WNT signalling and haematopoiesis: a WNT–WNT situation (original) (raw)
Nusse, R. & Varmus, H. E. Many tumors induced by the mouse mammary tumor virus contain a provirus integrated in the same region of the host genome. Cell31, 99–109 (1982). ArticleCAS Google Scholar
van Noort, M. & Clevers, H. TCF transcription factors, mediators of Wnt-signaling in development and cancer. Dev. Biol.244, 1–8 (2002). ArticleCAS Google Scholar
Bhardwaj, G. et al. Sonic hedgehog induces the proliferation of primitive human hematopoietic cells via BMP regulation. Nature Immunol.2, 172–180 (2001). ArticleCAS Google Scholar
Bhatia, M. et al. Bone morphogenetic proteins regulate the developmental program of human hematopoietic stem cells. J. Exp. Med.189, 1139–1148 (1999). ArticleCAS Google Scholar
Varnum-Finney, B. et al. The Notch ligand, Jagged-1, influences the development of primitive hematopoietic precursor cells. Blood91, 4084–4091 (1998). CAS Google Scholar
Tamai, K. et al. LDL-receptor-related proteins in Wnt signal transduction. Nature407, 530–535 (2000). ArticleCAS Google Scholar
Mao, J. et al. Low-density lipoprotein receptor-related protein-5 binds to Axin and regulates the canonical Wnt signaling pathway. Mol. Cell7, 801–809 (2001). ArticleCAS Google Scholar
Mao, B. et al. LDL-receptor-related protein 6 is a receptor for Dickkopf proteins. Nature411, 321–325 (2001). ArticleCAS Google Scholar
Hsieh, J. C. Specificity of WNT-receptor interactions. Front. Biosci.9, 1333–1338 (2004). ArticleCAS Google Scholar
Malbon, C. C. Frizzleds: new members of the superfamily of G-protein-coupled receptors. Front. Biosci.9, 1048–1058 (2004). ArticleCAS Google Scholar
Wang, H. Y. WNT-frizzled signaling via cyclic GMP. Front. Biosci.9, 1043–1047 (2004). ArticleCAS Google Scholar
Kuhl, M. The WNT/calcium pathway: biochemical mediators, tools and future requirements. Front. Biosci.9, 967–974 (2004). Article Google Scholar
Wang, H. Y. & Malbon, C. C. Wnt–frizzled signaling to G-protein-coupled effectors. Cell. Mol. Life Sci.61, 69–75 (2004). ArticleCAS Google Scholar
Ozawa, M., Baribault, H. & Kemler, R. The cytoplasmic domain of the cell adhesion molecule uvomorulin associates with three independent proteins structurally related in different species. EMBO J.8, 1711–1717 (1989). ArticleCAS Google Scholar
Behrens, J. et al. Functional interaction of an axin homolog, conductin, with β-catenin, APC, and GSK3β. Science280, 596–599 (1998). ArticleCAS Google Scholar
Karim, R., Tse, G., Putti, T., Scolyer, R. & Lee, S. The significance of the Wnt pathway in the pathology of human cancers. Pathology36, 120–128 (2004). ArticleCAS Google Scholar
Seto, E. S. & Bellen, H. J. The ins and outs of Wingless signaling. Trends Cell Biol.14, 45–53 (2004). ArticleCAS Google Scholar
Nelson, W. J. & Nusse, R. Convergence of Wnt, β-catenin, and cadherin pathways. Science303, 1483–1487 (2004). ArticleCAS Google Scholar
van Es, J. H., Barker, N. & Clevers, H. You Wnt some, you lose some: oncogenes in the Wnt signaling pathway. Curr. Opin. Genet. Dev.13, 28–33 (2003). ArticleCAS Google Scholar
Roose, J. et al. The Xenopus Wnt effector XTcf-3 interacts with Groucho-related transcriptional repressors. Nature395, 608–612 (1998). ArticleCAS Google Scholar
Barker, N. et al. The chromatin remodelling factor Brg-1 interacts with β-catenin to promote target gene activation. EMBO J.20, 4935–4943 (2001). ArticleCAS Google Scholar
Takemaru, K. et al. Chibby, a nuclear β-catenin-associated antagonist of the Wnt/Wingless pathway. Nature422, 905–909 (2003). ArticleCAS Google Scholar
Daniels, D. L. & Weis, W. I. ICAT inhibits β-catenin binding to Tcf/Lef-family transcription factors and the general coactivator p300 using independent structural modules. Mol. Cell10, 573–584 (2002). ArticleCAS Google Scholar
Kramps, T. et al. Wnt/wingless signaling requires BCL9/legless-mediated recruitment of pygopus to the nuclear β-catenin–TCF complex. Cell109, 47–60 (2002). ArticleCAS Google Scholar
Townsley, F. M., Thompson, B. & Bienz, M. Pygopus residues required for its binding to Legless are critical for transcription and development. J. Biol. Chem.279, 5177–5183 (2004). ArticleCAS Google Scholar
Townsley, F. M., Cliffe, A. & Bienz, M. Pygopus and Legless target Armadillo/β-catenin to the nucleus to enable its transcriptional co-activator function. Nature Cell Biol.6, 626–633 (2004). References 25–27 show the importance of LGS and PYGO for transcriptional activation of the β-catenin–TCF complex. ArticleCAS Google Scholar
Thompson, B. J. A complex of Armadillo, Legless, and Pygopus coactivates dTCF to activate wingless target genes. Curr. Biol.14, 458–466 (2004). ArticleCAS Google Scholar
Austin, T. W., Solar, G. P., Ziegler, F. C., Liem, L. & Matthews, W. A role for the Wnt gene family in hematopoiesis: expansion of multilineage progenitor cells. Blood89, 3624–3635 (1997). CAS Google Scholar
van den Berg, D. J., Sharma, A. K., Bruno, E. & Hoffman, R. Role of members of the Wnt gene family in human hematopoiesis. Blood92, 3189–3202 (1998). CAS Google Scholar
Murdoch, B. et al. Wnt-5A augments repopulating capacity and primitive hematopoietic development of human blood stem cells in vivo. Proc. Natl Acad. Sci. USA100, 3422–3427 (2003). ArticleCAS Google Scholar
Reya, T. et al. A role for Wnt signalling in self-renewal of haematopoietic stem cells. Nature423, 409–414 (2003). ArticleCAS Google Scholar
Willert, K. et al. Wnt proteins are lipid-modified and can act as stem cell growth factors. Nature423, 448–452 (2003). References 32 and 33 implicate WNT signalling in the self-renewal of HSCs. Reference 33 mainly describes the purification of biologically active recombinant WNT3A protein, using HSC proliferation as a read-out. ArticleCAS Google Scholar
Verbeek, S. et al. An HMG-box-containing T-cell factor required for thymocyte differentiation. Nature374, 70–74 (1995). This paper describes the two types of TCF1-deficient mice and their thymic phenotypes. ArticleCAS Google Scholar
Schilham, M. W. et al. Critical involvement of Tcf-1 in expansion of thymocytes. J. Immunol.161, 3984–3991 (1998). CAS Google Scholar
Prieve, M. G. & Waterman, M. L. Nuclear localization and formation of β-catenin–lymphoid enhancer factor 1 complexes are not sufficient for activation of gene expression. Mol. Cell. Biol.19, 4503–4515 (1999). ArticleCAS Google Scholar
Travis, A., Amsterdam, A., Belanger, C. & Grosschedl, R. LEF-1, a gene encoding a lymphoid-specific protein with an HMG domain, regulates T-cell receptor-α enhancer function. Genes Dev.5, 880–894 (1991). ArticleCAS Google Scholar
van Genderen, C. et al. Development of several organs that require inductive epithelial–mesenchymal interactions is impaired in LEF-1-deficient mice. Genes Dev.8, 2691–2703 (1994). ArticleCAS Google Scholar
Okamura, R. M. et al. Redundant regulation of T cell differentiation and _TCR_α gene expression by the transcription factors LEF-1 and TCF-1. Immunity8, 11–20 (1998). This paper describes the thymic phenotype of mice that are deficient in both TCF1 and LEF1. ArticleCAS Google Scholar
Galceran, J., Farinas, I., Depew, M. J., Clevers, H. & Grosschedl, R. Wnt3a _−/−_-like phenotype and limb deficiency in Lef1−/−Tcf1−/− mice. Genes Dev.13, 709–717 (1999). ArticleCAS Google Scholar
Van de Wetering, M., Castrop, J., Korinek, V. & Clevers, H. Extensive alternative splicing and dual promoter usage generate Tcf-1 protein isoforms with differential transcription control properties. Mol. Cell. Biol.16, 745–752 (1996). ArticleCAS Google Scholar
Ioannidis, V., Beermann, F., Clevers, H. & Held, W. The β-catenin–TCF-1 pathway ensures CD4+CD8+ thymocyte survival. Nature Immunol.2, 691–697 (2001). ArticleCAS Google Scholar
Staal, F. J. et al. Wnt signaling is required for thymocyte development and activates Tcf-1 mediated transcription. Eur. J. Immunol.31, 285–293 (2001). ArticleCAS Google Scholar
Pongracz, J., Hare, K., Harman, B., Anderson, G. & Jenkinson, E. J. Thymic epithelial cells provide WNT signals to developing thymocytes. Eur. J. Immunol.33, 1949–1956 (2003). ArticleCAS Google Scholar
Mulroy, T., McMahon, J. A., Burakoff, S. J., McMahon, A. P. & Sen, J. Wnt-1 and Wnt-4 regulate thymic cellularity. Eur. J. Immunol.32, 967–971 (2002). ArticleCAS Google Scholar
Hsu, W., Shakya, R. & Costantini, F. Impaired mammary gland and lymphoid development caused by inducible expression of Axin in transgenic mice. J. Cell Biol.155, 1055–1064 (2001). ArticleCAS Google Scholar
Ranheim, E. A. et al. Frizzled 9 knockout mice have abnormal B cell development. Blood 30 Nov 2004 (doi:10.1182/blood-2004-06-2334).
Xu, Y., Banerjee, D., Huelsken, J., Birchmeier, W. & Sen, J. M. Deletion of β-catenin impairs T cell development. Nature Immunol.4, 1177–1182 (2003). ArticleCAS Google Scholar
Cobas, M. et al. β-catenin is dispensable for hematopoiesis and lymphopoiesis. J. Exp. Med.199, 221–229 (2004). References 48 and 49 describe the phenotype of mice that are deficient in β-catenin; however, they report opposite results. ArticleCAS Google Scholar
Staal, F. J., Burgering, B. M., van de Wetering, M. & Clevers, H. C. Tcf-1-mediated transcription in T lymphocytes: differential role for glycogen synthase kinase-3 in fibroblasts and T cells. Int. Immunol.11, 317–323 (1999). ArticleCAS Google Scholar
Gounari, F. et al. Somatic activation of β-catenin bypasses pre-TCR signaling and TCR selection in thymocyte development. Nature Immunol.2, 863–869 (2001). ArticleCAS Google Scholar
Mulroy, T., Xu, Y. & Sen, J. M. β-Catenin expression enhances generation of mature thymocytes. Int. Immunol.15, 1485–1494 (2003). ArticleCAS Google Scholar
van Ewijk, W., Shores, E. W. & Singer, A. Crosstalk in the mouse thymus. Immunol. Today15, 214–217 (1994). ArticleCAS Google Scholar
Balciunaite, G. et al. Wnt glycoproteins regulate the expression of FoxN1, the gene defective in nude mice. Nature Immunol.3, 1102–1108 (2002). ArticleCAS Google Scholar
Willert, J., Epping, M., Pollack, J. R., Brown, P. O. & Nusse, R. A transcriptional response to Wnt protein in human embryonic carcinoma cells. BMC Dev. Biol. [online] 2, 8 (2002). Article Google Scholar
van de Wetering, M. et al. The β-catenin/TCF-4 complex imposes a crypt progenitor phenotype on colorectal cancer cells. Cell111, 241–250 (2002). ArticleCAS Google Scholar
Staal, F. J. et al. Wnt target genes identified by DNA microarrays in immature CD34+ thymocytes regulate proliferation and cell adhesion. J. Immunol.172, 1099–1108 (2004). This report identifies target genes of the WNT–TCF1 signalling pathway in DN thymocytes. It is the first study that has used DNA microarrays to examine the target genes of a transcription factor that is required for lymphoid development. ArticleCAS Google Scholar
Bruhn, L., Munnerlyn, A. & Grosschedl, R. ALY, a context-dependent coactivator of LEF-1 and AML-1, is required for TCRα enhancer function. Genes Dev.11, 640–653 (1997). ArticleCAS Google Scholar
Reya, T. et al. Wnt signaling regulates B lymphocyte proliferation through a LEF-1 dependent mechanism. Immunity13, 15–24 (2000). This paper describes the defect in B-cell development of LEF1-deficient mice. In addition, it shows the importance of WNT signalling for the proliferation of pro-B cells. ArticleCAS Google Scholar
Christian, S. L., Sims, P. V. & Gold, M. R. The B cell antigen receptor regulates the transcriptional activator β-catenin via protein kinase C-mediated inhibition of glycogen synthase kinase-3. J. Immunol.169, 758–769 (2002). ArticleCAS Google Scholar
Muller-Tidow, C. et al. Translocation products in acute myeloid leukemia activate the Wnt signaling pathway in hematopoietic cells. Mol. Cell. Biol.24, 2890–2904 (2004). Article Google Scholar
Lu, D. et al. Activation of the Wnt signaling pathway in chronic lymphocytic leukemia. Proc. Natl Acad. Sci. USA101, 3118–3123 (2004). ArticleCAS Google Scholar
McWhirter, J. R. et al. Oncogenic homeodomain transcription factor E2A–Pbx1 activates a novel WNT gene in pre-B acute lymphoblastoid leukemia. Proc. Natl Acad. Sci. USA96, 11464–11469 (1999). ArticleCAS Google Scholar
Jamieson, C. H. et al. Granulocyte–macrophage progenitors as candidate leukemic stem cells in blast-crisis CML. N. Engl. J. Med.351, 657–667 (2004). This is the first description of the involvement of dysregulated WNT signalling in a haematological malignancy of humans. ArticleCAS Google Scholar
Tian, E. et al. The role of the Wnt-signaling antagonist DKK1 in the development of osteolytic lesions in multiple myeloma. N. Engl. J. Med.349, 2483–2494 (2003). ArticleCAS Google Scholar
Derksen, P. W. et al. Illegitimate WNT signaling promotes proliferation of multiple myeloma cells. Proc. Natl Acad. Sci. USA101, 6122–6127 (2004). ArticleCAS Google Scholar
Liang, H. et al. Wnt5a inhibits B cell proliferation and functions as a tumor suppressor in hematopoietic tissue. Cancer Cell4, 349–360 (2003). ArticleCAS Google Scholar
Nicolas, M. et al. Notch1 functions as a tumor suppressor in mouse skin. Nature Genet.33, 416–421 (2003). ArticleCAS Google Scholar
Galceran, J., Sustmann, C., Hsu, S. C., Folberth, S. & Grosschedl, R. LEF1-mediated regulation of Delta-like1 links Wnt and Notch signaling in somitogenesis. Genes Dev.18, 2718–2723 (2004). ArticleCAS Google Scholar