Fujiki, H. Gist of Dr. Katsusaburo Yamagiwa's papers entitled “Experimental study on the pathogenesis of epithelial tumors” (I to VI reports). Cancer Sci.105, 143–149 (2014). CASPubMedPubMed Central Google Scholar
Greten, F. R. et al. IKKβ links inflammation and tumorigenesis in a mouse model of colitis-associated cancer. Cell118, 285–296 (2004). CASPubMed Google Scholar
Pikarsky, E. et al. NF-κB functions as a tumour promoter in inflammation-associated cancer. Nature431, 461–466 (2004). References 4 and 5 are the first reports to identify NF-κB as a central player that links inflammation to cancer. CASPubMed Google Scholar
Kuper, H., Adami, H. O. & Trichopoulos, D. Infections as a major preventable cause of human cancer. J. Intern. Med.248, 171–183 (2000). CASPubMed Google Scholar
Plummer, M. et al. Global burden of cancers attributable to infections in 2012: a synthetic analysis. Lancet Glob. Health4, e609–e616 (2016). PubMed Google Scholar
Grivennikov, S. I., Greten, F. R. & Karin, M. Immunity, inflammation, and cancer. Cell140, 883–899 (2010). Reference 8 is an excellent comprehensive review that describes the roles of inflammation and immunity in cancer. CASPubMedPubMed Central Google Scholar
Calle, E. E., Rodriguez, C., Walker-Thurmond, K. & Thun, M. J. Overweight, obesity, and mortality from cancer in a prospectively studied cohort of U. S. adults. N. Engl. J. Med.348, 1625–1638 (2003). PubMed Google Scholar
Shalapour, S. & Karin, M. Immunity, inflammation, and cancer: an eternal fight between good and evil. J. Clin. Invest.125, 3347–3355 (2015). PubMedPubMed Central Google Scholar
Hanahan, D. & Weinberg, R. A. Hallmarks of cancer: the next generation. Cell144, 646–674 (2011). This review describes the ten hallmarks of cancer. ArticleCASPubMed Google Scholar
Karin, M. & Clevers, H. Reparative inflammation takes charge of tissue regeneration. Nature529, 307–315 (2016). This review describes how inflammation regulates tissue regeneration. CASPubMedPubMed Central Google Scholar
Sen, R. & Baltimore, D. Multiple nuclear factors interact with the immunoglobulin enhancer sequences. Cell46, 705–716 (1986). CASPubMed Google Scholar
Zhang, Q., Lenardo, M. J. & Baltimore, D. 30 Years of NF-κB: a blossoming of relevance to human pathobiology. Cell168, 37–57 (2017). CASPubMedPubMed Central Google Scholar
Karin, M. Nuclear factor-κB in cancer development and progression. Nature441, 431–436 (2006). CASPubMed Google Scholar
Perkins, N. D. The diverse and complex roles of NF-κB subunits in cancer. Nat. Rev. Cancer12, 121–132 (2012). CASPubMed Google Scholar
Karin, M. & Greten, F. R. NF-κB: linking inflammation and immunity to cancer development and progression. Nat. Rev. Immunol.5, 749–759 (2005). CASPubMed Google Scholar
Ben-Neriah, Y. & Karin, M. Inflammation meets cancer, with NF-κB as the matchmaker. Nat. Immunol.12, 715–723 (2011). CASPubMed Google Scholar
DiDonato, J. A., Mercurio, F. & Karin, M. NF-κB and the link between inflammation and cancer. Immunol. Rev.246, 379–400 (2012). PubMed Google Scholar
Terzic, J., Grivennikov, S., Karin, E. & Karin, M. Inflammation and colon cancer. Gastroenterology138, 2101–2114 (2010). CASPubMed Google Scholar
Lasry, A., Zinger, A. & Ben-Neriah, Y. Inflammatory networks underlying colorectal cancer. Nat. Immunol.17, 230–240 (2016). CASPubMed Google Scholar
West, N. R., McCuaig, S., Franchini, F. & Powrie, F. Emerging cytokine networks in colorectal cancer. Nat. Rev. Immunol.15, 615–629 (2015). References 22 and 23 are excellent Reviews that describe the roles of inflammation and cytokines in colorectal cancer. CASPubMed Google Scholar
Grivennikov, S. I. et al. Adenoma-linked barrier defects and microbial products drive IL-23/IL-17-mediated tumour growth. Nature491, 254–258 (2012). CASPubMedPubMed Central Google Scholar
Wang, K. et al. Interleukin-17 receptor a signaling in transformed enterocytes promotes early colorectal tumorigenesis. Immunity41, 1052–1063 (2014). References 24 and 25 reveal how 'tumour-elicited inflammation' is induced and promotes tumorigenesis in spontaneous colorectal cancer. CASPubMedPubMed Central Google Scholar
Schwitalla, S. et al. Loss of p53 in enterocytes generates an inflammatory microenvironment enabling invasion and lymph node metastasis of carcinogen-induced colorectal tumors. Cancer Cell23, 93–106 (2013). This study shows that loss of p53 in IECs results in NF-κB activation. CASPubMed Google Scholar
Vallabhapurapu, S. & Karin, M. Regulation and function of NF-κB transcription factors in the immune system. Annu. Rev. Immunol.27, 693–733 (2009). CASPubMed Google Scholar
Bonizzi, G. & Karin, M. The two NF-κB activation pathways and their role in innate and adaptive immunity. Trends Immunol.25, 280–288 (2004). CASPubMed Google Scholar
Vallabhapurapu, S. et al. Nonredundant and complementary functions of TRAF2 and TRAF3 in a ubiquitination cascade that activates NIK-dependent alternative NF-κB signaling. Nat. Immunol.9, 1364–1370 (2008). CASPubMedPubMed Central Google Scholar
Senftleben, U. et al. Activation by IKKα of a second, evolutionary conserved, NF-κB signaling pathway. Science293, 1495–1499 (2001). CASPubMed Google Scholar
Grivennikov, S. I. & Karin, M. Dangerous liaisons: STAT3 and NF-κB collaboration and crosstalk in cancer. Cytokine Growth Factor Rev.21, 11–19 (2010). CASPubMed Google Scholar
Oeckinghaus, A., Hayden, M. S. & Ghosh, S. Crosstalk in NF-κB signaling pathways. Nat. Immunol.12, 695–708 (2011). CASPubMed Google Scholar
Zhong, B., Tien, P. & Shu, H. B. Innate immune responses: crosstalk of signaling and regulation of gene transcription. Virology352, 14–21 (2006). CASPubMed Google Scholar
Ruland, J. Return to homeostasis: downregulation of NF-κB responses. Nat. Immunol.12, 709–714 (2011). CASPubMed Google Scholar
Luo, J. L., Kamata, H. & Karin, M. IKK/NF-κB signaling: balancing life and death — a new approach to cancer therapy. J. Clin. Invest.115, 2625–2632 (2005). CASPubMedPubMed Central Google Scholar
Rothwarf, D. M. & Karin, M. The NF-κB activation pathway: a paradigm in information transfer from membrane to nucleus. Sci STKE1999, RE1 (1999). CASPubMed Google Scholar
Tokunaga, F. & Iwai, K. LUBAC, a novel ubiquitin ligase for linear ubiquitination, is crucial for inflammation and immune responses. Microbes Infect.14, 563–572 (2012). CASPubMed Google Scholar
Ma, X., Becker Buscaglia, L. E., Barker, J. R. & Li, Y. MicroRNAs in NF-κB signaling. J. Mol. Cell. Biol.3, 159–166 (2011). CASPubMedPubMed Central Google Scholar
Boldin, M. P. & Baltimore, D. MicroRNAs, new effectors and regulators of NF-κB. Immunol. Rev.246, 205–220 (2012). PubMed Google Scholar
Taganov, K. D., Boldin, M. P., Chang, K. J. & Baltimore, D. NF-κB-dependent induction of microRNA miR-146, an inhibitor targeted to signaling proteins of innate immune responses. Proc. Natl Acad. Sci. USA103, 12481–12486 (2006). CASPubMedPubMed Central Google Scholar
Iliopoulos, D., Hirsch, H. A. & Struhl, K. An epigenetic switch involving NF-κB, Lin28, Let-7 MicroRNA, and IL6 links inflammation to cell transformation. Cell139, 693–706 (2009). CASPubMedPubMed Central Google Scholar
Bretz, N. P. et al. Body fluid exosomes promote secretion of inflammatory cytokines in monocytic cells via Toll-like receptor signaling. J. Biol. Chem.288, 36691–36702 (2013). CASPubMedPubMed Central Google Scholar
Ghosh, A. et al. Telomerase directly regulates NF-κB-dependent transcription. Nat. Cell Biol.14, 1270–1281 (2012). This study reveals the association between telomerase and NF-κB. CASPubMed Google Scholar
Taniguchi, K., Yamachika, S., He, F. & Karin, M. p62/SQSTM1 — Dr. Jekyll and Mr. Hyde that prevents oxidative stress but promotes liver cancer. FEBS Lett.590, 2375–2397 (2016). CASPubMedPubMed Central Google Scholar
Greten, F. R. et al. NF-κB is a negative regulator of IL-1β secretion as revealed by genetic and pharmacological inhibition of IKKβ. Cell130, 918–931 (2007). CASPubMedPubMed Central Google Scholar
Zhong, Z. et al. NF-κB restricts inflammasome activation via elimination of damaged mitochondria. Cell164, 896–910 (2016). Reference 48 reports an unanticipated role of NF-κB as a negative regulator of inflammation, and reference 49 reveals the mechanism of how NF-κB suppresses inflammation. CASPubMedPubMed Central Google Scholar
Atretkhany, K. N., Drutskaya, M. S., Nedospasov, S. A., Grivennikov, S. I. & Kuprash, D. V. Chemokines, cytokines and exosomes help tumors to shape inflammatory microenvironment. Pharmacol. Ther.168, 98–112 (2016). CASPubMed Google Scholar
Quail, D. F. & Joyce, J. A. Microenvironmental regulation of tumor progression and metastasis. Nat. Med.19, 1423–1437 (2013). CASPubMedPubMed Central Google Scholar
Martinez, F. O. & Gordon, S. The M1 and M2 paradigm of macrophage activation: time for reassessment. F1000PrimeRep.6, 13 (2014). Google Scholar
Sica, A. & Mantovani, A. Macrophage plasticity and polarization: in vivo veritas. J. Clin. Invest.122, 787–795 (2012). CASPubMedPubMed Central Google Scholar
Murray, P. J. Macrophage polarization. Annu. Rev. Physiol.79, 541–566 (2017). CASPubMed Google Scholar
Porta, C. et al. Tolerance and M2 (alternative) macrophage polarization are related processes orchestrated by p50 nuclear factor κB. Proc. Natl Acad. Sci. USA106, 14978–14983 (2009). CASPubMedPubMed Central Google Scholar
Hagemann, T. et al. “Re-educating” tumor-associated macrophages by targeting NF-κB. J. Exp. Med.205, 1261–1268 (2008). CASPubMedPubMed Central Google Scholar
Ma, Y., Shurin, G. V., Peiyuan, Z. & Shurin, M. R. Dendritic cells in the cancer microenvironment. J. Cancer4, 36–44 (2013). CASPubMed Google Scholar
Karyampudi, L. et al. PD-1 blunts the function of ovarian tumor-infiltrating dendritic cells by inactivating NF-κB. Cancer Res.76, 239–250 (2016). CASPubMed Google Scholar
Tu, S. et al. Overexpression of interleukin-1β induces gastric inflammation and cancer and mobilizes myeloid-derived suppressor cells in mice. Cancer Cell14, 408–419 (2008). CASPubMedPubMed Central Google Scholar
Vivier, E., Tomasello, E., Baratin, M., Walzer, T. & Ugolini, S. Functions of natural killer cells. Nat. Immunol.9, 503–510 (2008). CASPubMed Google Scholar
Zhou, J., Zhang, J., Lichtenheld, M. G. & Meadows, G. G. A role for NF-κB activation in perforin expression of NK cells upon IL-2 receptor signaling. J. Immunol.169, 1319–1325 (2002). CASPubMed Google Scholar
Huang, C. et al. A novel NF-κB binding site controls human granzyme B gene transcription. J. Immunol.176, 4173–4181 (2006). CASPubMed Google Scholar
Ward, J. P., Gubin, M. M. & Schreiber, R. D. The role of neoantigens in naturally occurring and therapeutically induced immune responses to cancer. Adv. Immunol.130, 25–74 (2016). CASPubMedPubMed Central Google Scholar
Gerondakis, S. & Siebenlist, U. Roles of the NF-κB pathway in lymphocyte development and function. Cold Spring Harb. Perspect. Biol.2, a000182 (2010). PubMedPubMed Central Google Scholar
Gerondakis, S., Fulford, T. S., Messina, N. L. & Grumont, R. J. NF-κB control of T cell development. Nat. Immunol.15, 15–25 (2014). CASPubMed Google Scholar
Oh, H. et al. An NF-κB transcription-factor-dependent lineage-specific transcriptional program promotes regulatory T cell identity and function. Immunity47, 450–465 (2017). CASPubMedPubMed Central Google Scholar
Shang, B., Liu, Y., Jiang, S. J. & Liu, Y. Prognostic value of tumor-infiltrating FoxP3+ regulatory T cells in cancers: a systematic review and meta-analysis. Sci. Rep.5, 15179 (2015). CASPubMedPubMed Central Google Scholar
Grinberg-Bleyer, Y. et al. NF-κB c-Rel Is Crucial for the Regulatory T Cell Immune Checkpoint in Cancer. Cell170, 1096–1108 (2017). Reference 68 shows that REL deletion or inhibition in Tregcells potentiates anti-PD1 therapy and suppresses tumour growth. CASPubMedPubMed Central Google Scholar
Gerondakis, S. et al. NF-κB subunit specificity in hemopoiesis. Immunol. Rev.246, 272–285 (2012). PubMed Google Scholar
Evaristo, C. et al. Cutting edge: engineering active IKKβ in T cells drives tumor rejection. J. Immunol.196, 2933–2938 (2016). CASPubMed Google Scholar
Hopewell, E. L. et al. Lung tumor NF-κB signaling promotes T cell-mediated immune surveillance. J. Clin. Invest.123, 2509–2522 (2013). CASPubMedPubMed Central Google Scholar
Giampazolias, E. et al. Mitochondrial permeabilization engages NF-κB-dependent anti-tumour activity under caspase deficiency. Nat. Cell Biol.19, 1116–1129 (2017). CASPubMedPubMed Central Google Scholar
Ammirante, M., Luo, J. L., Grivennikov, S., Nedospasov, S. & Karin, M. B-Cell-derived lymphotoxin promotes castration-resistant prostate cancer. Nature464, 302–305 (2010). CASPubMedPubMed Central Google Scholar
Ammirante, M. et al. An IKKα-E2F1-BMI1 cascade activated by infiltrating B cells controls prostate regeneration and tumor recurrence. Genes Dev.27, 1435–1440 (2013). CASPubMedPubMed Central Google Scholar
Ammirante, M., Shalapour, S., Kang, Y., Jamieson, C. A. & Karin, M. Tissue injury and hypoxia promote malignant progression of prostate cancer by inducing CXCL13 expression in tumor myofibroblasts. Proc. Natl Acad. Sci. USA111, 14776–14781 (2014). CASPubMedPubMed Central Google Scholar
Shalapour, S. et al. Immunosuppressive plasma cells impede T-cell-dependent immunogenic chemotherapy. Nature521, 94–98 (2015). This is the first report to describe IgA+ immunosuppressive plasma cells, which suppress CTL activation. CASPubMedPubMed Central Google Scholar
Kalluri, R. The biology and function of fibroblasts in cancer. Nat. Rev. Cancer16, 582–598 (2016). CASPubMed Google Scholar
Koliaraki, V., Pallangyo, C. K., Greten, F. R. & Kollias, G. Mesenchymal cells in colon cancer. Gastroenterology152, 964–979 (2017). CASPubMed Google Scholar
Erez, N., Truitt, M., Olson, P., Arron, S. T. & Hanahan, D. Cancer-associated fibroblasts are activated in incipient neoplasia to orchestrate tumor-promoting inflammation in an NF-κB-dependent manner. Cancer Cell17, 135–147 (2010). CASPubMed Google Scholar
Calon, A. et al. Dependency of colorectal cancer on a TGF-β-driven program in stromal cells for metastasis initiation. Cancer Cell22, 571–584 (2012). CASPubMedPubMed Central Google Scholar
Pallangyo, C. K., Ziegler, P. K. & Greten, F. R. IKKβ acts as a tumor suppressor in cancer-associated fibroblasts during intestinal tumorigenesis. J. Exp. Med.212, 2253–2266 (2015). CASPubMedPubMed Central Google Scholar
Koliaraki, V., Pasparakis, M. & Kollias, G. IKKβ in intestinal mesenchymal cells promotes initiation of colitis-associated cancer. J. Exp. Med.212, 2235–2251 (2015). CASPubMedPubMed Central Google Scholar
Grivennikov, S. I. & Karin, M. Inflammatory cytokines in cancer: tumour necrosis factor and interleukin 6 take the stage. Ann. Rheum. Dis.70, i104–i108 (2011). CASPubMed Google Scholar
Balkwill, F. Tumour necrosis factor and cancer. Nat. Rev. Cancer9, 361–371 (2009). Reference 84 is an excellent comprehensive Review on the role of TNF in cancer. CASPubMed Google Scholar
Taniguchi, K. & Karin, M. IL-6 and related cytokines as the critical lynchpins between inflammation and cancer. Semin. Immunol.26, 54–74 (2014). Reference 85 is a comprehensive review on the role of the IL-6 family of cytokines in solid malignancies. CASPubMed Google Scholar
Vanden Berghe, T., Linkermann, A., Jouan-Lanhouet, S., Walczak, H. & Vandenabeele, P. Regulated necrosis: the expanding network of non-apoptotic cell death pathways. Nat. Rev. Mol. Cell Biol.15, 135–147 (2014). CASPubMed Google Scholar
Pasparakis, M. & Vandenabeele, P. Necroptosis and its role in inflammation. Nature517, 311–320 (2015). CASPubMed Google Scholar
Voronov, E. & Apte, R. N. IL-1 in colon inflammation, colon carcinogenesis and invasiveness of colon cancer. Cancer Microenviron8, 187–200 (2015). CASPubMedPubMed Central Google Scholar
Garlanda, C., Dinarello, C. A. & Mantovani, A. The interleukin-1 family: back to the future. Immunity39, 1003–1018 (2013). CASPubMedPubMed Central Google Scholar
Lu, B., Yang, M. & Wang, Q. Interleukin-33 in tumorigenesis, tumor immune evasion, and cancer immunotherapy. J. Mol. Med.94, 535–543 (2016). CASPubMed Google Scholar
Liew, F. Y., Girard, J. P. & Turnquist, H. R. Interleukin-33 in health and disease. Nat. Rev. Immunol.16, 676–689 (2016). CASPubMed Google Scholar
Ali, S. et al. The dual function cytokine IL-33 interacts with the transcription factor NF-κB to dampen NF-κB-stimulated gene transcription. J. Immunol.187, 1609–1616 (2011). CASPubMed Google Scholar
Choi, Y. S. et al. Nuclear IL-33 is a transcriptional regulator of NF-κB p65 and induces endothelial cell activation. Biochem. Biophys. Res. Commun.421, 305–311 (2012). CASPubMed Google Scholar
Croxford, A. L., Kulig, P. & Becher, B. IL-12-and IL-23 in health and disease. Cytokine Growth Factor Rev.25, 415–421 (2014). CASPubMed Google Scholar
Song, X. & Qian, Y. IL-17 family cytokines mediated signaling in the pathogenesis of inflammatory diseases. Cell Signal.25, 2335–2347 (2013). CASPubMed Google Scholar
Yang, B. et al. The role of interleukin 17 in tumour proliferation, angiogenesis, and metastasis. Mediators Inflamm.2014, 623759 (2014). PubMedPubMed Central Google Scholar
Chang, Q., Daly, L. & Bromberg, J. The IL-6 feed-forward loop: a driver of tumorigenesis. Semin. Immunol.26, 48–53 (2014). CASPubMed Google Scholar
He, G. et al. Identification of liver cancer progenitors whose malignant progression depends on autocrine IL-6 signaling. Cell155, 384–396 (2013). CASPubMedPubMed Central Google Scholar
Taniguchi, K. et al. A gp130-Src-YAP module links inflammation to epithelial regeneration. Nature519, 57–62 (2015). CASPubMedPubMed Central Google Scholar
Taniguchi, K. et al. YAP-IL-6ST autoregulatory loop activated on APC loss controls colonic tumorigenesis. Proc. Natl Acad. Sci. USA114, 1643–1648 (2017). References 100 and 101 reveal that the SRC–YAP pathway links inflammation to tissue regeneration and plays an important role in colorectal cancer. CASPubMedPubMed Central Google Scholar
Tian, G., Li, J. L., Wang, D. G. & Zhou, D. Targeting IL-10 in auto-immune diseases. Cell Biochem. Biophys.70, 37–49 (2014). CASPubMed Google Scholar
Lim, C. & Savan, R. The role of the IL-22/IL-22R1 axis in cancer. Cytokine Growth Factor Rev.25, 257–271 (2014). CASPubMed Google Scholar
Meulmeester, E. & Ten Dijke, P. The dynamic roles of TGF-β in cancer. J. Pathol.223, 205–218 (2011). CASPubMed Google Scholar
Weitzenfeld, P. & Ben-Baruch, A. The chemokine system, and its CCR5 and CXCR4 receptors, as potential targets for personalized therapy in cancer. Cancer Lett.352, 36–53 (2014). CASPubMed Google Scholar
White, E., Karp, C., Strohecker, A. M., Guo, Y. & Mathew, R. Role of autophagy in suppression of inflammation and cancer. Curr. Opin. Cell Biol.22, 212–217 (2010). CASPubMedPubMed Central Google Scholar
Zhong, Z., Sanchez-Lopez, E. & Karin, M. Autophagy, inflammation, and immunity: a troika governing cancer and its treatment. Cell166, 288–298 (2016). CASPubMedPubMed Central Google Scholar
Salminen, A., Hyttinen, J. M., Kauppinen, A. & Kaarniranta, K. Context-dependent regulation of autophagy by IKK-NF-κB signaling: impact on the aging process. Int. J. Cell Biol.2012, 849541 (2012). PubMedPubMed Central Google Scholar
Baldwin, A. S. Regulation of cell death and autophagy by IKK and NF-κB: critical mechanisms in immune function and cancer. Immunol. Rev.246, 327–345 (2012). PubMed Google Scholar
Copetti, T., Bertoli, C., Dalla, E., Demarchi, F. & Schneider, C. p65/RelA modulates BECN1 transcription and autophagy. Mol. Cell. Biol.29, 2594–2608 (2009). CASPubMedPubMed Central Google Scholar
Ren, J. L., Pan, J. S., Lu, Y. P., Sun, P. & Han, J. Inflammatory signaling and cellular senescence. Cell Signal.21, 378–383 (2009). CASPubMed Google Scholar
Yoshimoto, S. et al. Obesity-induced gut microbial metabolite promotes liver cancer through senescence secretome. Nature499, 97–101 (2013). CASPubMed Google Scholar
Chien, Y. et al. Control of the senescence-associated secretory phenotype by NF-κB promotes senescence and enhances chemosensitivity. Genes Dev.25, 2125–2136 (2011). CASPubMedPubMed Central Google Scholar
Soria-Valles, C. et al. NF-κB activation impairs somatic cell reprogramming in ageing. Nat. Cell Biol.17, 1004–1013 (2015). CASPubMed Google Scholar
Pesic, M. & Greten, F. R. Inflammation and cancer: tissue regeneration gone awry. Curr. Opin. Cell Biol.43, 55–61 (2016). CASPubMed Google Scholar
Su, T. et al. Two-signal requirement for growth-promoting function of Yap in hepatocytes. eLife4, e02948 (2015). PubMed Central Google Scholar
Chen, Q. et al. Homeostatic control of Hippo signaling activity revealed by an endogenous activating mutation in YAP. Genes Dev.29, 1285–1297 (2015). PubMedPubMed Central Google Scholar
Maeda, S., Kamata, H., Luo, J. L., Leffert, H. & Karin, M. IKKβ couples hepatocyte death to cytokine-driven compensatory proliferation that promotes chemical hepatocarcinogenesis. Cell121, 977–990 (2005). CASPubMed Google Scholar
Yamada, Y., Kirillova, I., Peschon, J. J. & Fausto, N. Initiation of liver growth by tumor necrosis factor: deficient liver regeneration in mice lacking type I tumor necrosis factor receptor. Proc. Natl Acad. Sci. USA94, 1441–1446 (1997). CASPubMedPubMed Central Google Scholar
Cressman, D. E. et al. Liver failure and defective hepatocyte regeneration in interleukin-6-deficient mice. Science274, 1379–1383 (1996). CASPubMed Google Scholar
Dvorak, H. F. Tumors: wounds that do not heal. Similarities between tumor stroma generation and wound healing. N. Engl. J. Med.315, 1650–1659 (1986). CASPubMed Google Scholar
Shigdar, S. et al. Inflammation and cancer stem cells. Cancer Lett.345, 271–278 (2014). CASPubMed Google Scholar
Tanno, T. & Matsui, W. Development and maintenance of cancer stem cells under chronic inflammation. J. Nippon Med. Sch.78, 138–145 (2011). CASPubMedPubMed Central Google Scholar
Blaylock, R. L. Cancer microenvironment, inflammation and cancer stem cells: A hypothesis for a paradigm change and new targets in cancer control. Surg. Neurol. Int.6, 92 (2015). PubMedPubMed Central Google Scholar
Vazquez-Santillan, K., Melendez-Zajgla, J., Jimenez-Hernandez, L., Martinez-Ruiz, G. & Maldonado, V. NF-κB signaling in cancer stem cells: a promising therapeutic target? Cell Oncol.38, 327–339 (2015). CAS Google Scholar
Rinkenbaugh, A. L. & Baldwin, A. S. The NF-κB pathway and cancer stem cells. Cells5, 16 (2016). PubMed Central Google Scholar
Wu, Y. & Zhou, B. P. Inflammation: a driving force speeds cancer metastasis. Cell Cycle8, 3267–3273 (2009). CASPubMed Google Scholar
Miao, J. W., Liu, L. J. & Huang, J. Interleukin-6-induced epithelial-mesenchymal transition through signal transducer and activator of transcription 3 in human cervical carcinoma. Int. J. Oncol.45, 165–176 (2014). CASPubMed Google Scholar
Wendt, M. K., Balanis, N., Carlin, C. R. & Schiemann, W. P. STAT3 and epithelial-mesenchymal transitions in carcinomas. JAKSTAT3, e28975 (2014). PubMedPubMed Central Google Scholar
Yamamoto, M. et al. NF-κB non-cell-autonomously regulates cancer stem cell populations in the basal-like breast cancer subtype. Nat. Commun.4, 2299 (2013). PubMed Google Scholar
Sun, L. et al. Epigenetic regulation of SOX9 by the NF-κB signaling pathway in pancreatic cancer stem cells. Stem Cells31, 1454–1466 (2013). CASPubMedPubMed Central Google Scholar
Johnson, R. F. & Perkins, N. D. Nuclear factor-κB, p53, and mitochondria: regulation of cellular metabolism and the Warburg effect. Trends Biochem. Sci.37, 317–324 (2012). CASPubMed Google Scholar
Xia, Y., Shen, S. & Verma, I. M. NF-κB, an active player in human cancers. Cancer Immunol. Res.2, 823–830 (2014). CASPubMedPubMed Central Google Scholar
Liu, J. et al. Inflammation Improves Glucose Homeostasis through IKKβ-XBP1s Interaction. Cell167, 1052–1066 (2016). CASPubMedPubMed Central Google Scholar
Mauro, C. et al. NF-κB controls energy homeostasis and metabolic adaptation by upregulating mitochondrial respiration. Nat. Cell Biol.13, 1272–1279 (2011). This study shows that NF-κB plays an important role in metabolic adaptation in normal cells and in cancer cells. CASPubMedPubMed Central Google Scholar
Kawauchi, K. Araki, K., Tobiume, K. and Tanaka, N. p53 regulates glucose metabolism through an IKK-NF-κB pathway and inhibits cell transformation. Nat. Cell Biol.10, 611–618 (2008). CASPubMed Google Scholar
Kawauchi, K., Araki, K., Tobiume, K. & Tanaka, N. Loss of p53 enhances catalytic activity of IKKbeta through O-linked β-N-acetyl glucosamine modification. Proc. Natl Acad. Sci. USA106, 3431–3436 (2009). CASPubMedPubMed Central Google Scholar
Pitot, H. C., Goldsworthy, T. & Moran, S. The natural history of carcinogenesis: implications of experimental carcinogenesis in the genesis of human cancer. J. Supramol. Struct. Cell Biochem.17, 133–146 (1981). CASPubMed Google Scholar
Barcellos-Hoff, M. H., Lyden, D. & Wang, T. C. The evolution of the cancer niche during multistage carcinogenesis. Nat. Rev. Cancer13, 511–518 (2013). CASPubMed Google Scholar
Fearon, E. R. & Vogelstein, B. A genetic model for colorectal tumorigenesis. Cell61, 759–767 (1990). CASPubMed Google Scholar
Joyce, D. et al. NF-κB and cell-cycle regulation: the cyclin connection. Cytokine Growth Factor Rev.12, 73–90 (2001). CASPubMed Google Scholar
Kiraly, O., Gong, G., Olipitz, W., Muthupalani, S. & Engelward, B. P. Inflammation-induced cell proliferation potentiates DNA damage-induced mutations in vivo. PLoS Genet.11, e1004901 (2015). PubMedPubMed Central Google Scholar
Colotta, F., Allavena, P., Sica, A., Garlanda, C. & Mantovani, A. Cancer-related inflammation, the seventh hallmark of cancer: links to genetic instability. Carcinogenesis30, 1073–1081 (2009). CASPubMed Google Scholar
Ren, J., Wang, Y., Gao, Y., Mehta, S.B. & Lee, C.G. FAT10 mediates the effect of TNF-α in inducing chromosomal instability. J. Cell Sci.124, 3665–3675 (2011). CASPubMed Google Scholar
Vento-Tormo, R. et al. NF-κB directly mediates epigenetic deregulation of common microRNAs in Epstein–Barr virus-mediated transformation of B-cells and in lymphomas. Nucleic Acids Res.42, 11025–11039 (2014). CASPubMedPubMed Central Google Scholar
Nakshatri, H. et al. NF-κB-dependent and -independent epigenetic modulation using the novel anti-cancer agent DMAPT. Cell Death Dis.6, e1608 (2015). CASPubMedPubMed Central Google Scholar
Shimizu, T., Marusawa, H., Endo, Y. & Chiba, T. Inflammation-mediated genomic instability: roles of activation-induced cytidine deaminase in carcinogenesis. Cancer Sci.103, 1201–1206 (2012). CASPubMedPubMed Central Google Scholar
Park, S. R. Activation-induced cytidine deaminase in B cell immunity and cancers. Immune Netw.12, 230–239 (2012). CASPubMedPubMed Central Google Scholar
Seplyarskiy, V. B. et al. APOBEC-induced mutations in human cancers are strongly enriched on the lagging DNA strand during replication. Genome Res.26, 174–182 (2016). CASPubMedPubMed Central Google Scholar
Leonard, B. et al. The PKC/NF-κB signaling pathway induces APOBEC3B expression in multiple human cancers. Cancer Res.75, 4538–4547 (2015). CASPubMedPubMed Central Google Scholar
Maruyama, W. et al. Classical NF-κB pathway is responsible for APOBEC3B expression in cancer cells. Biochem. Biophys. Res. Commun.478, 1466–1471 (2016). CASPubMed Google Scholar
Gudkov, A. V., Gurova, K. V. & Komarova, E. A. Inflammation and p53: A Tale of Two Stresses. Genes Cancer2, 503–516 (2011). CASPubMedPubMed Central Google Scholar
Joneson, T. & Bar-Sagi, D. Suppression of Ras-induced apoptosis by the Rac GTPase. Mol. Cell. Biol.19, 5892–5901 (1999). CASPubMedPubMed Central Google Scholar
You, Z., Madrid, L. V., Saims, D., Sedivy, J. & Wang, C. Y. c-Myc sensitizes cells to tumor necrosis factor-mediated apoptosis by inhibiting nuclear factor κB transactivation. J. Biol. Chem.277, 36671–36677 (2002). CASPubMed Google Scholar
Basseres, D. S., Ebbs, A., Levantini, E. & Baldwin, A. S. Requirement of the NF-κB subunit p65/RelA for K-Ras-induced lung tumorigenesis. Cancer Res.70, 3537–3546 (2010). CASPubMedPubMed Central Google Scholar
Pires, B. R. et al. NF-κB Is Involved in the regulation of EMT genes in breast cancer cells. PLoS ONE12, e0169622 (2017). PubMedPubMed Central Google Scholar
Scheel, C. & Weinberg, R. A. Cancer stem cells and epithelial-mesenchymal transition: concepts and molecular links. Semin. Cancer Biol.22, 396–403 (2012). CASPubMedPubMed Central Google Scholar
Huber, M. A. et al. NF-κB is essential for epithelial-mesenchymal transition and metastasis in a model of breast cancer progression. J. Clin. Invest.114, 569–581 (2004). CASPubMedPubMed Central Google Scholar
Huang, S., Pettaway, C. A., Uehara, H., Bucana, C. D. & Fidler, I. J. Blockade of NF-κB activity in human prostate cancer cells is associated with suppression of angiogenesis, invasion, and metastasis. Oncogene20, 4188–4197 (2001). CASPubMed Google Scholar
Gorlach, A. & Bonello, S. The cross-talk between NF-κB and HIF-1: further evidence for a significant liaison. Biochem. J.412, e17–19 (2008). PubMed Google Scholar
Gilkes, D. M. & Semenza, G. L. Role of hypoxia-inducible factors in breast cancer metastasis. Future Oncol.9, 1623–1636 (2013). CASPubMed Google Scholar
Zhang, W. et al. HIF-1α promotes epithelial-mesenchymal transition and metastasis through direct regulation of ZEB1 in colorectal cancer. PLoS ONE10, e0129603 (2015). PubMedPubMed Central Google Scholar
Drabsch, Y. & ten Dijke, P. TGF-β signalling and its role in cancer progression and metastasis. Cancer Metastasis Rev.31, 553–568 (2012). CASPubMed Google Scholar
Kisseleva, T. et al. NF-κB regulation of endothelial cell function during LPS-induced toxemia and cancer. J. Clin. Invest.116, 2955–2963 (2006). CASPubMedPubMed Central Google Scholar
Balkwill, F. Cancer and the chemokine network. Nat. Rev. Cancer4, 540–550 (2004). CASPubMed Google Scholar
Grivennikov, S. et al. IL-6 and Stat3 are required for survival of intestinal epithelial cells and development of colitis-associated cancer. Cancer Cell15, 103–113 (2009). CASPubMedPubMed Central Google Scholar
Bollrath, J. et al. gp130-mediated Stat3 activation in enterocytes regulates cell survival and cell-cycle progression during colitis-associated tumorigenesis. Cancer Cell15, 91–102 (2009). CASPubMed Google Scholar
Tosolini, M. et al. Clinical impact of different classes of infiltrating T cytotoxic and helper cells (Th1, Th2, Treg, Th17) in patients with colorectal cancer. Cancer Res.71, 1263–1271 (2011). CASPubMed Google Scholar
Schetter, A. J. et al. Association of inflammation-related and microRNA gene expression with cancer-specific mortality of colon adenocarcinoma. Clin. Cancer Res.15, 5878–5887 (2009). CASPubMedPubMed Central Google Scholar
Hinoi, T. et al. Mouse model of colonic adenoma-carcinoma progression based on somatic Apc inactivation. Cancer Res.67, 9721–9730 (2007). CASPubMed Google Scholar
Fearnhead, N. S., Britton, M. P. & Bodmer, W. F. The ABC of APC. Hum. Mol. Genet.10, 721–733 (2001). CASPubMed Google Scholar
Ulrich, C. M., Bigler, J. & Potter, J. D. Non-steroidal anti-inflammatory drugs for cancer prevention: promise, perils and pharmacogenetics. Nat. Rev. Cancer6, 130–140 (2006). CASPubMed Google Scholar
Guma, M. et al. Constitutive intestinal NF-κB does not trigger destructive inflammation unless accompanied by MAPK activation. J. Exp. Med.208, 1889–1900 (2011). CASPubMedPubMed Central Google Scholar
Shaked, H. et al. Chronic epithelial NF-κB activation accelerates APC loss and intestinal tumor initiation through iNOS up-regulation. Proc. Natl Acad. Sci. USA109, 14007–14012 (2012). CASPubMedPubMed Central Google Scholar
Vlantis, K. et al. Constitutive IKK2 activation in intestinal epithelial cells induces intestinal tumors in mice. J. Clin. Invest.121, 2781–2793 (2011). CASPubMedPubMed Central Google Scholar
Myant, K. B. et al. ROS production and NF-κB activation triggered by RAC1 facilitate WNT-driven intestinal stem cell proliferation and colorectal cancer initiation. Cell Stem Cell12, 761–773 (2013). CASPubMedPubMed Central Google Scholar
Mittal, S. & El-Serag, H. B. Epidemiology of hepatocellular carcinoma: consider the population. J. Clin. Gastroenterol.47 (Suppl.), S2–S6 (2013). PubMedPubMed Central Google Scholar
Mauad, T. H. et al. Mice with homozygous disruption of the mdr2 P-glycoprotein gene. A novel animal model for studies of nonsuppurative inflammatory cholangitis and hepatocarcinogenesis. Am. J. Pathol.145, 1237–1245 (1994). CASPubMedPubMed Central Google Scholar
Kong, L. et al. Deletion of interleukin-6 in monocytes/macrophages suppresses the initiation of hepatocellular carcinoma in mice. J. Exp. Clin. Cancer Res.35, 131 (2016). PubMedPubMed Central Google Scholar
Sakurai, T. et al. Hepatocyte necrosis induced by oxidative stress and IL-1 alpha release mediate carcinogen-induced compensatory proliferation and liver tumorigenesis. Cancer Cell14, 156–165 (2008). CASPubMedPubMed Central Google Scholar
He, G. et al. Hepatocyte IKKbeta/NF-κB inhibits tumor promotion and progression by preventing oxidative stress-driven STAT3 activation. Cancer Cell17, 286–297 (2010). CASPubMedPubMed Central Google Scholar
Nakagawa, H. et al. ER stress cooperates with hypernutrition to trigger TNF-dependent spontaneous HCC development. Cancer Cell26, 331–343 (2014). CASPubMedPubMed Central Google Scholar
Park, E. J. et al. Dietary and genetic obesity promote liver inflammation and tumorigenesis by enhancing IL-6 and TNF expression. Cell140, 197–208 (2010). References 192 and 193 reveal the importance of TNF-mediated NF-κB signalling in obesity-associated HCC. CASPubMedPubMed Central Google Scholar
Luedde, T. et al. Deletion of NEMO/IKKgamma in liver parenchymal cells causes steatohepatitis and hepatocellular carcinoma. Cancer Cell11, 119–132 (2007). CASPubMed Google Scholar
Kondylis, V. et al. NEMO prevents steatohepatitis and hepatocellular carcinoma by inhibiting RIPK1 kinase activity-mediated hepatocyte apoptosis. Cancer Cell28, 582–598 (2015). CASPubMedPubMed Central Google Scholar
Naugler, W. E. et al. Gender disparity in liver cancer due to sex differences in MyD88-dependent IL-6 production. Science317, 121–124 (2007). CASPubMed Google Scholar
Stein, B. & Yang, M. X. Repression of the interleukin-6 promoter by estrogen receptor is mediated by NF-κB and C/EBPβ. Mol. Cell. Biol.15, 4971–4979 (1995). CASPubMedPubMed Central Google Scholar
Galien, R. & Garcia, T. Estrogen receptor impairs interleukin-6 expression by preventing protein binding on the NF-κB site. Nucleic Acids Res.25, 2424–2429 (1997). CASPubMedPubMed Central Google Scholar
Liu, H., Liu, K. & Bodenner, D. L. Estrogen receptor inhibits interleukin-6 gene expression by disruption of nuclear factor κB transactivation. Cytokine31, 251–257 (2005). CASPubMed Google Scholar
Wang, H. et al. Hepatoprotective versus oncogenic functions of STAT3 in liver tumorigenesis. Am. J. Pathol.179, 714–724 (2011). CASPubMedPubMed Central Google Scholar
Finkin, S. et al. Ectopic lymphoid structures function as microniches for tumor progenitor cells in hepatocellular carcinoma. Nat. Immunol.16, 1235–1244 (2015). This study shows that constitutive activation of NF-κB in hepatocytes results in HCC development. CASPubMedPubMed Central Google Scholar
Pitzalis, C., Jones, G. W., Bombardieri, M. & Jones, S. A. Ectopic lymphoid-like structures in infection, cancer and autoimmunity. Nat. Rev. Immunol.14, 447–462 (2014). CASPubMed Google Scholar
Khandekar, M. J., Cohen, P. & Spiegelman, B. M. Molecular mechanisms of cancer development in obesity. Nat. Rev. Cancer11, 886–895 (2011). CASPubMed Google Scholar
Deng, T., Lyon, C. J., Bergin, S., Caligiuri, M. A. & Hsueh, W. A. Obesity, inflammation, and cancer. Annu. Rev. Pathol.11, 421–449 (2016). CASPubMed Google Scholar
Gilbert, C. A. & Slingerland, J. M. Cytokines, obesity, and cancer: new insights on mechanisms linking obesity to cancer risk and progression. Annu. Rev. Med.64, 45–57 (2013). CASPubMed Google Scholar
Bettermann, K., Hohensee, T. & Haybaeck, J. Steatosis and steatohepatitis: complex disorders. Int. J. Mol. Sci.15, 9924–9944 (2014). CASPubMedPubMed Central Google Scholar
Weglarz, T. C., Degen, J. L. & Sandgren, E. P. Hepatocyte transplantation into diseased mouse liver. Kinetics of parenchymal repopulation and identification of the proliferative capacity of tetraploid and octaploid hepatocytes. Am. J. Pathol.157, 1963–1974 (2000). CASPubMedPubMed Central Google Scholar
Shalapour, S. et al. Inflammation-induced IgA+ cells dismantle anti-liver cancer immunity. Nature551, 340–345 (2017). CASPubMedPubMed Central Google Scholar
Prabhu, L., Mundade, R., Korc, M., Loehrer, P. J. & Lu, T. Critical role of NF-κB in pancreatic cancer. Oncotarget5, 10969–10975 (2014). PubMedPubMed Central Google Scholar
Greer, J. B. & Whitcomb, D. C. Inflammation and pancreatic cancer: an evidence-based review. Curr. Opin. Pharmacol.9, 411–418 (2009). CASPubMed Google Scholar
Fujioka, S. et al. Function of nuclear factor κB in pancreatic cancer metastasis. Clin. Cancer Res.9, 346–354 (2003). CASPubMed Google Scholar
Dima, S. O. et al. An exploratory study of inflammatory cytokines as prognostic biomarkers in patients with ductal pancreatic adenocarcinoma. Pancreas41, 1001–1007 (2012). CASPubMed Google Scholar
Ling, J. et al. KrasG12D-induced IKK2/β/NF-κB activation by IL-α and p62 feedforward loops is required for development of pancreatic ductal adenocarcinoma. Cancer Cell21, 105–120 (2012). CASPubMedPubMed Central Google Scholar
Ebrahimi, B., Tucker, S. L., Li, D., Abbruzzese, J. L. & Kurzrock, R. Cytokines in pancreatic carcinoma: correlation with phenotypic characteristics and prognosis. Cancer101, 2727–2736 (2004). CASPubMed Google Scholar
Bellone, G. et al. Cytokine expression profile in human pancreatic carcinoma cells and in surgical specimens: implications for survival. Cancer Immunol. Immunother.55, 684–698 (2006). CASPubMed Google Scholar
Bryant, K. L., Mancias, J. D., Kimmelman, A. C. & Der, C. J. KRAS: feeding pancreatic cancer proliferation. Trends Biochem. Sci.39, 91–100 (2014). CASPubMedPubMed Central Google Scholar
Maniati, E. et al. Crosstalk between the canonical NF-κB and Notch signaling pathways inhibits Pparγ expression and promotes pancreatic cancer progression in mice. J. Clin. Invest.121, 4685–4699 (2011). CASPubMedPubMed Central Google Scholar
Lesina, M. et al. Stat3/Socs3 activation by IL-6 transsignaling promotes progression of pancreatic intraepithelial neoplasia and development of pancreatic cancer. Cancer Cell19, 456–469 (2011). CASPubMed Google Scholar
Khasawneh, J. et al. Inflammation and mitochondrial fatty acid beta-oxidation link obesity to early tumor promotion. Proc. Natl Acad. Sci. USA106, 3354–3359 (2009). CASPubMedPubMed Central Google Scholar
Li, N. et al. Loss of acinar cell IKKalpha triggers spontaneous pancreatitis in mice. J. Clin. Invest.123, 2231–2243 (2013). CASPubMedPubMed Central Google Scholar
Todoric, J. A. et al. Stress activated NRF2-MDM2 cascade controls neoplastic progression in pancreas. Cancer Cell32, 824–839 (2017). CASPubMedPubMed Central Google Scholar
Sfanos, K. S. & De Marzo, A. M. Prostate cancer and inflammation: the evidence. Histopathology60, 199–215 (2012). PubMedPubMed Central Google Scholar
Rajasekhar, V. K., Studer, L., Gerald, W., Socci, N. D. & Scher, H. I. Tumour-initiating stem-like cells in human prostate cancer exhibit increased NF-κB signalling. Nat. Commun.2, 162 (2011). PubMed Google Scholar
Tse, B. W., Scott, K. F. & Russell, P. J. Paradoxical roles of tumour necrosis factor-alpha in prostate cancer biology. Prostate Cancer2012, 128965 (2012). PubMedPubMed Central Google Scholar
Nguyen, D. P., Li, J. & Tewari, A. K. Inflammation and prostate cancer: the role of interleukin 6 (IL-6). BJU Int.113, 986–992 (2014). CASPubMed Google Scholar
Luo, J. L. et al. Nuclear cytokine-activated IKKalpha controls prostate cancer metastasis by repressing Maspin. Nature446, 690–694 (2007). CASPubMed Google Scholar
Diamanti, M. A. et al. IKKalpha controls ATG16L1 degradation to prevent ER stress during inflammation. J. Exp. Med.214, 423–437 (2017). CASPubMedPubMed Central Google Scholar
Chen, W., Li, Z., Bai, L. & Lin, Y. NF-κB in lung cancer, a carcinogenesis mediator and a prevention and therapy target. Front. Biosci.16, 1172–1185 (2011). CASPubMed Central Google Scholar
Mizuno, S. et al. Chronic obstructive pulmonary disease and interstitial lung disease in patients with lung cancer. Respirology14, 377–383 (2009). PubMed Google Scholar
Tang, X. et al. Nuclear factor-κB (NF-κB) is frequently expressed in lung cancer and preneoplastic lesions. Cancer107, 2637–2646 (2006). CASPubMed Google Scholar
Takahashi, H., Ogata, H., Nishigaki, R., Broide, D. H. & Karin, M. Tobacco smoke promotes lung tumorigenesis by triggering IKKβ- and JNK1-dependent inflammation. Cancer Cell17, 89–97 (2010). CASPubMedPubMed Central Google Scholar
Meylan, E. et al. Requirement for NF-κB signalling in a mouse model of lung adenocarcinoma. Nature462, 104–107 (2009). CASPubMedPubMed Central Google Scholar
Duran, A. et al. The signaling adaptor p62 is an important NF-κB mediator in tumorigenesis. Cancer Cell13, 343–354 (2008). CASPubMed Google Scholar
Bivona, T. G. et al. FAS and NF-κB signalling modulate dependence of lung cancers on mutant EGFR. Nature471, 523–526 (2011). CASPubMedPubMed Central Google Scholar
Blakely, C. M. et al. NF-κB-activating complex engaged in response to EGFR oncogene inhibition drives tumor cell survival and residual disease in lung cancer. Cell Rep.11, 98–110 (2015). CASPubMedPubMed Central Google Scholar
Tohme, S., Simmons, R. L. & Tsung, A. Surgery for cancer: a trigger for metastases. Cancer Res.77, 1548–1552 (2017). This is an excellent review that explains how surgery affects cancer metastasis. CASPubMedPubMed Central Google Scholar
Segatto, I. et al. Surgery-induced wound response promotes stem-like and tumor-initiating features of breast cancer cells, via STAT3 signaling. Oncotarget5, 6267–6279 (2014). PubMedPubMed Central Google Scholar
Godwin, P. et al. Targeting nuclear factor-kappa B to overcome resistance to chemotherapy. Front. Oncol.3, 120 (2013). CASPubMedPubMed Central Google Scholar
Wang, W., Mani, A. M. & Wu, Z. H. DNA damage-induced nuclear factor-kappa B activation and its roles in cancer progression. J. Cancer Metastasis Treat.3, 45–49 (2017). CASPubMedPubMed Central Google Scholar
Korkaya, H. et al. Activation of an IL6 inflammatory loop mediates trastuzumab resistance in HER2+ breast cancer by expanding the cancer stem cell population. Mol. Cell47, 570–584 (2012). CASPubMedPubMed Central Google Scholar
Zitvogel, L., Apetoh, L., Ghiringhelli, F. & Kroemer, G. Immunological aspects of cancer chemotherapy. Nat. Rev. Immunol.8, 59–73 (2008). CASPubMed Google Scholar
Peng, J. et al. Chemotherapy induces programmed cell death-ligand 1 overexpression via the nuclear factor-κB to foster an immunosuppressive tumor microenvironment in ovarian cancer. Cancer Res.75, 5034–5045 (2015). CASPubMed Google Scholar
Wang, W., Tam, W. F., Hughes, C. C., Rath, S. & Sen, R. c-Rel is a target of pentoxifylline-mediated inhibition of T lymphocyte activation. Immunity6, 165–174 (1997). CASPubMed Google Scholar
Lin, Y., Bai, L., Chen, W. & Xu, S. The NF-κB activation pathways, emerging molecular targets for cancer prevention and therapy. Expert Opin. Ther. Targets14, 45–55 (2010). CASPubMedPubMed Central Google Scholar
Gurpinar, E., Grizzle, W. E. & Piazza, G. A. NSAIDs inhibit tumorigenesis, but how? Clin. Cancer Res.20, 1104–1113 (2014). CASPubMed Google Scholar
Hsu, L. C. et al. IL-1β-driven neutrophilia preserves antibacterial defense in the absence of the kinase IKKβ. Nat. Immunol.12, 144–150 (2011). CASPubMed Google Scholar
Storz, P. Targeting the alternative NF-κB pathway in pancreatic cancer: a new direction for therapy? Expert Rev. Anticancer Ther.13, 501–504 (2013). CASPubMedPubMed Central Google Scholar
Yu, H., Kortylewski, M. & Pardoll, D. Crosstalk between cancer and immune cells: role of STAT3 in the tumour microenvironment. Nat. Rev. Immunol.7, 41–51 (2007). CASPubMed Google Scholar
Ferguson, S. D., Srinivasan, V. M. & Heimberger, A. B. The role of STAT3 in tumor-mediated immune suppression. J. Neurooncol.123, 385–394 (2015). CASPubMed Google Scholar
Hillmer, E. J., Zhang, H., Li, H. S. & Watowich, S. S. STAT3 signaling in immunity. Cytokine Growth Factor Rev.31, 1–15 (2016). PubMedPubMed Central Google Scholar
Haynes, K. et al. Tumor necrosis factor α inhibitor therapy and cancer risk in chronic immune-mediated diseases. Arthritis Rheum.65, 48–58 (2013). CASPubMed Google Scholar
Rubbert-Roth, A. et al. Malignancy rates in patients with rheumatoid arthritis treated with tocilizumab. RMD Open2, e000213 (2016). PubMedPubMed Central Google Scholar
Winthrop, K. L. The emerging safety profile of JAK inhibitors in rheumatic disease. Nat. Rev. Rheumatol13, 234–243 (2017). CASPubMed Google Scholar
Wardill, H. R., Bowen, J. M. & Gibson, R. J. New pharmacotherapy options for chemotherapy-induced alimentary mucositis. Expert Opin. Biol. Ther.14, 347–354 (2014). CASPubMed Google Scholar
Tanaka, T., Narazaki, M. & Kishimoto, T. Therapeutic targeting of the interleukin-6 receptor. Annu. Rev. Pharmacol. Toxicol.52, 199–219 (2012). CASPubMed Google Scholar
Hoesel, B. & Schmid, J. A. The complexity of NF-κB signaling in inflammation and cancer. Mol. Cancer12, 86 (2013). CASPubMedPubMed Central Google Scholar
Garner, J. M. et al. Constitutive activation of signal transducer and activator of transcription 3 (STAT3) and nuclear factor κB signaling in glioblastoma cancer stem cells regulates the Notch pathway. J. Biol. Chem.288, 26167–26176 (2013). CASPubMedPubMed Central Google Scholar
Hagemann, T., Biswas, S. K., Lawrence, T., Sica, A. & Lewis, C. E. Regulation of macrophage function in tumors: the multifaceted role of NF-kappaB. Blood113, 3139–3146 (2009). CASPubMed Google Scholar
Xia, Y. et al. Phosphorylation of p53 by IκB kinase 2 promotes its degradation by β-TrCP. Proc. Natl Acad. Sci. USA106, 2629–2634 (2009). CASPubMedPubMed Central Google Scholar
Cooks, T. et al. Mutant p53 prolongs NF-κB activation and promotes chronic inflammation and inflammation-associated colorectal cancer. Cancer Cell23, 634–646 (2013). CASPubMedPubMed Central Google Scholar
Pasparakis, M. Role of NF-κB in epithelial biology. Immunol. Rev.246, 346–358 (2012). PubMed Google Scholar
Honda, K. & Taniguchi, T. IRFs: master regulators of signalling by Toll-like receptors and cytosolic pattern-recognition receptors. Nat. Rev. Immunol.6, 644–658 (2006). CASPubMed Google Scholar
Iwanaszko, M. & Kimmel, M. NF-κB and IRF pathways: cross-regulation on target genes promoter level. BMC Genomics16, 307 (2015). PubMedPubMed Central Google Scholar
Wietek, C., Miggin, S. M., Jefferies, C. A. & O'Neill, L. A. Interferon regulatory factor-3-mediated activation of the interferon-sensitive response element by Toll-like receptor (TLR) 4 but not TLR3 requires the p65 subunit of NF-kappa. J. Biol. Chem.278, 50923–50931 (2003). CASPubMed Google Scholar
Han, K. J. et al. Mechanisms of the TRIF-induced interferon-stimulated response element and NF-κB activation and apoptosis pathways. J. Biol. Chem.279, 15652–15661 (2004). CASPubMed Google Scholar
Covert, M. W., Leung, T. H., Gaston, J. E. & Baltimore, D. Achieving stability of lipopolysaccharide-induced NF-κB activation. Science309, 1854–1857 (2005). CASPubMed Google Scholar
Zitvogel, L., Galluzzi, L., Kepp, O., Smyth, M. J. & Kroemer, G. Type I interferons in anticancer immunity. Nat. Rev. Immunol.15, 405–414 (2015). CASPubMed Google Scholar
Wardyn, J. D., Ponsford, A. H. & Sanderson, C. M. Dissecting molecular cross-talk between Nrf2 and NF-κB response pathways. Biochem. Soc. Trans.43, 621–626 (2015). CASPubMedPubMed Central Google Scholar
Buelna-Chontal, M. & Zazueta, C. Redox activation of Nrf2 and NF-κB: a double end sword? Cell Signal.25, 2548–2557 (2013). CASPubMed Google Scholar
Kohler, U. A. et al. NF-κB/RelA and Nrf2 cooperate to maintain hepatocyte integrity and to prevent development of hepatocellular adenoma. J. Hepatol.64, 94–102 (2016). CASPubMed Google Scholar
Umemura, A. et al. p62, upregulated during preneoplasia, induces hepatocellular carcinogenesis by maintaining survival of stressed HCC-initiating cells. Cancer Cell29, 935–948 (2016). CASPubMedPubMed Central Google Scholar
Papa, S., Zazzeroni, F., Pham, C. G., Bubici, C. & Franzoso, G. Linking JNK signaling to NF-κB: a key to survival. J. Cell Sci.117, 5197–5208 (2004). CASPubMed Google Scholar
Sakurai, T., Maeda, S., Chang, L. & Karin, M. Loss of hepatic NF-κB activity enhances chemical hepatocarcinogenesis through sustained c-Jun N-terminal kinase 1 activation. Proc. Natl Acad. Sci. USA103, 10544–10551 (2006). CASPubMedPubMed Central Google Scholar
Ma, B. & Hottiger, M. O. Crosstalk between Wnt/β-catenin and NF-κB signaling pathway during inflammation. Front. Immunol.7, 378 (2016). PubMedPubMed Central Google Scholar
Schwitalla, S. et al. Intestinal tumorigenesis initiated by dedifferentiation and acquisition of stem-cell-like properties. Cell152, 25–38 (2013). CASPubMed Google Scholar
Ang, H. L. & Tergaonkar, V. Notch and NFκB signaling pathways: Do they collaborate in normal vertebrate brain development and function? Bioessays29, 1039–1047 (2007). CASPubMed Google Scholar
Roy, S. & Trinchieri, G. Microbiota: a key orchestrator of cancer therapy. Nat. Rev. Cancer17, 271–285 (2017). CASPubMed Google Scholar
Dzutsev, A. et al. Microbes and cancer. Annu. Rev. Immunol.35, 199–228 (2017). CASPubMed Google Scholar
Dzutsev, A., Goldszmid, R. S., Viaud, S., Zitvogel, L. & Trinchieri, G. The role of the microbiota in inflammation, carcinogenesis, and cancer therapy. Eur. J. Immunol.45, 17–31 (2015). CASPubMed Google Scholar
Yu, L. C., Wang, J. T., Wei, S. C. & Ni, Y. H. Host-microbial interactions and regulation of intestinal epithelial barrier function: from physiology to pathology. World J. Gastrointestinal Pathophysiol.3, 27–43 (2012). Google Scholar
Vemuri, R. C., Gundamaraju, R., Shinde, T. & Eri, R. Therapeutic interventions for gut dysbiosis and related disorders in the elderly: antibiotics, probiotics or faecal microbiota transplantation? Benef Microbes8, 179–192 (2017). CASPubMed Google Scholar
Brennan, C. A. & Garrett, W. S. Gut Microbiota, Inflammation, and Colorectal Cancer. Annu. Rev. Microbiol.70, 395–411 (2016). CASPubMedPubMed Central Google Scholar
Furusawa, Y. et al. Commensal microbe-derived butyrate induces the differentiation of colonic regulatory T cells. Nature504, 446–450 (2013). CASPubMed Google Scholar
Arpaia, N. et al. Metabolites produced by commensal bacteria promote peripheral regulatory T-cell generation. Nature504, 451–455 (2013). CASPubMedPubMed Central Google Scholar
Tanoue, T., Atarashi, K. & Honda, K. Development and maintenance of intestinal regulatory T cells. Nat. Rev. Immunol.16, 295–309 (2016). CASPubMed Google Scholar
Honda, K. & Littman, D. R. The microbiota in adaptive immune homeostasis and disease. Nature535, 75–84 (2016). CASPubMed Google Scholar