Mycobiota in gastrointestinal diseases (original) (raw)
Odds, F. C. in Candida and Candidosis 156–163 (Bailliere Tindall, 1988). Google Scholar
Parrot, J. Note sur un cas de muguet du gros intestin. Archives de Physiologie Normale et Pathologique3, 621–625 (1870). Google Scholar
Parrot, J. Du muguet gastrique et de quelques autres localisations de ce parasite. Archives de Physiologie Normale et Pathologique2, 579–599 (1869). Google Scholar
Ludlam, G. & Henderson, J. Neonatal thrush in a maternity hospital. Lancet239, 64–70 (1942). Article Google Scholar
Norman, J. M., Handley, S. A. & Virgin, H. W. Kingdom-agnostic metagenomics and the importance of complete characterization of enteric microbial communities. Gastroenterology146, 1459–1469 (2014). ArticleCASPubMed Google Scholar
Gencosmanoglu, R. et al. Mid-esophageal ulceration and candidiasis-associated distal esophagitis as two distinct clinical patterns of tetracycline or doxycycline-induced esophageal injury. J. Clin. Gastroenterol.38, 484–489 (2004). ArticleCASPubMed Google Scholar
Sano, T., Ozaki, K., Kodama, Y., Matsuura, T. & Narama, I. Antimicrobial agent, tetracycline, enhanced upper alimentary tract Candida albicans infection and its related mucosal proliferation in alloxan-induced diabetic rats. Toxicol. Pathol.40, 1014–1019 (2012). ArticleCASPubMed Google Scholar
Wiesner, S. M., Jechorek, R. P., Garni, R. M., Bendel, C. M. & Wells, C. L. Gastrointestinal colonization by Candida albicans mutant strains in antibiotic-treated mice. Clin. Diagn. Lab. Immunol.8, 192–195 (2001). CASPubMedPubMed Central Google Scholar
Mellado, E. et al. Sustained gastrointestinal colonization and systemic dissemination by Candida albicans, Candida tropicalis and Candida parapsilosis in adult mice. Diagn. Microbiol. Infect. Dis.38, 21–28 (2000). ArticleCASPubMed Google Scholar
DeMaria, A., Buckley, H. & von Lichtenberg, F. Gastrointestinal candidiasis in rats treated with antibiotics, cortisone, and azathioprine. Infect. Immun.13, 1761–1770 (1976). CASPubMedPubMed Central Google Scholar
Helstrom, P. B. & Balish, E. Effect of oral tetracycline, the microbial flora, and the athymic state on gastrointestinal colonization and infection of BALB/c mice with Candida albicans. Infect. Immun.23, 764–774 (1979). CASPubMedPubMed Central Google Scholar
Clark, J. D. Influence of antibiotics or certain intestinal bacteria on orally administered Candida albicans in germ-free and conventional mice. Infect. Immun.4, 731–737 (1971). CASPubMedPubMed Central Google Scholar
Dollive, S. et al. Fungi of the murine gut: episodic variation and proliferation during antibiotic treatment. PLoS ONE8, e71806 (2013). ArticleCASPubMedPubMed Central Google Scholar
Mukherjee, P. K. et al. Oral mycobiome analysis of HIV-infected patients: identification of Pichia as an antagonist of opportunistic fungi. PLoS Pathog.10, e1003996 (2014). ArticleCASPubMedPubMed Central Google Scholar
Navazesh, M. et al. The effect of HAART on salivary microbiota in the Women's Interagency HIV Study (WIHS). Oral Surg. Oral Med. Oral Pathol. Oral Radiol. Endod.100, 701–708 (2005). ArticlePubMed Google Scholar
Cruz, M. R., Graham, C. E., Gagliano, B. C., Lorenz, M. C. & Garsin, D. A. Enterococcus faecalis inhibits hyphal morphogenesis and virulence of Candida albicans. Infect. Immun.81, 189–200 (2012). ArticleCASPubMed Google Scholar
Mondot, S. et al. Highlighting new phylogenetic specificities of Crohn's disease microbiota. Inflamm Bowel Dis.17, 185–192 (2011). ArticleCASPubMed Google Scholar
Kang, S. et al. Dysbiosis of fecal microbiota in Crohn's disease patients as revealed by a custom phylogenetic microarray. Inflamm. Bowel Dis.16, 2034–2042 (2010). ArticlePubMed Google Scholar
Workman, S. N., Been, F. E., Crawford, S. R. & Lavoie, M. C. Bacteriocin-like inhibitory substances from Campylobacter spp. Antonie Van Leeuwenhoek93, 435–436 (2008). ArticleCASPubMed Google Scholar
Ghannoum, M. A. et al. Characterization of the oral fungal microbiome (mycobiome) in healthy individuals. PLoS Pathog.6, e1000713 (2010). ArticleCASPubMedPubMed Central Google Scholar
Jawhara, S. et al. Modulation of intestinal inflammation by yeasts and cell wall extracts: strain dependence and unexpected anti-inflammatory role of glucan fractions. PLoS ONE7, e40648 (2012). ArticleCASPubMedPubMed Central Google Scholar
Jawhara, S. & Poulain, D. Saccharomyces boulardii decreases inflammation and intestinal colonization by Candida albicans in a mouse model of chemically-induced colitis. Med. Mycol.45, 691–700 (2007). ArticleCASPubMed Google Scholar
Samonis, G. et al. Saccharomyces boulardii and Candida albicans experimental colonization of the murine gut. Med. Mycol.49, 395–399 (2011). ArticleCASPubMed Google Scholar
Demirel, G. et al. Prophylactic Saccharomyces boulardii versus nystatin for the prevention of fungal colonization and invasive fungal infection in premature infants. Eur. J. Pediatr.172, 1321–1326 (2013). ArticlePubMed Google Scholar
Nasidze, I., Li, J., Quinque, D., Tang, K. & Stoneking, M. Global diversity in the human salivary microbiome. Genome Res.19, 636–643 (2009). ArticleCASPubMedPubMed Central Google Scholar
Dollive, S. et al. A tool kit for quantifying eukaryotic rRNA gene sequences from human microbiome samples. Genome Biol.13, R60 (2012). ArticlePubMedPubMed Central Google Scholar
Hoffmann, C. et al. Archaea and fungi of the human gut microbiome: correlations with diet and bacterial residents. PLoS ONE8, e66019 (2013). ArticleCASPubMedPubMed Central Google Scholar
Sartor, R. B. Gut microbiota: Diet promotes dysbiosis and colitis in susceptible hosts. Nat. Rev. Gastroenterol. Hepatol.9, 561–562 (2012). ArticlePubMed Google Scholar
Goldsmith, J. R. & Sartor, R. B. The role of diet on intestinal microbiota metabolism: downstream impacts on host immune function and health, and therapeutic implications. J. Gastroenterol.49, 785–798 (2014). ArticleCASPubMedPubMed Central Google Scholar
Angebault, C. et al. Candida albicans is not always the preferential yeast colonizing humans: a study in Wayampi Amerindians. J. Infect. Dis.208, 1705–1716 (2013). ArticlePubMed Google Scholar
Ott, S. J. et al. Fungi and inflammatory bowel diseases: alterations of composition and diversity. Scand. J. Gastroenterol.43, 831–841 (2008). ArticleCASPubMed Google Scholar
Ramaswamy, K., Correa, M. & Koshy, A. Non-healing gastric ulcer associated with Candida infection. Indian J. Med. Microbiol.25, 57–58 (2007). ArticleCASPubMed Google Scholar
Santelmann, H. & Howard, J. M. Yeast metabolic products, yeast antigens and yeasts as possible triggers for irritable bowel syndrome. Eur. J. Gastroenterol. Hepatol.17, 21–26 (2005). ArticlePubMed Google Scholar
Krause, R. & Reisinger, E. C. Candida and antibiotic-associated diarrhoea. Clin. Microbiol. Infect.11, 1–2 (2005). ArticleCASPubMed Google Scholar
Stringer, A. M. et al. Gastrointestinal microflora and mucins may play a critical role in the development of 5-Fluorouracil-induced gastrointestinal mucositis. Exp. Biol. Med. (Maywood)234, 430–441 (2009). ArticleCAS Google Scholar
Cominelli, F. Inhibition of leukocyte trafficking in inflammatory bowel disease. N. Engl. J. Med.369, 775–776 (2013). ArticlePubMed Google Scholar
Nielsen, O. H. & Ainsworth, M. A. Tumor necrosis factor inhibitors for inflammatory bowel disease. N. Engl. J. Med.369, 754–762 (2013). ArticleCASPubMed Google Scholar
McKenzie, H., Main, J., Pennington, C. R. & Parratt, D. Antibody to selected strains of Saccharomyces cerevisiae (baker's and brewer's yeast) and Candida albicans in Crohn's disease. Gut31, 536–538 (1990). ArticleCASPubMedPubMed Central Google Scholar
Poulain, D. et al. Yeasts: neglected pathogens. Dig. Dis.27 (Suppl. 1), 104–110 (2009). ArticlePubMed Google Scholar
Colombel, J. F., Sendid, B., Jouault, T. & Poulain, D. Secukinumab failure in Crohn's disease: the yeast connection? Gut62, 800–801 (2013). ArticleCASPubMed Google Scholar
Sendid, B. et al. Anti-Saccharomyces cerevisiae mannan antibodies in familial Crohn's disease. Am. J. Gastroenterol.93, 1306–1310 (1998). ArticleCASPubMed Google Scholar
Standaert-Vitse, A. et al. Candida albicans colonization and ASCA in familial Crohn's disease. Am. J. Gastroenterol.104, 1745–1753 (2009). ArticleCASPubMed Google Scholar
Sendid, B. et al. Antibodies against glucan, chitin, and Saccharomyces cerevisiae mannan as new biomarkers of Candida albicans infection that complement tests based on, C. albicans mannan. Clin. Vaccine Immunol.15, 1868–1877 (2008). ArticleCASPubMedPubMed Central Google Scholar
Vasseur, F. et al. Variants of NOD1 and NOD2 genes display opposite associations with familial risk of Crohn's disease and anti-saccharomyces cerevisiae antibody levels. Inflamm. Bowel Dis.18, 430–438 (2012). ArticlePubMed Google Scholar
Standaert-Vitse, A. et al. Candida albicans is an immunogen for anti-Saccharomyces cerevisiae antibody markers of Crohn's disease. Gastroenterology130, 1764–1775 (2006). ArticleCASPubMed Google Scholar
Quinton, J. F. et al. Anti-Saccharomyces cerevisiae mannan antibodies combined with antineutrophil cytoplasmic autoantibodies in inflammatory bowel disease: prevalence and diagnostic role. Gut42, 788–791 (1998). ArticleCASPubMedPubMed Central Google Scholar
Seow, C. H. et al. Novel anti-glycan antibodies related to inflammatory bowel disease diagnosis and phenotype. Am. J. Gastroenterol.104, 1426–1434 (2009). ArticleCASPubMed Google Scholar
Dotan, I. et al. Antibodies against laminaribioside and chitobioside are novel serologic markers in Crohn's disease. Gastroenterology131, 366–378 (2006). ArticleCASPubMed Google Scholar
Ferrante, M. et al. New serological markers in inflammatory bowel disease are associated with complicated disease behaviour. Gut56, 1394–1403 (2007). ArticlePubMedPubMed Central Google Scholar
Kaul, A. et al. Serum anti-glycan antibody biomarkers for inflammatory bowel disease diagnosis and progression: a systematic review and meta-analysis. Inflamm. Bowel Dis.18, 1872–1884 (2012). ArticlePubMed Google Scholar
Jawhara, S. et al. Colonization of mice by Candida albicans is promoted by chemically induced colitis and augments inflammatory responses through galectin-3. J. Infect. Dis.197, 972–980 (2008). ArticleCASPubMed Google Scholar
Trojanowska, D. et al. The role of Candida in inflammatory bowel disease. Estimation of transmission of C. albicans fungi in gastrointestinal tract based on genetic affinity between strains. Med. Sci. Monit.16, 451–457 (2010). Google Scholar
Iliev, I. D. et al. Interactions between commensal fungi and the C-type lectin receptor dectin-1 influence colitis. Science336, 1314–1317 (2012). ArticleCASPubMedPubMed Central Google Scholar
Marr, K. A. et al. Prolonged fluconazole prophylaxis is associated with persistent protection against candidiasis-related death in allogeneic marrow transplant recipients: long-term follow-up of a randomized, placebo-controlled trial. Blood96, 2055–2061 (2000). CASPubMed Google Scholar
de Vries, H. S. et al. Genetic association analysis of the functional c.714T>G. polymorphism and mucosal expression of dectin-1 in inflammatory bowel disease. PLoS ONE4, e7818 (2009). ArticleCASPubMedPubMed Central Google Scholar
Iliev, I. D., Mileti, E., Matteoli, G., Chieppa, M. & Rescigno, M. Intestinal epithelial cells promote colitis-protective regulatory T-cell differentiation through dendritic cell conditioning. Mucosal Immunol.2, 340–350 (2009). ArticleCASPubMed Google Scholar
Penack, O., Holler, E. & van den Brink, M. R. Graft-versus-host disease: regulation by microbe-associated molecules and innate immune receptors. Blood115, 1865–1872 (2010). ArticleCASPubMed Google Scholar
van der Velden, W. J. et al. Role of the mycobiome in human acute graft-versus-host disease. Biol. Blood Marrow Transplant19, 329–332 (2013). ArticleCASPubMed Google Scholar
Tawara, I. et al. Influence of donor microbiota on the severity of experimental graft-versus-host-disease. Biol. Blood Marrow Transplant19, 164–168 (2013). ArticlePubMed Google Scholar
Holler, E. et al. Metagenomic analysis of the stool microbiome in patients receiving allogeneic stem cell transplantation: loss of diversity is associated with use of systemic antibiotics and more pronounced in gastrointestinal graft-versus-host disease. Biol. Blood Marrow Transplant20, 640–645 (2014). ArticlePubMedPubMed Central Google Scholar
Chen, Y. et al. Correlation between gastrointestinal fungi and varying degrees of chronic hepatitis B virus infection. Diagn. Microbiol. Infect. Dis.70, 492–498 (2011). ArticlePubMed Google Scholar
Brown, K. S., Ryder, S. D., Irving, W. L., Sim, R. B. & Hickling, T. P. Mannan binding lectin and viral hepatitis. Immunol. Lett.108, 34–44 (2007). ArticleCASPubMed Google Scholar
Knoke, M. Gastrointestinal microecology of humans and Candida [German]. Mycoses42 (Suppl. 1), 30–34 (1999). ArticlePubMed Google Scholar
Thomas, H. C. et al. Mutation of gene of mannose-binding protein associated with chronic hepatitis B viral infection. Lancet348, 1417–1419 (1996). ArticleCASPubMed Google Scholar
Ashman, R. B. & Papadimitriou, J. M. Production and function of cytokines in natural and acquired immunity to Candida albicans infection. Microbiol. Rev.59, 646–672 (1995). CASPubMedPubMed Central Google Scholar
Romani, L. Immunity to Candida albicans: Th1, Th2 cells and beyond. Curr. Opin. Microbiol.2, 363–367 (1999). ArticleCASPubMed Google Scholar
Nelson, R. D., Shibata, N., Podzorski, R. P. & Herron, M. J. Candida mannan: chemistry, suppression of cell-mediated immunity, and possible mechanisms of action. Clin. Microbiol. Rev.4, 1–19 (1991). ArticleCASPubMedPubMed Central Google Scholar
Quintin, J. et al. Differential role of NK cells against Candida albicans infection in immunocompetent or immunocompromised mice. Eur. J. Immunol.44, 2405–2414 (2014). ArticleCASPubMed Google Scholar
Netea, M. G., Brown, G. D., Kullberg, B. J. & Gow, N. A. An integrated model of the recognition of Candida albicans by the innate immune system. Nat. Rev. Microbiol.6, 67–78 (2008). ArticleCASPubMed Google Scholar
Hernandez-Santos, N. et al. Th17 cells confer long-term adaptive immunity to oral mucosal Candida albicans infections. Mucosal Immunol.6, 900–910 (2013). ArticleCASPubMed Google Scholar
Zelante, T. et al. Sensing of mammalian IL-17A regulates fungal adaptation and virulence. Nat. Commun.3, 683 (2012). ArticleCASPubMed Google Scholar
Dominguez-Villar, M. & Hafler, D. A. An Innate Role for IL-17. Science332, 47–48 (2011). ArticlePubMed Google Scholar
Underhill, D. M. & Iliev, I. D. The mycobiota: interactions between commensal fungi and the host immune system. Nat. Rev. Immunol.14, 405–416 (2014). ArticleCASPubMedPubMed Central Google Scholar
Romani, L. et al. Indoleamine 2, 3-dioxygenase (IDO) in inflammation and allergy to Aspergillus. Med. Mycol.47 (Suppl. 1), 154–161 (2009). ArticleCAS Google Scholar
Zelante, T., Fallarino, F., Bistoni, F., Puccetti, P. & Romani, L. Indoleamine 2, 3-dioxygenase in infection: the paradox of an evasive strategy that benefits the host. Microbes Infect.11, 133–141 (2009). ArticleCASPubMed Google Scholar
Bonifazi, P. et al. Balancing inflammation and tolerance in vivo through dendritic cells by the commensal Candida albicans. Mucosal Immunol.2, 362–374 (2009). ArticleCASPubMed Google Scholar
Sendid, B. et al. Anti-glycan antibodies establish an unexpected link between C. albicans and Crohn disease [French]. Med. Sci. (Paris)25, 473–481 (2009). Article Google Scholar
Gerard, R., Sendid, B., Colombel, J. F., Poulain, D. & Jouault, T. An immunological link between Candida albicans colonization and Crohn's disease. Crit. Rev. Microbiol.http://dx.doi.org/10.3109/1040841X.2013.810587.
Mora-Montes, H. M. et al. Recognition and blocking of innate immunity cells by Candida albicans chitin. Infect. Immun.79, 1961–1970 (2011). ArticleCASPubMedPubMed Central Google Scholar
Boudeau, J., Glasser, A. L., Masseret, E., Joly, B. & Darfeuille-Michaud, A. Invasive ability of an Escherichia coli strain isolated from the ileal mucosa of a patient with Crohn's disease. Infect. Immun.67, 4499–4509 (1999). CASPubMedPubMed Central Google Scholar
Barnich, N. & Darfeuille-Michaud, A. Adherent-invasive Escherichia coli and Crohn's disease. Curr. Opin. Gastroenterol.23, 16–20 (2007). ArticlePubMed Google Scholar
Clarke, D. J. et al. Complete genome sequence of the Crohn's disease-associated adherent-invasive Escherichia coli strain HM605. J. Bacteriol.193, 4540 (2011). ArticleCASPubMedPubMed Central Google Scholar
Mpofu, C. M. et al. Microbial mannan inhibits bacterial killing by macrophages: a possible pathogenic mechanism for Crohn's disease. Gastroenterology133, 1487–1498 (2007). ArticleCASPubMed Google Scholar
d'Ostiani, C. F. et al. Dendritic cells discriminate between yeasts and hyphae of the fungus Candida albicans. Implications for initiation of T helper cell immunity in vitro and in vivo. J. Exp. Med.191, 1661–1674 (2000). ArticleCASPubMedPubMed Central Google Scholar
Acosta-Rodriguez, E. V. et al. Surface phenotype and antigenic specificity of human interleukin 17-producing T helper memory cells. Nat. Immunol.8, 639–646 (2007). ArticleCASPubMed Google Scholar
Monk, C. E., Hutvagner, G. & Arthur, J. S. Regulation of miRNA transcription in macrophages in response to Candida albicans. PLoS ONE5, e13669 (2010). ArticleCASPubMedPubMed Central Google Scholar
Nemeth, T. et al. Transcriptome profile of the murine macrophage cell response to Candida parapsilosis. Fungal Genet. Biol.65, 48–56 (2014). ArticleCASPubMed Google Scholar
Ghannoum, M. A. & Mukherjee, P. K. The microbiome: more than bacteria (letter). Microbe5, 459 (2010). Google Scholar