T-cell-antigen recognition and the immunological synapse (original) (raw)
Norcross, M. A. A synaptic basis for T-lymphocyte activation. Ann. Immunol. (Paris)135D, 113–134 (1984). CAS Google Scholar
Paul, W. E. et al. Regulation of B-lymphocyte activation, proliferation, and differentiation. Ann. NY Acad. Sci.505, 82–89 (1987). ArticleCAS Google Scholar
Spiegel, S., Kassis, S., Wilchek, M. & Fishman, P. H. Direct visualization of redistribution and capping of fluorescent gangliosides on lymphocytes. J. Cell Biol.99, 1575–1581 (1984). ArticleCAS Google Scholar
Kupfer, A., Dennert, G. & Singer, S. J. Polarization of the Golgi apparatus and the microtubule-organizing center within cloned natural killer cells bound to their targets. Proc. Natl Acad. Sci. USA80, 7224–7228 (1983). ArticleCAS Google Scholar
Kupfer, A. & Dennert, G. Reorientation of the microtubule-organizing center and the Golgi apparatus in cloned cytotoxic lymphocytes triggered by binding to lysable target cells. J. Immunol.133, 2762–2766 (1984). CASPubMed Google Scholar
Valitutti, S., Dessing, M., Aktories, K., Gallati, H. & Lanzavecchia, A. Sustained signaling leading to T cell activation results from prolonged T cell receptor occupancy. Role of T cell actin cytoskeleton. J. Exp. Med.181, 577–584 (1995). ArticleCAS Google Scholar
Monks, C. R., Freiberg, B. A., Kupfer, H., Sciaky, N. & Kupfer, A. Three-dimensional segregation of supramolecular activation clusters in T cells. Nature395, 82–86 (1998). This landmark study showed the presence of supra-molecular activation complexes (SMACs) within the immune synapse. ArticleCAS Google Scholar
Donnadieu, E., Bismuth, G. & Trautmann, A. Antigen recognition by helper T cells elicits a sequence of distinct changes of their shape and intracellular calcium. Curr. Biol.4, 584–595 (1994). ArticleCAS Google Scholar
Negulescu, P. A., Krasieva, T. B., Khan, A., Kerschbaum, H. H. & Cahalan, M. D. Polarity of T cell shape, motility, and sensitivity to antigen. Immunity4, 421–430 (1996). ArticleCAS Google Scholar
Wulfing, C., Sjaastad, M. D. & Davis, M. M. Visualizing the dynamics of T cell activation: intracellular adhesion molecule 1 migrates rapidly to the T cell/B cell interface and acts to sustain calcium levels. Proc. Natl Acad. Sci. USA95, 6302–6307 (1998). ArticleCAS Google Scholar
Dustin, M. L. et al. A novel adaptor protein orchestrates receptor patterning and cytoskeletal polarity in T-cell contacts. Cell94, 667–677 (1998). ArticleCAS Google Scholar
Grakoui, A. et al. The immunological synapse: a molecular machine controlling T cell activation. Science285, 221–227 (1999). These authors were the first to use supported lipid bilayers as artifical antigen-presenting cells (APCs) to monitor the spatial–temporal redistribution of peptide–MHC complexes and intercellular adhesion molecule 1 (ICAM1) during the development of the immune synapse. ArticleCAS Google Scholar
Harding, C. V. & Unanue, E. R. Quantitation of antigen-presenting cell MHC class II/peptide complexes necessary for T-cell stimulation. Nature346, 574–576 (1990). ArticleCAS Google Scholar
Demotz, S., Grey, H. M. & Sette, A. The minimal number of class II MHC-antigen complexes needed for T cell activation. Science249, 1028–1030 (1990). ArticleCAS Google Scholar
Kimachi, K., Croft, M. & Grey, H. M. The minimal number of antigen-major histocompatibility complex class II complexes required for activation of naive and primed T cells. Eur. J. Immunol.27, 3310–3317 (1997). ArticleCAS Google Scholar
Irvine, D. J., Purbhoo, M. A., Krogsgaard, M. & Davis, M. M. Direct observation of ligand recognition by T cells. Nature419, 845–849 (2002). This paper provided direct evidence that effector T cells respond to a single stimulatory peptide–MHC complex and that CD4 is required for this degree of sensitivity. ArticleCAS Google Scholar
Chang, W. R. et al. Crystal structure of R-phycoerythrin from Polysiphonia urceolata at 2. 8 A resolution. J. Mol. Biol.262, 721–731 (1996). ArticleCAS Google Scholar
Peck, K., Stryer, L., Glazer, A. N. & Mathies, R. A. Single-molecule fluorescence detection: autocorrelation criterion and experimental realization with phycoerythrin. Proc. Natl Acad. Sci. USA86, 4087–4091 (1989). ArticleCAS Google Scholar
Feske, S., Giltnane, J., Dolmetsch, R., Staudt, L. M. & Rao, A. Gene regulation mediated by calcium signals in T lymphocytes. Nature Immunol.2, 316–324 (2001). ArticleCAS Google Scholar
Boniface, J. J. et al. Initiation of signal transduction through the T cell receptor requires the multivalent engagement of peptide/MHC ligands. Immunity9, 459–466 (1998). ArticleCAS Google Scholar
Cochran, J. R., Cameron, T. O. & Stern, L. J. The relationship of MHC-peptide binding and T cell activation probed using chemically defined MHC class II oligomers. Immunity12, 241–250 (2000). ArticleCAS Google Scholar
Randriamampita, C., Boulla, G., Revy, P., Lemaitre, F. & Trautmann, A. T cell adhesion lowers the threshold for antigen detection. Eur. J. Immunol.33, 1215–1223 (2003). ArticleCAS Google Scholar
Doucey, M. A. et al. The β1 and β3 integrins promote T cell receptor-mediated cytotoxic T lymphocyte activation. J. Biol. Chem.278, 26983–26991 (2003). ArticleCAS Google Scholar
Ge, Q. et al. Soluble peptide–MHC monomers cause activation of CD8+ T cells through transfer of the peptide to T cell MHC molecules. Proc. Natl Acad. Sci. USA99, 13729–13734 (2002). ArticleCAS Google Scholar
Kupfer, A. & Singer, S. J. Cell biology of cytotoxic and helper T cell functions: immunofluorescence microscopic studies of single cells and cell couples. Annu. Rev. Immunol.7, 309–37 (1989). ArticleCAS Google Scholar
Wulfing, C. & Davis, M. M. A receptor/cytoskeletal movement triggered by co-stimulation during T cell activation. Science282, 2266–2269 (1998). This paper indicated that co-stimulation is required for cytoskeleton-driven mass transport of lipids (and probably proteins) from the rear end of the T cell to the immune synapse. ArticleCAS Google Scholar
Viola, A., Schroeder, S., Sakakibara, Y. & Lanzavecchia, A. T lymphocyte co-stimulation mediated by reorganization of membrane microdomains. Science283, 680–682 (1999). ArticleCAS Google Scholar
Wulfing, C. et al. Co-stimulation and endogenous MHC ligands contribute to T cell recognition. Nature Immunol.3, 42–27 (2002). ArticleCAS Google Scholar
Davis, S. J. & van der Merwe, P. A. The structure and ligand interactions of CD2: implications for T-cell function. Immunol. Today17, 177–187 (1996). ArticleCAS Google Scholar
Shaw, A. S. & Dustin, M. L. Making the T cell receptor go the distance: a topological view of T cell activation. Immunity6, 361–369 (1997). ArticleCAS Google Scholar
Wild, M. K. et al. Dependence of T cell antigen recognition on the dimensions of an accessory receptor–ligand complex. J. Exp. Med.190, 31–41 (1999). ArticleCAS Google Scholar
Qi, S. Y., Groves, J. T. & Chakraborty, A. K. Synaptic pattern formation during cellular recognition. Proc. Natl Acad. Sci. USA98, 6548–6553 (2001). ArticleCAS Google Scholar
Burroughs, N. J. & Wulfing, C. Differential segregation in a cell–cell contact interface: the dynamics of the immunological synapse. Biophys. J.83, 1784–1796 (2002). ArticleCAS Google Scholar
>Johnson, K. G., Bromley, S. K., Dustin, M. L. & Thomas, M. L. A supramolecular basis for CD45 tyrosine phosphatase regulation in sustained T cell activation. Proc. Natl Acad. Sci. USA97, 10138–10143 (2000). Article Google Scholar
Leupin, O., Zaru, R., Laroche, T., Muller, S. & Valitutti, S. Exclusion of CD45 from the T-cell receptor signaling area in antigen-stimulated T lymphocytes. Curr. Biol.10, 277–280 (2000). ArticleCAS Google Scholar
Freiberg, B. A. et al. Staging and resetting T cell activation in SMACs. Nature Immunol.3, 911–917 (2002). ArticleCAS Google Scholar
Sperling, A. I. et al. TCR signaling induces selective exclusion of CD43 from the T cell-antigen-presenting cell contact site. J. Immunol.161, 6459–6462 (1998). CAS Google Scholar
Roumier, A. et al. The membrane-microfilament linker ezrin is involved in the formation of the immunological synapse and in T cell activation. Immunity15, 715–728 (2001). ArticleCAS Google Scholar
Delon, J., Kaibuchi, K. & Germain, R. N. Exclusion of CD43 from the immunological synapse is mediated by phosphorylation-regulated relocation of the cytoskeletal adaptor moesin. Immunity15, 691–701 (2001). ArticleCAS Google Scholar
Allenspach, E. J. et al. ERM-dependent movement of CD43 defines a novel protein complex distal to the immunological synapse. Immunity15, 739–750 (2001). ArticleCAS Google Scholar
Savage, N. D. et al. Polar redistribution of the sialoglycoprotein CD43: implications for T cell function. J. Immunol.168, 3740–3746 (2002). ArticleCAS Google Scholar
Khan, A. A., Bose, C., Yam, L. S., Soloski, M. J. & Rupp, F. Physiological regulation of the immunological synapse by agrin. Science292, 1681–1686 (2001). ArticleCAS Google Scholar
Demetriou, M., Granovsky, M., Quaggin, S. & Dennis, J. W. Negative regulation of T-cell activation and autoimmunity by Mgat5 N-glycosylation. Nature409, 733–739 (2001). ArticleCAS Google Scholar
Krummel, M. F., Sjaastad, M. D., Wulfing, C. & Davis, M. M. Differential clustering of CD4 and CD3ζ during T cell recognition. Science289, 1349–1352 (2000). This study showed that the T-cell receptor (TCR) and CD4 do not act together at all times during T-cell-antigen recognition, as they have a different distribution within the immune synapse at later stages. ArticleCAS Google Scholar
Zal, T., Zal, M. A. & Gascoigne, N. R. Inhibition of T cell receptor–coreceptor interactions by antagonist ligands visualized by live FRET imaging of the T-hybridoma immunological synapse. Immunity16, 521–534 (2002). ArticleCAS Google Scholar
Sloan-Lancaster, J. et al. ZAP-70 association with T cell receptor ζ (TCRζ): fluorescence imaging of dynamic changes upon cellular stimulation. J. Cell Biol.143, 613–624 (1998). ArticleCAS Google Scholar
Sloan-Lancaster, J. et al. Regulation of ZAP-70 intracellular localization: visualization with the green fluorescent protein. J. Exp. Med.186, 1713–1724 (1997). ArticleCAS Google Scholar
Bunnell, S. C. et al. T cell receptor ligation induces the formation of dynamically regulated signaling assemblies. J. Cell Biol.158, 1263–1275 (2002). ArticleCAS Google Scholar
Ehrlich, L. I., Ebert, P. J., Krummel, M. F., Weiss, A. & Davis, M. M. Dynamics of p56lck translocation to the T cell immunological synapse following agonist and antagonist stimulation. Immunity17, 809–822 (2002). ArticleCAS Google Scholar
Lee, K. H. et al. T cell receptor signaling precedes immuno- logical synapse formation. Science295, 1539–1542 (2002). This paper and reference 52 provide a relation between TCR signalling and the formation of the immune synapse. ArticleCAS Google Scholar
Lee, K. H. et al. The immunological synapse balances TCR signaling and degradation. Science Sept (2003) doi: 10.1126/science.1086507.
Huppa, J. B., Gleimer, M., Sumen, C. & Davis, M. M. Continuous T cell receptor signaling required for synapse maintenance and full effector potential. Nature Immunol.4, 749–755 (2003). ArticleCAS Google Scholar
Schrum, A. G. & Turka, L. A. The proliferative capacity of individual naive CD4+ T cells is amplified by prolonged T cell antigen receptor triggering. J. Exp. Med.196, 793–803 (2002). ArticleCAS Google Scholar
Faroudi, M., Zaru, R., Paulet, P., Muller, S. & Valitutti, S. Cutting edge: T lymphocyte activation by repeated immunological synapse formation and intermittent signaling. J. Immunol.171, 1128–1132 (2003). ArticleCAS Google Scholar
Reichert, P., Reinhardt, R. L., Ingulli, E. & Jenkins, M. K. Cutting edge: in vivo identification of TCR redistribution and polarized IL-2 production by naive CD4 T cells. J. Immunol.166, 4278–4281 (2001). ArticleCAS Google Scholar
Stoll, S., Delon, J., Brotz, T. M. & Germain, R. N. Dynamic imaging of T cell–dendritic cell interactions in lymph nodes. Science296, 1873–1876 (2002). Article Google Scholar
Gunzer, M. et al. Antigen presentation in extracellular matrix: interactions of T cells with dendritic cells are dynamic, short lived, and sequential. Immunity13, 323–332 (2000). ArticleCAS Google Scholar
Miller, M. J., Wei, S. H., Parker, I. & Cahalan, M. D. Two-photon imaging of lymphocyte motility and antigen response in intact lymph node. Science296, 1869–1873 (2002). References 56, 57 and 58 are landmark imaging studies that provided the first insight into the dynamics of T-cell priming. ArticleCAS Google Scholar
Miller, M. J., Wei, S. H., Cahalan, M. D. & Parker, I. Autonomous T cell trafficking examined in vivo with intravital two-photon microscopy. Proc. Natl Acad. Sci. USA100, 2604–2609 (2003). ArticleCAS Google Scholar
Iezzi, G., Karjalainen, K. & Lanzavecchia, A. The duration of antigenic stimulation determines the fate of naive and effector T cells. Immunity8, 89–95 (1998). ArticleCAS Google Scholar
Lee, K. M. et al. Molecular basis of T cell inactivation by CTLA4. Science282, 2263–2266 (1998). ArticleCAS Google Scholar
Egen, J. G., Kuhns, M. S. & Allison, J. P. CTLA-4: new insights into its biological function and use in tumor immunotherapy. Nature Immunol.3, 611–618 (2002). ArticleCAS Google Scholar
Egen, J. G. & Allison, J. P. Cytotoxic T lymphocyte antigen-4 accumulation in the immunological synapse is regulated by TCR signal strength. Immunity16, 23–35 (2002). ArticleCAS Google Scholar
Harty, J. T., Tvinnereim, A. R. & White, D. W. CD8+ T cell effector mechanisms in resistance to infection. Annu. Rev. Immunol.18, 275–308 (2000). ArticleCAS Google Scholar
Stinchcombe, J. C., Bossi, G., Booth, S. & Griffiths, G. M. The immunological synapse of CTL contains a secretory domain and membrane bridges. Immunity15, 751–761 (2001). A study that provides detailed insight into the architecture of the cytotoxic T lymphocyte–target cell synapse. CAS Google Scholar
McGavern, D. B., Christen, U. & Oldstone, M. B. Molecular anatomy of antigen-specific CD8+ T cell engagement and synapse formation in vivo. Nature Immunol.3, 918–925 (2002). ArticleCAS Google Scholar
Kuhn, J.R. & Poenie, M. Dynamic polarization of the microtubule cytoskeleton during CTL-mediated killing. Immunity16, 111–121 (2002). ArticleCAS Google Scholar
Bousso, P., Bhakta, N. R., Lewis, R. S. & Robey, E. Dynamics of thymocyte–stromal cell interactions visualized by two-photon microscopy. Science296, 1876–1880 (2002). The firstin vivoimaging study on thymic selection. ArticleCAS Google Scholar
Richie, L. I. et al. Imaging synapse formation during thymocyte selection: inability of CD3ζ to form a stable central accumulation during negative selection. Immunity16, 595–606 (2002). ArticleCAS Google Scholar
Hailman, E., Burack, W. R., Shaw, A. S., Dustin, M. L. & Allen, P. M. Immature CD4+CD8+ thymocytes form a multifocal immunological synapse with sustained tyrosine phosphorylation. Immunity16, 839–848 (2002). ArticleCAS Google Scholar
Banchereau, J. & Steinman, R. M. Dendritic cells and the control of immunity. Nature392, 245–252 (1998). ArticleCAS Google Scholar
Matzinger, P. The danger model: a renewed sense of self. Science296, 301–305 (2002). ArticleCAS Google Scholar
Trombetta, E. S., Ebersold, M., Garrett, W., Pypaert, M. & Mellman, I. Activation of lysosomal function during dendritic cell maturation. Science299, 1400–1403 (2003). ArticleCAS Google Scholar
Chow, A., Toomre, D., Garrett, W. & Mellman, I. Dendritic cell maturation triggers retrograde MHC class II transport from lysosomes to the plasma membrane. Nature418, 988–994 (2002). ArticleCAS Google Scholar
Boes, M. et al. T-cell engagement of dendritic cells rapidly rearranges MHC class II transport. Nature418, 983–988 (2002). Together with reference 74, these studies show that T-cell engagement of dendritic cells (DCs) triggers targeted transport of MHC class II molecules from lysosomes to the immune synapse. This means that signalling occurs in DCs in response to interactions with antigen-specific T cells. ArticleCAS Google Scholar
Lang, P. et al. TCR-induced transmembrane signaling by peptide/MHC class II via associated Ig-α/β dimers. Science291, 1537–1540 (2001). ArticleCAS Google Scholar
McDonald, D. et al. Recruitment of HIV and its receptors to dendritic cell–T cell junctions. Science300, 1295–1297 (2003). ArticleCAS Google Scholar
Geijtenbeek, T. B. et al. DC-SIGN, a dendritic cell-specific HIV-1-binding protein that enhances trans-infection of T cells. Cell100, 587–597 (2000). ArticleCAS Google Scholar
Davis, S. J. & van der Merwe, P. A. The immunological synapse: required for T cell receptor signalling or directing T cell effector function? Curr. Biol.11, R289–R291 (2001). ArticleCAS Google Scholar