Neutrophil migration in infection and wound repair: going forward in reverse (original) (raw)
Kolaczkowska, E. & Kubes, P. Neutrophil recruitment and function in health and inflammation. Nat. Rev. Immunol.13, 159–175 (2013). ArticleCASPubMed Google Scholar
Nathan, C. Neutrophils and immunity: challenges and opportunities. Nat. Rev. Immunol.6, 173–182 (2006). CASPubMed Google Scholar
Borregaard, N. Neutrophils, from marrow to microbes. Immunity33, 657–670 (2010). CASPubMed Google Scholar
Caielli, S., Banchereau, J. & Pascual, V. Neutrophils come of age in chronic inflammation. Curr. Opin. Immunol.24, 671–677 (2012). CASPubMedPubMed Central Google Scholar
Ley, K. Integration of inflammatory signals by rolling neutrophils. Immunol. Rev.186, 8–18 (2002). CASPubMed Google Scholar
Gambardella, L. & Vermeren, S. Molecular players in neutrophil chemotaxis—focus on PI3K and small GTPases. J. Leukoc. Biol.94, 603–612 (2013). CASPubMed Google Scholar
Ng, L. G. et al. Visualizing the neutrophil response to sterile tissue injury in mouse dermis reveals a three-phase cascade of events. J. Investigative Dermatol.131, 2058–2068 (2011). CAS Google Scholar
Lämmermann, T. In the eye of the neutrophil swarm-navigation signals that bring neutrophils together in inflamed and infected tissues. J. Leukoc. Biol. pii: jlb.1MR0915-403 (2015).
Nourshargh, S. & Alon, R. Leukocyte migration into inflamed tissues. Immunity41, 694–707 (2014). CASPubMed Google Scholar
Weninger, W., Biro, M. & Jain, R. Leukocyte migration in the interstitial space of non-lymphoid organs. Nat. Rev. Immunol.14, 232–246 (2014). CASPubMed Google Scholar
Futosi, K., Fodor, S. & Mócsai, A. Neutrophil cell surface receptors and their intracellular signal transduction pathways. Int. Immunopharmacol.17, 638–650 (2013). CASPubMedPubMed Central Google Scholar
Viola, A. & Luster, A. D. Chemokines and their receptors: drug targets in immunity and inflammation. Annu. Rev. Pharmacol. Toxicol.48, 171–197 (2008). CASPubMed Google Scholar
Pittman, K. & Kubes, P. Damage-associated molecular patterns control neutrophil recruitment. J. Innate Immun.5, 315–323 (2013). CASPubMed Google Scholar
Broggi, A. & Granucci, F. Microbe- and danger-induced inflammation. Mol. Immunol.63, 127–133 (2015). CASPubMed Google Scholar
Vénéreau, E., Ceriotti, C. & Bianchi, M. E. DAMPs from Cell Death to New Life. Frontiers Immunol.6, 422 (2015). Google Scholar
Cordeiro, J. V. V. & Jacinto, A. The role of transcription-independent damage signals in the initiation of epithelial wound healing. Nat. Rev. Mol. Cell Biol.14, 249–262 (2013). CASPubMed Google Scholar
Niethammer, P., Grabher, C., Look, A. T. & Mitchison, T. J. A tissue-scale gradient of hydrogen peroxide mediates rapid wound detection in zebrafish. Nature459, 996–999 (2009). This is the first paper to visualize H2O2tissue gradients in wound-induced inflammatory responses using zebrafish. CASPubMedPubMed Central Google Scholar
Moreira, S., Stramer, B., Evans, I., Wood, W. & Martin, P. Prioritization of competing damage and developmental signals by migrating macrophages in the Drosophila embryo. Curr. Biol.20, 464–470 (2010). CASPubMed Google Scholar
Yoo, S. K., Starnes, T. W., Deng, Q. & Huttenlocher, A. Lyn is a redox sensor that mediates leukocyte wound attraction in vivo. Nature480, 109–112 (2011). CASPubMedPubMed Central Google Scholar
Klyubin, I. V., Kirpichnikova, K. M. & Gamaley, I. A. Hydrogen peroxide-induced chemotaxis of mouse peritoneal neutrophils. Eur. J. Cell Biol.70, 347–351 (1996). CASPubMed Google Scholar
Kovács, M. et al. The Src family kinases Hck, Fgr, and Lyn are critical for the generation of the in vivo inflammatory environment without a direct role in leukocyte recruitment. J. Exp. Med.211, 1993–2011 (2014). PubMedPubMed Central Google Scholar
Baroja-Mazo, A., Barberà- Cremades, M. & Pelegrín, P. The participation of plasma membrane hemichannels to purinergic signaling. Biochim. Biophys. Acta1828, 79–93 (2013). CASPubMed Google Scholar
de Oliveira, S. et al. ATP modulates acute inflammation in vivo through dual oxidase 1-derived H2O2 production and NF-κB activation. J. Immunol.192, 5710–5719 (2014). CASPubMed Google Scholar
Elliott, M. R. et al. Nucleotides released by apoptotic cells act as a find-me signal to promote phagocytic clearance. Nature461, 282–286 (2009). CASPubMedPubMed Central Google Scholar
Chen, Y. et al. ATP release guides neutrophil chemotaxis via P2Y2 and A3 receptors. Science314, 1792–1795 (2006). CASPubMed Google Scholar
Bao, Y. et al. mTOR and differential activation of mitochondria orchestrate neutrophil chemotaxis. J. Cell Biol.210, 1153–1164 (2015). CASPubMedPubMed Central Google Scholar
Kukulski, F. et al. Extracellular ATP and P2 receptors are required for IL-8 to induce neutrophil migration. Cytokine46, 166–170 (2009). CASPubMedPubMed Central Google Scholar
Lecut, C. et al. P2X1 ion channels promote neutrophil chemotaxis through Rho kinase activation. J. Immunol.183, 2801–2809 (2009). CASPubMed Google Scholar
Zhang, Q. et al. Circulating mitochondrial DAMPs cause inflammatory responses to injury. Nature464, 104–107 (2010). CASPubMedPubMed Central Google Scholar
Raoof, M., Zhang, Q., Itagaki, K. & Hauser, C. J. Mitochondrial peptides are potent immune activators that activate human neutrophils via FPR-1. J. Trauma68, 1328 (2010). CASPubMed Google Scholar
Li, L. et al. New development in studies of formyl-peptide receptors: critical roles in host defense. J. Leukoc. Biol.99, 425–435 (2015). PubMedPubMed Central Google Scholar
McDonald, B. et al. Intravascular danger signals guide neutrophils to sites of sterile inflammation. Science330, 362–366 (2010). CASPubMed Google Scholar
Pase, L. et al. Neutrophil-delivered myeloperoxidase dampens the hydrogen peroxide burst after tissue wounding in zebrafish. Curr. Biol.22, 1818–1824 (2012). CASPubMed Google Scholar
Russo, R. C., Garcia, C. C., Teixeira, M. M. & Amaral, F. A. The CXCL8/IL-8 chemokine family and its receptors in inflammatory diseases. Expert Rev. Clin. Immunol.10, 593–619 (2014). CASPubMed Google Scholar
Kobayashi, Y. The role of chemokines in neutrophil biology. Frontiers Biosci.13, 2400–2407 (2008). CAS Google Scholar
Sai, J., Raman, D., Liu, Y., Wikswo, J. & Richmond, A. Parallel phosphatidylinositol 3-kinase (PI3K)-dependent and Src-dependent pathways lead to CXCL8-mediated Rac2 activation and chemotaxis. J. Biol. Chem.283, 26538–26547 (2008). CASPubMedPubMed Central Google Scholar
Neel, N. F. et al. VASP is a CXCR2-interacting protein that regulates CXCR2-mediated polarization and chemotaxis. J. Cell Sci.122, 1882–1894 (2009). CASPubMedPubMed Central Google Scholar
Lindley, I. et al. Synthesis and expression in Escherichia coli of the gene encoding monocyte-derived neutrophil-activating factor: biological equivalence between natural and recombinant neutrophil-activating factor. Proc. Natl Acad. Sci. USA85, 9199–9203 (1988). CASPubMed Google Scholar
de Oliveira, S. et al. Cxcl8 (IL-8) mediates neutrophil recruitment and behavior in the zebrafish inflammatory response. J. Immunol.190, 4349–4359 (2013). CASPubMedPubMed Central Google Scholar
Deng, Q. et al. Localized bacterial infection induces systemic activation of neutrophils through Cxcr2 signaling in zebrafish. J. Leukoc. Biol.93, 761–769 (2013). CASPubMedPubMed Central Google Scholar
Sarris, M. et al. Inflammatory chemokines direct and restrict leukocyte migration within live tissues as glycan-bound gradients. Curr. Biol.22, 2375–2382 (2012). This work identified glycan-bound CXCL8 gradientsin vivothat mediate neutrophil directed migration to inflamed tissue in zebrafish. CASPubMed Google Scholar
Cacalano, G. et al. Neutrophil and B cell expansion in mice that lack the murine IL-8 receptor homolog. Science265, 682–684 (1994). CASPubMed Google Scholar
Monneau, Y., Arenzana-Seisdedos, F. & Lortat-Jacob, H. The sweet spot: how GAGs help chemokines guide migrating cells. J. Leukoc. Biol. pii: jlb.3MR0915-440R (2015).
Middleton, J. et al. Transcytosis and surface presentation of IL-8 by venular endothelial cells. Cell91, 385–395 (1997). CASPubMed Google Scholar
Powell, W. S., Gravel, S., MacLeod, R. J., Mills, E. & Hashefi, M. Stimulation of human neutrophils by 5-oxo-6,8,11,14-eicosatetraenoic acid by a mechanism independent of the leukotriene B4 receptor. J. Biol. Chem.268, 9280–9286 (1993). CASPubMed Google Scholar
Øynebråten, I. et al. Characterization of a novel chemokine-containing storage granule in endothelial cells: evidence for preferential exocytosis mediated by protein kinase A and diacylglycerol. J. Immunol.175, 5358–5369 (2005). PubMed Google Scholar
Hol, J., Wilhelmsen, L. & Haraldsen, G. The murine IL-8 homologues KC, MIP-2, and LIX are found in endothelial cytoplasmic granules but not in Weibel-Palade bodies. J. Leukoc. Biol.87, 501–508 (2010). CASPubMed Google Scholar
Iyer, S. S. et al. Necrotic cells trigger a sterile inflammatory response through the Nlrp3 inflammasome. Proc. Natl Acad. Sci. USA106, 20388–20393 (2009). CASPubMed Google Scholar
Enyedi, B., Kala, S., Nikolich-Zugich, T. & Niethammer, P. Tissue damage detection by osmotic surveillance. Nat. Cell Biol.15, 1123–1130 (2013). CASPubMedPubMed Central Google Scholar
Sadik, C. D. & Luster, A. D. Lipid-cytokine-chemokine cascades orchestrate leukocyte recruitment in inflammation. J. Leukoc. Biol.91, 207–215 (2012). CASPubMedPubMed Central Google Scholar
Afonso, P. V. et al. LTB4 is a signal-relay molecule during neutrophil chemotaxis. Dev. Cell22, 1079–1091 (2012). This study describes the role of autocrine LTB4gradients at the leading edge that guide neutrophil recruitment to sites of inflammation. CASPubMedPubMed Central Google Scholar
Lämmermann, T. et al. Neutrophil swarms require LTB4 and integrins at sites of cell death in vivo. Nature498, 371–375 (2013). This work reports an initial molecular map of different factors that modulate neutrophil swarming behaviour in response to tissue damage in mice. PubMed Google Scholar
Wipke, B. T. & Allen, P. M. Essential role of neutrophils in the initiation and progression of a murine model of rheumatoid arthritis. J. Immunol.167, 1601–1608 (2001). CASPubMed Google Scholar
Chen, M. et al. Neutrophil-derived leukotriene B4 is required for inflammatory arthritis. J. Exp. Med.203, 837–842 (2006). CASPubMedPubMed Central Google Scholar
Hazeldine, J., Hampson, P., Opoku, F. A., Foster, M. & Lord, J. M. N-Formyl peptides drive mitochondrial damage associated molecular pattern induced neutrophil activation through ERK1/2 and P38 MAP kinase signalling pathways. Injury46, 975–984 (2015). PubMed Google Scholar
Chou, R. C. et al. Lipid-cytokine-chemokine cascade drives neutrophil recruitment in a murine model of inflammatory arthritis. Immunity33, 266–278 (2010). CASPubMedPubMed Central Google Scholar
Van den Steen, P. E., Proost, P., Wuyts, A., Van Damme, J. & Opdenakker, G. Neutrophil gelatinase B potentiates interleukin-8 tenfold by amino-terminal processing, whereas it degrades CTAP-III, PF-4, and GRO-α and leaves RANTES and MCP-2 intact. Blood96, 2673–2681 (2000). CASPubMed Google Scholar
Tester, A. M. et al. LPS responsiveness and neutrophil chemotaxis in vivo require PMN MMP-8 activity. PLoS ONE2, e312. (2007). PubMedPubMed Central Google Scholar
Afonso, P. V., McCann, C. P., Kapnick, S. M. & Parent, C. A. Discoidin domain receptor 2 regulates neutrophil chemotaxis in 3D collagen matrices. Blood121, 1644–1650 (2013). CASPubMedPubMed Central Google Scholar
Soehnlein, O. & Lindbom, L. Phagocyte partnership during the onset and resolution of inflammation. Nat. Rev. Immunol.10, 427–439 (2010). CASPubMed Google Scholar
Peters, N. C. et al. In vivo imaging reveals an essential role for neutrophils in leishmaniasis transmitted by sand flies. Science321, 970–974 (2008). CASPubMedPubMed Central Google Scholar
Kreisel, D. et al. In vivo two-photon imaging reveals monocyte-dependent neutrophil extravasation during pulmonary inflammation. Proc. Natl Acad. Sci. USA107, 18073–18078 (2010). CASPubMed Google Scholar
Chtanova, T. et al. Dynamics of neutrophil migration in lymph nodes during infection. Immunity29, 487–496 (2008). CASPubMedPubMed Central Google Scholar
Silva, M. T. Bacteria-induced phagocyte secondary necrosis as a pathogenicity mechanism. J. Leukoc. Biol.88, 885–896 (2010). CASPubMed Google Scholar
Gonzalez, C. D., Ledo, C., Giai, C., Garófalo, A. & Gómez, M. I. The Sbi protein contributes to Staphylococcus aureus inflammatory response during systemic infection. PLoS ONE10, e0131879 (2015). PubMedPubMed Central Google Scholar
Abtin, A. et al. Perivascular macrophages mediate neutrophil recruitment during bacterial skin infection. Nat. Immunol.15, 45–53 (2014). CASPubMed Google Scholar
Spinner, J. L., Hasenkrug, A. M., Shannon, J. G., Kobayashi, S. D. & Hinnebusch, B. J. Role of the Yersinia YopJ protein in suppressing interleukin-8 secretion by human polymorphonuclear leukocytes. Microbes Infect.18, 21–29 (2016). CASPubMed Google Scholar
Palm, N. W. & Medzhitov, R. Pattern recognition receptors and control of adaptive immunity. Immunol. Rev.227, 221–233 (2009). CASPubMed Google Scholar
Schiwon, M. et al. Crosstalk between sentinel and helper macrophages permits neutrophil migration into infected uroepithelium. Cell156, 456–468 (2014). CASPubMedPubMed Central Google Scholar
Sacramento, L. et al. TLR9 signaling on dendritic cells regulates neutrophil recruitment to inflammatory foci following Leishmania infantum infection. Infect. Immun.83, 4604–4616 (2015). CASPubMedPubMed Central Google Scholar
Krishna, S. & Miller, L. S. Innate and adaptive immune responses against Staphylococcus aureus skin infections. Semin. Immunopathol.34, 261–280 (2012). CASPubMed Google Scholar
Malaviya, R., Ikeda, T., Ross, E. & Abraham, S. N. Mast cell modulation of neutrophil influx and bacterial clearance at sites of infection through TNF-α. Nature381, 77–80 (1996). CASPubMed Google Scholar
Huang, C. et al. Induction of a selective and persistent extravasation of neutrophils into the peritoneal cavity by tryptase mouse mast cell protease 6. J. Immunol.160, 1910–1919 (1998). CASPubMed Google Scholar
Malaviya, R. & Abraham, S. N. Role of mast cell leukotrienes in neutrophil recruitment and bacterial clearance in infectious peritonitis. J. Leukoc. Biol.67, 841–846 (2000). CASPubMed Google Scholar
Miller, L. S. et al. Inflammasome-mediated production of IL-1β is required for neutrophil recruitment against Staphylococcus aureus in vivo. J. Immunol.179, 6933–6942 (2007). CASPubMed Google Scholar
Shimada, T. et al. Staphylococcus aureus evades lysozyme-based peptidoglycan digestion that links phagocytosis, inflammasome activation, and IL-1β secretion. Cell Host Microbe7, 38–49 (2010). CASPubMedPubMed Central Google Scholar
Miller, L. S. et al. MyD88 mediates neutrophil recruitment initiated by IL-1R but not TLR2 activation in immunity against Staphylococcus aureus. Immunity24, 79–91 (2006). CASPubMed Google Scholar
Sun, K., Salmon, S. L., Lotz, S. A. & Metzger, D. W. Interleukin-12 promotes γ interferon-dependent neutrophil recruitment in the lung and improves protection against respiratory Streptococcus pneumoniae infection. Infect. Immun.75, 1196–1202 (2007). CASPubMedPubMed Central Google Scholar
Kabir, S. The role of interleukin-17 in the Helicobacter pylori induced infection and immunity. Helicobacter16, 1–8 (2011). CASPubMed Google Scholar
Scapini, P. & Cassatella, M. A. Social networking of human neutrophils within the immune system. Blood124, 710–719 (2014). CASPubMed Google Scholar
Isailovic, N., Daigo, K., Mantovani, A. & Selmi, C. Interleukin-17 and innate immunity in infections and chronic inflammation. J. Autoimmun60, 1–11 (2015). CASPubMed Google Scholar
Rendon, J. L. & Choudhry, M. A. Th17 cells: critical mediators of host responses to burn injury and sepsis. J. Leukoc. Biol.92, 529–538 (2012). CASPubMedPubMed Central Google Scholar
Mölne, L., Verdrengh, M. & Tarkowski, A. Role of neutrophil leukocytes in cutaneous infection caused by Staphylococcus aureus. Infect. Immun.68, 6162–6167 (2000). PubMedPubMed Central Google Scholar
Ley, K., Smith, E. & Stark, M. A. IL-17A-producing neutrophil-regulatory Tn lymphocytes. Immunol. Res.34, 229–242 (2006). CASPubMed Google Scholar
Cho, J. S. et al. IL-17 is essential for host defense against cutaneous Staphylococcus aureus infection in mice. J. Clin. Invest.120, 1762–1773 (2010). PubMedPubMed Central Google Scholar
Liese, J., Rooijakkers, S. H., van Strijp, J. A., Novick, R. P. & Dustin, M. L. Intravital two-photon microscopy of host-pathogen interactions in a mouse model of Staphylococcus aureus skin abscess formation. Cell. Microbiol.15, 891–909 (2013). CASPubMed Google Scholar
Tan, R. S., Ho, B., Leung, B. P. & Ding, J. L. TLR cross-talk confers specificity to innate immunity. Int. Rev. Immunol.33, 443–453 (2014). CASPubMedPubMed Central Google Scholar
Deng, Q., Harvie, E. A. & Huttenlocher, A. Distinct signalling mechanisms mediate neutrophil attraction to bacterial infection and tissue injury. Cell. Microbiol.14, 517–528 (2012). CASPubMedPubMed Central Google Scholar
Yan, B. et al. IL-1β and reactive oxygen species differentially regulate neutrophil directional migration and Basal random motility in a zebrafish injury-induced inflammation model. J. Immunol.192, 5998–6008 (2014). CASPubMed Google Scholar
Hamza, B. & Irimia, D. Whole blood human neutrophil trafficking in a microfluidic model of infection and inflammation. Lab. Chip15, 2625–2633 (2015). This work shows that zymosan particles can 'trap' neutrophils and inhibit neutrophil fugetaxisin vitro. CASPubMedPubMed Central Google Scholar
Liu, Y., Chen, G.-Y. Y. & Zheng, P. CD24-Siglec G/10 discriminates danger- from pathogen-associated molecular patterns. Trends Immunol.30, 557–561 (2009). CASPubMedPubMed Central Google Scholar
Chen, G.-Y. Y., Brown, N. K., Zheng, P. & Liu, Y. Siglec-G/10 in self-nonself discrimination of innate and adaptive immunity. Glycobiology24, 800–806 (2014). CASPubMedPubMed Central Google Scholar
Chen, G.-Y. Y., Tang, J., Zheng, P. & Liu, Y. CD24 and Siglec-10 selectively repress tissue damage-induced immune responses. Science323, 1722–1725 (2009). CASPubMedPubMed Central Google Scholar
Kruger, P. et al. Neutrophils: Between host defence, immune modulation, and tissue injury. PLoS Pathog.11, e1004651 (2015). PubMedPubMed Central Google Scholar
Buckley, C. D., Gilroy, D. W., Serhan, C. N., Stockinger, B. & Tak, P. P. The resolution of inflammation. Nat. Rev. Immunol.13, 59–66 (2013). CASPubMed Google Scholar
Hughes, J. et al. Neutrophil fate in experimental glomerular capillary injury in the rat. Emigration exceeds in situ clearance by apoptosis. Am. J. Pathol.150, 223–234 (1997). CASPubMedPubMed Central Google Scholar
Mathias, J. R. et al. Resolution of inflammation by retrograde chemotaxis of neutrophils in transgenic zebrafish. J. Leukoc. Biol.80, 1281–1288 (2006). This paper is the first time that neutrophil reverse migration was visualizedin vivousing zebrafish. CASPubMed Google Scholar
Yoo, S. K. & Huttenlocher, A. Spatiotemporal photolabeling of neutrophil trafficking during inflammation in live zebrafish. J. Leukoc. Biol.89, 661–667 (2011). CASPubMedPubMed Central Google Scholar
Hall, C. et al. Transgenic zebrafish reporter lines reveal conserved Toll-like receptor signaling potential in embryonic myeloid leukocytes and adult immune cell lineages. J. Leukoc. Biol.85, 751–765 (2009). CASPubMed Google Scholar
Buckley, C. D. et al. Identification of a phenotypically and functionally distinct population of long-lived neutrophils in a model of reverse endothelial migration. J. Leukoc. Biol.79, 303–311 (2006). This study identifies a subpopulation of human neutrophils that undergo rTEMin vitro. In addition, the authors identify this subpopulation in the human circulation in inflammatory conditions. CASPubMed Google Scholar
Elks, P. M. et al. Activation of hypoxia-inducible factor-1α (Hif-1α) delays inflammation resolution by reducing neutrophil apoptosis and reverse migration in a zebrafish inflammation model. Blood118, 712–722 (2011). CASPubMed Google Scholar
Ellett, F., Elks, P. M., Robertson, A. L., Ogryzko, N. V. & Renshaw, S. A. Defining the phenotype of neutrophils following reverse migration in zebrafish. J. Leukoc. Biol.98, 975–981 (2015). CASPubMedPubMed Central Google Scholar
Robertson, A. L. et al. A zebrafish compound screen reveals modulation of neutrophil reverse migration as an anti-inflammatory mechanism. Sci. Transl Med.6, 225ra29 (2014). This work shows how zebrafish can be used for high-throughput drug screens to identify small molecules that modulate neutrophil reverse migration. PubMedPubMed Central Google Scholar
Tauzin, S., Starnes, T. W., Becker, F. B., Lam, P.-Y. Y. & Huttenlocher, A. Redox and Src family kinase signaling control leukocyte wound attraction and neutrophil reverse migration. J. Cell Biol.207, 589–598 (2014). This paper characterizes a macrophage ROS–SFK signalling pathway that mediates neutrophil reverse migration. CASPubMedPubMed Central Google Scholar
Duffy, D. et al. Neutrophils transport antigen from the dermis to the bone marrow, initiating a source of memory CD8+ T cells. Immunity37, 917–929 (2012). This study shows that neutrophils can transport virus from the dermis to the bone marrow, providing a source of antigen that triggers proliferation of virus-specific memory CD8+ T cells. CASPubMed Google Scholar
Woodfin, A. et al. The junctional adhesion molecule JAM-C regulates polarized transendothelial migration of neutrophils in vivo. Nat. Immunol.12, 761–769 (2011). This is the first report of rTEMin vivoin an ischaemia–reperfusion mouse model. CASPubMedPubMed Central Google Scholar
Hamza, B. et al. Retrotaxis of human neutrophils during mechanical confinement inside microfluidic channels. Integr. Biol.6, 175–183 (2014). This study reports that more than 90% of human neutrophils can move persistently against chemoattractant gradients over long distances (retrotaxis) using microfluidic channels. CAS Google Scholar
Vianello, F., Olszak, I. T. & Poznansky, M. C. Fugetaxis: active movement of leukocytes away from a chemokinetic agent. J. Mol. Med.83, 752–763 (2005). PubMed Google Scholar
Starnes, T. W. & Huttenlocher, A. Neutrophil reverse migration becomes transparent with zebrafish. Adv. Hematol.2012, 398640 (2012). PubMedPubMed Central Google Scholar
Tharp, W. G. et al. Neutrophil chemorepulsion in defined interleukin-8 gradients in vitro and in vivo. J. Leukoc. Biol.79, 539–554 (2006). CASPubMed Google Scholar
Kuijpers, T. & Lutter, R. Inflammation and repeated infections in CGD: two sides of a coin. Cell. Mol. Life Sci.69, 7–15 (2012). CASPubMed Google Scholar
Serhan, C. N., Chiang, N., Dalli, J. & Levy, B. D. Lipid mediators in the resolution of inflammation. Cold Spring Harb. Perspect. Biol.7, a016311 (2015). PubMed Central Google Scholar
Buckley, C. D., Gilroy, D. W. & Serhan, C. N. Proresolving lipid mediators and mechanisms in the resolution of acute inflammation. Immunity40, 315–327 (2014). CASPubMedPubMed Central Google Scholar
Serhan, C. N. & Chiang, N. Resolution phase lipid mediators of inflammation: agonists of resolution. Curr. Opin. Pharm.13, 632–640 (2013). CAS Google Scholar
Colom, B. et al. Leukotriene B4-neutrophil elastase axis drives neutrophil reverse transendothelial cell migration in vivo. Immunity42, 1075–1086 (2015). This paper identifies a LTB4–neutrophil elastase pathway that cleaves endothelial JAMC, leading to neutrophil rTEM and systemic inflammation. CASPubMedPubMed Central Google Scholar
Beyrau, M., Bodkin, J. V. & Nourshargh, S. Neutrophil heterogeneity in health and disease: a revitalized avenue in inflammation and immunity. Open Biol.2, 120134 (2012). PubMedPubMed Central Google Scholar
Holmes, G. R. et al. Drift-diffusion analysis of neutrophil migration during inflammation resolution in a zebrafish model. Adv. Hematol.2012, 792163 (2012). PubMedPubMed Central Google Scholar
Holmes, G. R. et al. Repelled from the wound, or randomly dispersed? Reverse migration behaviour of neutrophils characterized by dynamic modelling. J. R. Soc., Interface9, 3229–3239 (2012). This report provides evidence that reverse migration of zebrafish neutrophilsin vivomay represent a stochastic redistribution. Google Scholar
Sadik, C. D., Kim, N. D. & Luster, A. D. Neutrophils cascading their way to inflammation. Trends Immunol.32, 452–460 (2011). CASPubMedPubMed Central Google Scholar
Tsukamoto, T., Chanthaphavong, R. S. & Pape, H.-C. C. Current theories on the pathophysiology of multiple organ failure after trauma. Injury41, 21–26 (2010). PubMed Google Scholar
Wu, D. et al. Reverse-migrated neutrophils regulated by JAM-C are involved in acute pancreatitis-associated lung injury. Sci. Rep.6, 20545 (2016). CASPubMedPubMed Central Google Scholar
Hampton, H. R., Bailey, J., Tomura, M., Brink, R. & Chtanova, T. Microbe-dependent lymphatic migration of neutrophils modulates lymphocyte proliferation in lymph nodes. Nat. Commun.6, 7139 (2015). This report shows that photoconverted neutrophils migrate from inflamed skin to lymph nodes via the lymphatic circulation. CASPubMedPubMed Central Google Scholar
Abadie, V. et al. Neutrophils rapidly migrate via lymphatics after Mycobacterium bovis BCG intradermal vaccination and shuttle live bacilli to the draining lymph nodes. Blood106, 1843–1850 (2005). CASPubMed Google Scholar
Maletto, B. A. et al. Presence of neutrophil-bearing antigen in lymphoid organs of immune mice. Blood108, 3094–3102 (2006). CASPubMed Google Scholar
Wright, H. L., Moots, R. J. & Edwards, S. W. The multifactorial role of neutrophils in rheumatoid arthritis. Nat. Rev. Rheumatol.10, 593–601 (2014). CASPubMed Google Scholar
Cantin, A. M. M., Hartl, D., Konstan, M. W. & Chmiel, J. F. Inflammation in cystic fibrosis lung disease: Pathogenesis and therapy. J. Cyst. Fibros.14, 419–430 (2015). CASPubMed Google Scholar
Cocco, G., Chu, D. C. C. & Pandolfi, S. Colchicine in clinical medicine. A guide for internists. Eur. J. Internal Med.21, 503–508 (2010). CAS Google Scholar
Lazaar, A. L. et al. SB-656933, a novel CXCR2 selective antagonist, inhibits ex vivo neutrophil activation and ozone-induced airway inflammation in humans. Br. J. Clin. Pharmacol.72, 282–293 (2011). CASPubMedPubMed Central Google Scholar
Moss, R. B. et al. Safety and early treatment effects of the CXCR2 antagonist SB-656933 in patients with cystic fibrosis. J. Cyst. Fibros.12, 241–248 (2013). CASPubMed Google Scholar
Horuk, R. Chemokine receptor antagonists: overcoming developmental hurdles. Nat. Rev. Drug Discov.8, 23–33 (2009). CASPubMed Google Scholar
Dalli, J. et al. Resolvin D3 and aspirin-triggered resolvin D3 are potent immunoresolvents. Chem. Biol.20, 188–201 (2013). CASPubMedPubMed Central Google Scholar
Eickmeier, O. et al. Aspirin-triggered resolvin D1 reduces mucosal inflammation and promotes resolution in a murine model of acute lung injury. Mucosal Immunol.6, 256–266 (2013). CASPubMed Google Scholar
Schwab, J. M., Chiang, N., Arita, M. & Serhan, C. N. Resolvin E1 and protectin D1 activate inflammation-resolution programmes. Nature447, 869–874 (2007). CASPubMedPubMed Central Google Scholar
Dovi, J. V., He, L.-K. K. & DiPietro, L. A. Accelerated wound closure in neutrophil-depleted mice. J. Leukoc. Biol.73, 448–455 (2003). CASPubMed Google Scholar
Li, L., Yan, B., Shi, Y.-Q. Q., Zhang, W.-Q. Q. & Wen, Z.-L. L. Live imaging reveals differing roles of macrophages and neutrophils during zebrafish tail fin regeneration. J. Biol. Chem.287, 25353–25360 (2012). CASPubMedPubMed Central Google Scholar
Paoliello-Paschoalato, A. B. et al. Isolation of healthy individuals' and rheumatoid arthritis patients' peripheral blood neutrophils by the gelatin and Ficoll-Hypaque methods: comparative efficiency and impact on the neutrophil oxidative metabolism and Fcγ receptor expression. J. Immunol. Methods412, 70–77 (2014). CASPubMed Google Scholar
Collins, S. J., Ruscetti, F. W., Gallagher, R. E. & Gallo, R. C. Terminal differentiation of human promyelocytic leukemia cells induced by dimethyl sulfoxide and other polar compounds. Proc. Natl Acad. Sci. USA75, 2458–2462 (1978). CASPubMed Google Scholar
Tucker, K. A., Lilly, M. B., Heck, L. & Rado, T. A. Characterization of a new human diploid myeloid leukemia cell line (PLB-985) with granulocytic and monocytic differentiating capacity. Blood70, 372–378 (1987). CASPubMed Google Scholar
Berthier, E., Surfus, J., Verbsky, J., Huttenlocher, A. & Beebe, D. An arrayed high-content chemotaxis assay for patient diagnosis. Integr. Biol.2, 630–638 (2010). CAS Google Scholar
Montanez-Sauri, S. I., Beebe, D. J. & Sung, K. E. Microscale screening systems for 3D cellular microenvironments: platforms, advances, and challenges. Cell. Mol. Life Sci.72, 237–249 (2015). CASPubMed Google Scholar
Boneschansker, L., Yan, J., Wong, E., Briscoe, D. M. & Irimia, D. Microfluidic platform for the quantitative analysis of leukocyte migration signatures. Nat. Commun.5, 4787 (2014). CASPubMedPubMed Central Google Scholar
Yamahashi, Y. et al. Integrin associated proteins differentially regulate neutrophil polarity and directed migration in 2D and 3D. Biomed. Microdevices17, 100 (2015). PubMedPubMed Central Google Scholar
Mantopoulos, D., Cruzat, A. & Hamrah, P. In vivo imaging of corneal inflammation: new tools for clinical practice and research. Semin. Ophthalmol.25, 178–185 (2010). PubMedPubMed Central Google Scholar
Ley, K. et al. Sequential contribution of L- and P-selectin to leukocyte rolling in vivo. J. Exp. Med.181, 669–675 (1995). CASPubMed Google Scholar
Zarbock, A., Lowell, C. A. & Ley, K. Spleen tyrosine kinase Syk is necessary for E-selectin-induced αLβ2 integrin-mediated rolling on intercellular adhesion molecule-1. Immunity26, 773–783 (2007). CASPubMedPubMed Central Google Scholar
Emre, Y., Jemelin, S. & Imhof, B. A. Imaging neutrophils and monocytes in mesenteric veins by intravital microscopy on anaesthetized mice in real time. J. Vis. Exp.105http://dx.doi.org/10.3791/53314 (2015).
Jenne, C. N., Wong, C. H., Petri, B. & Kubes, P. The use of spinning-disk confocal microscopy for the intravital analysis of platelet dynamics in response to systemic and local inflammation. PLoS ONE6, e25109 (2011). CASPubMedPubMed Central Google Scholar
Looney, M. R. et al. Stabilized imaging of immune surveillance in the mouse lung. Nat. Methods8, 91–96 (2011). CASPubMed Google Scholar
Wong, J. et al. A minimal role for selectins in the recruitment of leukocytes into the inflamed liver microvasculature. J. Clin. Invest.99, 2782–2790 (1997). CASPubMedPubMed Central Google Scholar
Slaba, I. et al. Imaging the dynamic platelet-neutrophil response in sterile liver injury and repair in mice. Hepathology62, 1593–1605 (2015). CAS Google Scholar
Walters, K. B., Green, J. M., Surfus, J. C., Yoo, S. K. & Huttenlocher, A. Live imaging of neutrophil motility in a zebrafish model of WHIM syndrome. Blood116, 2803–2811 (2010). CASPubMedPubMed Central Google Scholar
Deng, Q., Yoo, S. K., Cavnar, P. J., Green, J. M. & Huttenlocher, A. Dual roles for Rac2 in neutrophil motility and active retention in zebrafish hematopoietic tissue. Dev. Cell21, 735–745 (2011). CASPubMedPubMed Central Google Scholar
Henry, K. M., Loynes, C. A., Whyte, M. K. & Renshaw, S. A. Zebrafish as a model for the study of neutrophil biology. J. Leukoc. Biol.94, 633–642 (2013). CASPubMed Google Scholar
Lieschke, G. J., Oates, A. C., Crowhurst, M. O., Ward, A. C. & Layton, J. E. Morphologic and functional characterization of granulocytes and macrophages in embryonic and adult zebrafish. Blood98, 3087–3096 (2001). CASPubMed Google Scholar
Harvie, E. A. & Huttenlocher, A. Neutrophils in host defense: new insights from zebrafish. J. Leukoc. Biol.98, 523–537 (2015). CASPubMedPubMed Central Google Scholar
Berthier, E. et al. Low-volume toolbox for the discovery of immunosuppressive fungal secondary metabolites. PLoS Pathog.9, e1003289 (2013). CASPubMedPubMed Central Google Scholar
Graziano, B. R. & Weiner, O. D. Self-organization of protrusions and polarity during eukaryotic chemotaxis. Curr. Opin. Cell Biol.30, 60–67 (2014). CASPubMed Google Scholar
Baker, M. J., Pan, D. & Welch, H. C. Small GTPases and their guanine-nucleotide exchange factors and GTPase-activating proteins in neutrophil recruitment. Curr. Opin. Hematol.23, 44–54 (2016). CASPubMed Google Scholar
Mócsai, A., Walzog, B. & Lowell, C. A. Intracellular signalling during neutrophil recruitment. Cardiovasc. Res.107, 373–385 (2015). PubMedPubMed Central Google Scholar
Weiner, O. D. Regulation of cell polarity during eukaryotic chemotaxis: the chemotactic compass. Curr. Opin. Cell Biol.14, 196–202 (2002). CASPubMedPubMed Central Google Scholar
Kölsch, V., Charest, P. G. & Firtel, R. A. The regulation of cell motility and chemotaxis by phospholipid signaling. J. Cell Sci.121, 551–559 (2008). PubMedPubMed Central Google Scholar
Afonso, P. V. & Parent, C. A. PI3K and chemotaxis: a priming issue? Sci. Signal.4, pe22 (2011). PubMed Google Scholar
Kunisaki, Y. et al. DOCK2 is a Rac activator that regulates motility and polarity during neutrophil chemotaxis. J. Cell Biol.174, 647–652 (2006). CASPubMedPubMed Central Google Scholar
Welch, H. C. et al. P-Rex1, a PtdIns(3,4,5)P3- and Gβγ-regulated guanine-nucleotide exchange factor for Rac. Cell108, 809–821 (2002). CASPubMed Google Scholar
Heit, B., Tavener, S., Raharjo, E. & Kubes, P. An intracellular signaling hierarchy determines direction of migration in opposing chemotactic gradients. J. Cell Biol.159, 91–102 (2002). CASPubMedPubMed Central Google Scholar
Raghuwanshi, S. K. et al. The chemokine receptors CXCR1 and CXCR2 couple to distinct G protein-coupled receptor kinases to mediate and regulate leukocyte functions. J. Immunol.189, 2824–2832 (2012). CASPubMedPubMed Central Google Scholar
Yoo, S. K. et al. Differential regulation of protrusion and polarity by PI3K during neutrophil motility in live zebrafish. Dev. Cell18, 226–236 (2010). CASPubMedPubMed Central Google Scholar
Beerman, R. W. et al. Direct in vivo manipulation and imaging of calcium transients in neutrophils identify a critical role for leading-edge calcium flux. Cell Rep.13, 2107–2117 (2015). CASPubMedPubMed Central Google Scholar
Hu, N. et al. Differential expression of granulopoiesis related genes in neutrophil subsets distinguished by membrane expression of CD177. PLoS ONE9, e99671 (2014). PubMedPubMed Central Google Scholar
Welin, A. et al. The human neutrophil subsets defined by the presence or absence of OLFM4 both transmigrate into tissue in vivo and give rise to distinct NETs in vitro. PLoS ONE8, e69575 (2013). CASPubMedPubMed Central Google Scholar
Fridlender, Z. G. et al. Polarization of tumor-associated neutrophil phenotype by TGF-β: “N1” versus “N2” TAN. Cancer Cell16, 183–194 (2009). CASPubMedPubMed Central Google Scholar
Hartl, D. et al. Infiltrated neutrophils acquire novel chemokine receptor expression and chemokine responsiveness in chronic inflammatory lung diseases. J. Immunol.181, 8053–8067 (2008). CASPubMed Google Scholar
Tirouvanziam, R. et al. Profound functional and signaling changes in viable inflammatory neutrophils homing to cystic fibrosis airways. Proc. Natl Acad. Sci. USA105, 4335–4339 (2008). CASPubMed Google Scholar
Bauer, S. et al. Proteinase 3 and CD177 are expressed on the plasma membrane of the same subset of neutrophils. J. Leukoc. Biol.81, 458–464 (2007). CASPubMed Google Scholar
Carmona-Rivera, C. & Kaplan, M. J. Low-density granulocytes: a distinct class of neutrophils in systemic autoimmunity. Semin. Immunopathol.35, 455–463 (2013). CASPubMedPubMed Central Google Scholar
Drifte, G., Dunn-Siegrist, I., Tissières, P. & Pugin, J. Innate immune functions of immature neutrophils in patients with sepsis and severe systemic inflammatory response syndrome. Crit. Care Med.41, 820–832 (2013). CASPubMed Google Scholar
Bowers, N. L. et al. Immune suppression by neutrophils in HIV-1 infection: role of PD-L1/PD-1 pathway. PLoS Pathog.10, e1003993 (2014). PubMedPubMed Central Google Scholar
Cloke, T. et al. Phenotypic alteration of neutrophils in the blood of HIV seropositive patients. PLoS ONE8, e72034 (2013). CASPubMedPubMed Central Google Scholar
Matsushima, H. et al. Neutrophil differentiation into a unique hybrid population exhibiting dual phenotype and functionality of neutrophils and dendritic cells. Blood121, 1677–1689 (2013). CASPubMedPubMed Central Google Scholar
Nair, P. et al. Safety and efficacy of a CXCR2 antagonist in patients with severe asthma and sputum neutrophils: a randomized, placebo-controlled clinical trial. Clin. Exp. Allergy42, 1097–1103 (2012). CASPubMed Google Scholar
Opfermann, P. et al. A pilot study on reparixin, a CXCR1/2 antagonist, to assess safety and efficacy in attenuating ischaemia-reperfusion injury and inflammation after on-pump coronary artery bypass graft surgery. Clin. Exp. Immunol.180, 131–142 (2015). CASPubMedPubMed Central Google Scholar
Bertini, R. et al. Receptor binding mode and pharmacological characterization of a potent and selective dual CXCR1/CXCR2 non-competitive allosteric inhibitor. Br. J. Pharmacol.165, 436–454 (2012). CASPubMedPubMed Central Google Scholar
Leaker, B. R., Barnes, P. J. & O'Connor, B. Inhibition of LPS-induced airway neutrophilic inflammation in healthy volunteers with an oral CXCR2 antagonist. Respiratory Res.14, 137 (2013) Google Scholar
Miller, B. E. et al. The pharmacokinetics and pharmacodynamics of danirixin (GSK1325756) —a selective CXCR2 antagonist —in healthy adult subjects. BMC Pharmacol. Toxicol.16, 18 (2015). PubMedPubMed Central Google Scholar
Jurcevic, S. et al. The effect of a selective CXCR2 antagonist (AZD5069) on human blood neutrophil count and innate immune functions. Br. J. Clin. Pharmacol.80, 1324–1336 (2015). CASPubMedPubMed Central Google Scholar
Nicholls, D. J. et al. Pharmacological characterization of AZD5069, a slowly reversible CXC chemokine receptor 2 antagonist. J. Pharmacol. Exp. Ther.353, 340–350 (2015). CASPubMed Google Scholar
US National Library of Medicine. ClinicalTrials.gov [online], (2016).
US National Library of Medicine. ClinicalTrials.gov [online], (2015).