subunits are encoded in a single Caenorhabditis elegans operon. Proc. Natl Acad. Sci. USA 95, 15492–15495 (1998).
Article CAS Google Scholar
- Clark, S. G., Lu, X. & Horvitz, H. R. The Caenorhabditis elegans locus lin-15, a negative regulator of a tyrosine kinase signaling pathway, encodes two different proteins. Genetics 137, 987–997 (1994).
CAS PubMed PubMed Central Google Scholar
- Huang, L. S., Tzou, P. & Sternberg, P. W. The lin-15 locus encodes two negative regulators of Caenorhabditis elegans vulval development. Mol. Biol. Cell 5, 395–411 (1994).
Article CAS Google Scholar
- Page, A. P. Cyclophilin and protein disulfide isomerase genes are co-transcribed in a functionally related manner in Caenorhabditis elegans. DNA Cell Biol. 16, 1335–1343 (1997).
Article CAS Google Scholar
- Lercher, M. J., Blumenthal, T. & Hurst, L. D. Co–expression of neighboring genes in Caenorhabditis elegans is mostly due to operons and duplicate genes. Genome Res. (in the press).
- Hill, A. A. et al. Genomic analysis of gene expression in C. elegans. Science 290, 809–812 (2000).
Article CAS Google Scholar
- Furst, J. et al. ICln ion channel splice variants in Caenorhabditis elegans: voltage dependence and interaction with an operon partner protein. J. Biol. Chem. 277, 4435–4445 (2002). The first paper to use a C. elegans operon as a gene finding tool. It shows that one protein in the operon modifies the activity of an ion channel encoded in the operon when the two are co-expressed in a cell culture.
Article CAS Google Scholar
- Nimmo, R. & Woollard, A. Widespread organisation of C. elegans genes into operons: fact or function? Bioessays 24, 983–987 (2002).
Article CAS Google Scholar
- Andersen, J. S. et al. Directed proteomic analysis of the human nucleolus. Curr. Biol. 12, 1–11 (2002).
Article Google Scholar