Immunological processes in malaria pathogenesis (original) (raw)
Baird, J. K., Masbar, S., Basri, H., Tirtokusumo, S. & Hoffman, S. L. Age-dependent susceptibility to severe disease caused by Plasmodium falciparum. J. Infect. Dis.178, 592–595 (1998). ArticleCASPubMed Google Scholar
Engwerda, C. R., Beattie, L. & Amante, F. H. The importance of the spleen in malaria. Trends Parasitol.21, 75–80 (2005). ArticlePubMed Google Scholar
Schofield, L. & Hackett, F. Signal transduction in host cells by a glycosylphosphatidylinositol toxin of malaria parasites. J. Exp. Med.177, 145–153 (1993). ArticleCASPubMed Google Scholar
Tachado, S. D. et al. Signal transduction in macrophages by glycosylphosphatidylinositols of Plasmodium, Trypanosoma and Leishmania: activation of protein tyrosine kinases and protein kinase C by inositolglycan and diacylglycerol moieties. Proc. Natl Acad. Sci. USA94, 4022–4027 (1997). ArticleCASPubMedPubMed Central Google Scholar
Naik, R. S. et al. Glycosylphosphatidylinositol anchors of Plasmodium falciparum: molecular characterization and naturally elicited antibody response that may provide immunity to malaria pathogenesis. J. Exp. Med.192, 1563–1576 (2000). ArticleCASPubMedPubMed Central Google Scholar
Carlson, J. et al. Disruption of Plasmodium-falciparum erythrocyte rosettes by standard heparin and heparin devoid of anticoagulant activity. Am. J. Trop. Med. Hyg.46, 595–602 (1992). ArticleCASPubMed Google Scholar
Tachado, S. D. et al. Glycosylphosphatidylinositol toxin of Plasmodium induces nitric oxide synthase expression in macrophages and vascular endothelial cells by a protein tyrosine kinase-dependent and protein kinase C- dependent signaling pathway. J. Immunol.156, 1897–1907 (1996). CASPubMed Google Scholar
Schofield, L. et al. Glycosylphosphatidylinositol toxin of Plasmodium upregulates intercellular adhesion molecule-1, vascular cell adhesion molecule-1, and E-selectin expression in vascular endothelial cells and increases leukocyte and parasite cytoadherence via tyrosine kinase-dependent signal transduction. J. Immunol.156, 1886–1896 (1996). CASPubMed Google Scholar
Tachado, S. & Schofield, L. Glycosylphosphatidylinositol of Trypanosoma brucei regulates TNF-α and IL-1 gene expression in macrophages by a tyrosine kinase dependent signal transduction pathway. Biochem. Biophys. Res. Commun.205, 984–991 (1994). ArticleCASPubMed Google Scholar
Almeida, I. C. et al. Highly purified glycosylphosphatidylinositols from Trypanosoma cruzi are potent proinflammatory agents. EMBO J.19, 1476–1485 (2000). ArticleCASPubMedPubMed Central Google Scholar
Debierre-Grockiego, F. et al. Roles of glycosylphosphatidylinositols of Toxoplasma gondii. Induction of tumor necrosis factor-α production in macrophages. J. Biol. Chem.278, 32987–32993 (2003). ArticleCASPubMed Google Scholar
Behr, C. et al. Plasmodium falciparum stimuli for human γδ T cells are related to phosphorylated antigens of mycobacteria. Infect. Immun.64, 2892–2896 (1996). ArticleCASPubMedPubMed Central Google Scholar
Coban, C. et al. Toll-like receptor 9 mediates innate immune activation by the malaria pigment hemozoin. J. Exp. Med.201, 19–25 (2005). ArticleCASPubMedPubMed Central Google Scholar
Skorokhod, O. A., Alessio, M., Mordmuller, B., Arese, P. & Schwarzer, E. Hemozoin (malarial pigment) inhibits differentiation and maturation of human monocyte-derived dendritic cells: a peroxisome proliferator-activated receptor-γ-mediated effect. J. Immunol.173, 4066–4074 (2004). ArticleCASPubMed Google Scholar
Sherry, B. A. et al. Malaria-specific metabolite hemozoin mediates the release of several potent endogenous pyrogens (TNF, MIP-1α, and MIP-1β) in vitro, and altered thermoregulation in vivo. J. Inflamm.45, 85–96 (1995). CASPubMed Google Scholar
Deshpande, P. & Shastry, P. Modulation of cytokine profiles by malaria pigment — hemozoin: role of IL-10 in suppression of proliferative responses of mitogen stimulated human PBMC. Cytokine28, 205–213 (2004). ArticleCASPubMed Google Scholar
Schwarzer, E. et al. Impairment of macrophage functions after ingestion of _Plasmodium falciparum_-infected erythrocytes or isolated malarial pigment. J. Exp. Med.176, 1033–1041 (1992). ArticleCASPubMed Google Scholar
Morakote, N. & Justus, D. E. Immunosuppression in malaria: effect of hemozoin produced by Plasmodium berghei and Plasmodium falciparum. Int. Arch. Allergy Appl. Immunol.86, 28–34 (1988). ArticleCASPubMed Google Scholar
Scorza, T., Magez, S., Brys, L. & De Baetselier, P. Hemozoin is a key factor in the induction of malaria-associated immunosuppression. Parasite Immunol.21, 545–554 (1999). ArticleCASPubMed Google Scholar
Schwarzer, E., Kuhn, H., Valente, E. & Arese, P. Malaria-parasitized erythrocytes and hemozoin nonenzymatically generate large amounts of hydroxy fatty acids that inhibit monocyte functions. Blood101, 722–728 (2003). ArticleCASPubMed Google Scholar
Giribaldi, G. et al. Hemozoin- and 4-hydroxynonenal-mediated inhibition of erythropoiesis. Possible role in malarial dyserythropoiesis and anemia. Haematologica89, 492–493 (2004). CASPubMed Google Scholar
Jaramillo, M. et al. Hemozoin-inducible proinflammatory events in vivo: potential role in malaria infection. J. Immunol.172, 3101–3110 (2004). ArticleCASPubMed Google Scholar
Urban, B. et al. _Plasmodium falciparum_-infected erythrocytes modulate the maturation of dendritic cells. Nature400, 73–77 (1999). ArticleCASPubMed Google Scholar
Urban, B. C., Willcox, N. & Roberts, D. J. A role for CD36 in the regulation of dendritic cell function. Proc. Natl Acad. Sci. USA98, 8750–8755 (2001). ArticleCASPubMedPubMed Central Google Scholar
Campos, M. A. et al. Activation of Toll-like receptor-2 by glycosylphosphatidylinositol anchors from a protozoan parasite. J. Immunol.167, 416–423 (2001). ArticleCASPubMed Google Scholar
Krishnegowda, G. et al. Induction of proinflammatory responses in macrophages by the glycosylphosphatidylinositols of Plasmodium falciparum: cell signaling receptors, glycosylphosphatidylinositol (GPI) structural requirement, and regulation of GPI activity. J. Biol. Chem.280, 8606–8616 (2005). ArticleCASPubMed Google Scholar
Campos, M. A. et al. Impaired production of proinflammatory cytokines and host resistance to acute infection with Trypanosoma cruzi in mice lacking functional myeloid differentiation factor 88. J. Immunol.172, 1711–1718 (2004). ArticleCASPubMed Google Scholar
Adachi, K. et al. Plasmodium berghei infection in mice induces liver injury by an IL-12- and Toll-like receptor/myeloid differentiation factor 88-dependent mechanism. J. Immunol.167, 5928–5934 (2001). ArticleCASPubMed Google Scholar
Kreig, A. A role for Toll in autoimmunity. Nature Immunol.3, 423–424 (2002). ArticleCAS Google Scholar
Klabunde, J. et al. Recognition of Plasmodium falciparum proteins by mannan-binding lectin, a component of the human innate immune system. Parasitol. Res.88, 113–117 (2002). ArticlePubMed Google Scholar
Luty, A. J., Kun, J. F. & Kremsner, P. G. Mannose-binding lectin plasma levels and gene polymorphisms in Plasmodium falciparum malaria. J. Infect. Dis.178, 1221–1224 (1998). ArticleCASPubMed Google Scholar
Hansen, D. S. & Schofield, L. Regulation of immunity and pathogenesis in infectious diseases by CD1d-restricted NKT cells. Int. J. Parasitol.34, 15–25 (2004). ArticleCASPubMed Google Scholar
Schofield, L. et al. CD1d-restricted immunoglobulin G formation to GPI-anchored antigens mediated by NKT cells. Science283, 225–229 (1999). ArticleCASPubMed Google Scholar
Fischer, K. et al. Mycobacterial phosphatidylinositol mannoside is a natural antigen for CD1d-restricted T cells. Proc. Natl Acad. Sci. USA101, 10685–10690 (2004). ArticleCASPubMedPubMed Central Google Scholar
Hansen, D. S., Siomos, M. A., Buckingham, L., Scalzo, A. A. & Schofield, L. Regulation of murine cerebral malaria pathogenesis by CD1d-restricted NKT cells and the natural killer complex. Immunity18, 391–402 (2003). This study shows that NKT cells and loci of the NKC determine TH1/TH2-cytokine profiles and therefore susceptibility and resistance to severe malaria in mice. ArticleCASPubMed Google Scholar
Hansen, D. S. et al. CD1d-restricted NKT cells contribute to malarial splenomegaly and enhance parasite-specific antibody responses. Eur. J. Immunol.33, 2588–2598 (2003). ArticleCASPubMed Google Scholar
Hansen, D. S. et al. The natural killer complex regulates severe malarial pathogenesis and influences acquired immune responses to Plasmodium berghei ANKA. Infect. Immun.73, 2288–2297 (2005). ArticleCASPubMedPubMed Central Google Scholar
de Kossodo, S. & Grau, G. E. Profiles of cytokine production in relation with susceptibility to cerebral malaria. J. Immunol.151, 4811–4820 (1993). CASPubMed Google Scholar
Yanez, D. M., Manning, D. D., Cooley, A. J., Weidanz, W. P. & van der Heyde, H. C. Participation of lymphocyte subpopulations in the pathogenesis of experimental murine cerebral malaria. J. Immunol.157, 1620–1624 (1996). CASPubMed Google Scholar
Orago, A. & Facer, C. A. Cytotoxicity of human natural killer (NK) cell subsets for Plasmodium falciparum erythrocytic schizonts: stimulation by cytokines and inhibition by neomycin. Clin. Exp. Immunol.86, 22–29 (1991). ArticleCASPubMedPubMed Central Google Scholar
Theander, T. G., Pedersen, B. K., Bygbjerg, I. C., Jepsen, S. & Larsen, P. B. Enhancement of human natural cytotoxicity by Plasmodium falciparum antigen activated lymphocytes. Acta Trop.44, 415–422 (1987). CASPubMed Google Scholar
Artavanis-Tsakonas, K. et al. Activation of a subset of human NK cells upon contact with _Plasmodium falciparum_-infected erythrocytes. J. Immunol.171, 5396–5405 (2003). ArticleCASPubMed Google Scholar
Marchiafava, E. & Bignami, E. in Twentieth Century Practice of Medicine. An International Encyclopedia of Modern Medical Science (ed. Stedman, T. L.) 227–252 (Wood & Co., New York, 1900). Google Scholar
Coltel, N., Combes, V., Hunt, N. H. & Grau, G. E. Cerebral malaria — a neurovascular pathology with many riddles still to be solved. Curr. Neurovasc. Res.1, 91–110 (2004). ArticlePubMed Google Scholar
White, N. J. Malaria physiopathology. Clin. Trop. Med. Commun. Dis.1, 55–90 (1986). Google Scholar
Molyneux, M. E. Cerebral malaria in children — clinical implications of cytoadherence. Am. J. Trop. Med. Hyg.43, 38–41 (1990). ArticleCASPubMed Google Scholar
Grau, G. E. & de Kossodo, S. Cerebral malaria: mediators, mechanical obstruction or more? Parasitol. Today10, 408–409 (1994). ArticleCASPubMed Google Scholar
Berendt, A. R. et al. Molecular mechanisms of sequestration in malaria. Parasitology108, S19–S28 (1994). ArticlePubMed Google Scholar
Hunt, N. H. & Grau, G. E. Cytokines: accelerators and brakes in the pathogenesis of cerebral malaria. Trends Immunol.24, 491–499 (2003). ArticleCASPubMed Google Scholar
Grau, G. E. et al. Platelet accumulation in brain microvessels in fatal pediatric cerebral malaria. J. Infect. Dis.187, 461–466 (2003). This study indicates that, in CM in humans, similar to the mouse model of CM, there is a close association between the neurological syndrome and the intravascular accumulation of platelets. ArticlePubMed Google Scholar
Rest, J. R. Pathogenesis of cerebral malaria in golden hamsters and inbred mice. Contrib. Microbiol. Immunol.7, 139–146 (1983). CASPubMed Google Scholar
Curfs, J. H. et al. Tumour necrosis factor-α and macrophages in _Plasmodium berghei_-induced cerebral malaria. Parasitology107, 125–134 (1993). ArticleCASPubMed Google Scholar
Ma, N., Hunt, N. H., Madigan, M. C. & Chan-Ling, T. Correlation between enhanced vascular permeability, up-regulation of cellular adhesion molecules and monocyte adhesion to the endothelium in the retina during the development of fatal murine cerebral malaria. Am. J. Pathol.149, 1745–1762 (1996). This paper reports the morphological and functional characterization of the microvascular changes that are associated with experimental CM, using the elegant retinal whole-mount model. CASPubMedPubMed Central Google Scholar
Elamin, A. M. Cerebral malaria in adult Zambian Africans. East Afr. Med. J.58, 124–129 (1981). CASPubMed Google Scholar
Pongponratn, E., Riganti, M., Harinasuta, T. & Bunnag, D. Electron microscopy of the human brain in cerebral malaria. Southeast Asian J. Trop. Med. Public Health16, 219–227 (1985). CASPubMed Google Scholar
Porta, J. et al. Immunopathological changes in human cerebral malaria. Clin. Neuropathol.12, 142–146 (1993). CASPubMed Google Scholar
Patnaik, J. K. et al. Vascular clogging, mononuclear cell margination, and enhanced vascular permeability in the pathogenesis of human cerebral malaria. Am. J. Trop. Med. Hyg.51, 642–647 (1994). ArticleCASPubMed Google Scholar
Mackenzie, C. D. et al. Intravascular leukocytes in the brain in Malawian children with fatal malaria. Am. J. Trop. Med. Hyg.61, 476 (1999). Article Google Scholar
Taylor, T. E. et al. Differentiating the pathologies of cerebral malaria by postmortem parasite counts. Nature Med.10, 143–145 (2004). This study highlights the importance of histopathological analyses in our understanding of the neurological syndrome in CM and indicates new approaches to the classification of CM. ArticleCASPubMed Google Scholar
Sexton, A. C. et al. Transcriptional profiling reveals suppressed erythropoiesis, up-regulated glycolysis, and interferon-associated responses in murine malaria. J. Infect. Dis.189, 1245–1256 (2004). ArticleCASPubMed Google Scholar
Hanum, P. S., Hayano, M. & Kojima, S. Cytokine and chemokine responses in a cerebral malaria-susceptible or -resistant strain of mice to Plasmodium berghei ANKA infection: early chemokine expression in the brain. Int. Immunol.15, 633–640 (2003). Article Google Scholar
Chen, L., Zhang, Z. & Sendo, F. Neutrophils play a critical role in the pathogenesis of experimental cerebral malaria. Clin. Exp. Immunol.120, 125–133 (2000). ArticleCASPubMedPubMed Central Google Scholar
Mohammed, A. O. et al. Human neutrophil lipocalin: a specific marker for neutrophil activation in severe Plasmodium falciparum malaria. Acta Trop.87, 279–285 (2003). ArticleCASPubMed Google Scholar
Wassmer, S. C., Combes, V. & Grau, G. E. Pathophysiology of cerebral malaria: role of host cells in the modulation of cytoadhesion. Ann. NY Acad. Sci.992, 30–38 (2003). ArticleCASPubMed Google Scholar
Hawrylowicz, C. M., Howells, G. L. & Feldmann, M. Platelet-derived interleukin 1 induces human endothelial adhesion molecule expression and cytokine production. J. Exp. Med.174, 785–790 (1991). ArticleCASPubMed Google Scholar
Barry, O. P., Pratico, D., Lawson, J. A. & FitzGerald, G. A. Transcellular activation of platelets and endothelial cells by bioactive lipids in platelet microparticles. J. Clin. Invest.99, 2118–2127 (1997). ArticleCASPubMedPubMed Central Google Scholar
Barry, O. P., Pratico, D., Savani, R. C. & FitzGerald, G. A. Modulation of monocyte–endothelial cell interactions by platelet microparticles. J. Clin. Invest.102, 136–144 (1998). ArticleCASPubMedPubMed Central Google Scholar
Combes, V. et al. ABCA1 gene deletion protects against cerebral malaria: potential pathogenic role of microparticles in neuropathology. Am. J. Pathol.166, 295–302 (2005). ArticleCASPubMedPubMed Central Google Scholar
Combes, V. et al. Circulating endothelial microparticles in Malawian children with severe falciparum malaria complicated with coma. JAMA291, 2542–2544 (2004). CASPubMed Google Scholar
Kuijper, P. H. et al. Platelet associated fibrinogen and ICAM-2 induce firm adhesion of neutrophils under flow conditions. Thromb. Haemost.80, 443–448 (1998). ArticleCASPubMed Google Scholar
Kuijper, P. H. et al. Platelet-dependent primary hemostasis promotes selectin- and integrin-mediated neutrophil adhesion to damaged endothelium under flow conditions. Blood87, 3271–3281 (1996). ArticleCASPubMed Google Scholar
van der Heyde, H. C., Gramglia, I., Sun, G. & Woods, C. Platelet depletion by anti-CD41 (αIIb) mAb injection early but not late in the course of disease protects against Plasmodium berghei pathogenesis by altering the levels of pathogenic cytokines. Blood105, 1956–1963 (2005). ArticleCASPubMed Google Scholar
Sun, G. et al. Inhibition of platelet adherence to brain microvasculature protects against severe Plasmodium berghei malaria. Infect. Immun.71, 6553–6561 (2003). ArticleCASPubMedPubMed Central Google Scholar
Grau, G. E. et al. L3T4+ T lymphocytes play a major role in the pathogenesis of murine cerebral malaria. J. Immunol.137, 2348–2354 (1986). CASPubMed Google Scholar
Yanez, D. M., Batchelder, J., van der Heyde, H. C., Manning, D. D. & Weidanz, W. P. γδ T-cell function in pathogenesis of cerebral malaria in mice infected with Plasmodium berghei ANKA. Infect. Immun.67, 446–448 (1999). ArticleCASPubMedPubMed Central Google Scholar
Grau, G. E. et al. Monoclonal antibody against interferon-g can prevent experimental cerebral malaria and its associated overproduction of tumor necrosis factor. Proc. Natl Acad. Sci. USA86, 5572–5574 (1989). ArticleCASPubMedPubMed Central Google Scholar
Amani, V. et al. Involvement of IFN-γ receptor-mediated signaling in pathology and anti-malarial immunity induced by Plasmodium berghei infection. Eur. J. Immunol.30, 1646–1655 (2000). ArticleCASPubMed Google Scholar
Jacobs, T., Graefe, S. E., Niknafs, S., Gaworski, I. & Fleischer, B. Murine malaria is exacerbated by CTLA-4 blockade. J. Immunol.169, 2323–2329 (2002). ArticleCASPubMed Google Scholar
Hermsen, C. C., Crommert, J. V. D., Fredrix, H., Sauerwein, R. W. & Eling, W. M. C. Circulating tumour necrosis factor α is not involved in the development of cerebral malaria in _Plasmodium berghei_-infected C57Bl mice. Parasite Immunol.19, 571–577 (1997). ArticleCASPubMed Google Scholar
Belnoue, E. et al. On the pathogenic role of brain-sequestered αβ CD8+ T cells in experimental cerebral malaria. J. Immunol.169, 6369–6375 (2002). ArticleCASPubMed Google Scholar
Potter, S., Chaudhri, G., Hansen, A. & Hunt, N. H. Fas and perforin contribute to the pathogenesis of murine cerebral malaria. Redox Rep.4, 333–335 (1999). ArticleCASPubMed Google Scholar
Nitcheu, J. et al. Perforin-dependent brain-infiltrating cytotoxic CD8+ T lymphocytes mediate experimental cerebral malaria pathogenesis. J. Immunol.170, 2221–2228 (2003). ArticleCASPubMed Google Scholar
Boubou, M. I. et al. T cell response in malaria pathogenesis: selective increase in T cells carrying the TCR Vβ8 during experimental cerebral malaria. Int. Immunol.11, 1553–1562 (1999). ArticleCASPubMed Google Scholar
Belnoue, E. et al. Chemokine receptor CCR2 is not essential for the development of experimental cerebral malaria. Infect. Immun.71, 3648–3651 (2003). ArticleCASPubMedPubMed Central Google Scholar
Lou, J., Dayer, J. M., Grau, G. E. & Burger, D. Direct cell/cell contact with stimulated T lymphocytes induces the expression of cell adhesion molecules and cytokines by human brain microvascular endothelial cells. Eur. J. Immunol.26, 3107–3113 (1996). ArticleCASPubMed Google Scholar
Chang, W. L. et al. CD8+-T-cell depletion ameliorates circulatory shock in _Plasmodium berghei_-infected mice. Infect. Immun.69, 7341–7348 (2001). ArticleCASPubMedPubMed Central Google Scholar
Marsh, K., English, M. & Crawley, J. The pathogenesis of severe malaria in African children. Ann. Trop. Med. Parasitol.90, 395–402 (1996). This paper outlines the importance of metabolic acidosis in severe disease. ArticleCASPubMed Google Scholar
Fried, M. & Duffy, P. E. Adherence of Plasmodium falciparum to chondroitin sulfate A in the human placenta. Science272, 1502–1504 (1996). ArticleCASPubMed Google Scholar
Jerusalem, C. et al. Comparative clinical and experimental study on the pathogenesis of cerebral malaria. Contrib. Microbiol. Immunol.7, 130–138 (1983). CASPubMed Google Scholar
Ordi, J. et al. Massive chronic intervillositis of the placenta associated with malarial infection. Am. J. Surg. Pathol.22, 1006–1011 (1998). ArticleCASPubMed Google Scholar
Rogerson, S. J. et al. Placental monocyte infiltrates in response to Plasmodium falciparum malaria infection and their association with adverse pregnancy outcomes. Am. J. Trop. Med. Hyg.68, 115–119 (2003). ArticlePubMed Google Scholar
McElroy, P. D. et al. Effect of Plasmodium falciparum parasitemia density on hemoglobin concentrations among full-term, normal birth weight children in western Kenya, IV. The Asembo Bay Cohort Project. Am. J. Trop. Med. Hyg.62, 504–512 (2000). ArticleCASPubMed Google Scholar
Jakeman, G. N., Saul, A., Hogarth, W. L. & Collins, W. E. Anaemia of acute malaria infections in non-immune patients primarily results from destruction of uninfected erythrocytes. Parasitology119, 127–133 (1999). This is a retrospective analysis of neurosyphilis-management data sets, and it shows that experimentally induced malaria leads to anaemia of low parasite burden, owing to loss of uninfected (non-parasitized) RBCs. ArticlePubMed Google Scholar
Price, R. N. et al. Factors contributing to anemia after uncomplicated falciparum malaria. Am. J. Trop. Med. Hyg.65, 614–622 (2001). ArticleCASPubMed Google Scholar
Egan, A. F., Fabucci, M. E., Saul, A., Kaslow, D. C. & Miller, L. H. Aotus New World monkeys: model for studying malaria-induced anemia. Blood99, 3863–3866 (2002). ArticleCASPubMed Google Scholar
Jones, T. R. et al. Anemia in parasite- and recombinant protein-immunized Aotus monkeys infected with Plasmodium falciparum. Am. J. Trop. Med. Hyg.66, 672–679 (2002). References 97 and 98 show that severe anaemia develops in the preclinical model in whichAotusspp. monkeys are challenged withP. falciparumfollowing effective vaccination with blood-stage parasite antigens. ArticlePubMed Google Scholar
Kitchen, S. F. in Malariology (ed. Boyd, M. F.) 995–1016 (Saunders, Philadelphia, 1949). Google Scholar
Collins, W. E., Jeffery, G. M. & Roberts, J. M. A retrospective examination of anemia during infection of humans with Plasmodium vivax. Am. J. Trop. Med. Hyg.68, 410–412 (2003). ArticlePubMed Google Scholar
Looareesuwan, S. et al. Erythrocyte survival in severe falciparum malaria. Acta Trop.48, 372–373 (1991). Article Google Scholar
Biemba, G., Gordeuk, V. R., Thuma, P. E., Mabeza, G. F. & Weiss, G. Prolonged macrophage activation and persistent anaemia in children with complicated malaria. Trop. Med. Int. Health3, 60–65 (1998). ArticleCASPubMed Google Scholar
Biemba, G., Gordeuk, V. R., Thuma, P. & Weiss, G. Markers of inflammation in children with severe malarial anaemia. Trop. Med. Int. Health5, 256–262 (2000). ArticlePubMed Google Scholar
Abdalla, S. H. Peripheral blood and bone marrow leucocytes in Gambian children with malaria: numerical changes and evaluation of phagocytosis. Ann. Trop. Paediatr.8, 250–258 (1988). ArticleCASPubMed Google Scholar
La Raja, M. Erythrophagocytosis by peripheral monocytes in Plasmodium falciparum malaria. Haematologica87, EIM14 (2002). PubMed Google Scholar
Erhart, L. M. et al. Hematologic and clinical indices of malaria in a semi-immune population of western Thailand. Am. J. Trop. Med. Hyg.70, 8–14 (2004). ArticlePubMed Google Scholar
Kurtzhals, J. A. et al. Low plasma concentrations of interleukin 10 in severe malarial anaemia compared with cerebral and uncomplicated malaria. Lancet351, 1768–1772 (1998). ArticleCASPubMed Google Scholar
Othoro, C. et al. A low interleukin-10 tumor necrosis factor-α ratio is associated with malaria anemia in children residing in a holoendemic malaria region in western Kenya. J. Infect. Dis.179, 279–282 (1999). ArticleCASPubMed Google Scholar
Hirunpetcharat, C., Finkelman, F., Clark, I. A. & Good, M. F. Malaria parasite-specific TH1-like T cells simultaneously reduce parasitemia and promote disease. Parasite Immunol.21, 319–329 (1999). ArticleCASPubMed Google Scholar
Kurtzhals, J. A. et al. Reversible suppression of bone marrow response to erythropoietin in Plasmodium falciparum malaria. Br. J. Haematol.97, 169–174 (1997). ArticleCASPubMed Google Scholar
Villeval, J. L., Lew, A. & Metcalf, D. Changes in hemopoietic and regulator levels in mice during fatal or nonfatal malarial infections. I. Erythropoietic populations. Exp. Parasitol.71, 364–374 (1990). ArticleCASPubMed Google Scholar
Chang, K. H., Tam, M. & Stevenson, M. M. Inappropriately low reticulocytosis in severe malarial anemia correlates with suppression in the development of late erythroid precursors. Blood103, 3727–3735 (2004). ArticleCASPubMed Google Scholar
Chang, K. H. & Stevenson, M. M. Malarial anaemia: mechanisms and implications of insufficient erythropoiesis during blood-stage malaria. Int. J. Parasitol.34, 1501–1516 (2004). ArticleCASPubMed Google Scholar
McDevitt, M. A., Xie, J., Gordeuk, V. & Bucala, R. The anemia of malaria infection: role of inflammatory cytokines. Curr. Hematol. Rep.3, 97–106 (2004). PubMed Google Scholar
Rudin, W., Quesniaux, V., Favre, N. & Bordmann, G. Malaria toxins from P. chabaudi chabaudi AS and P. berghei ANKA cause dyserythropoiesis in C57BL/6 mice. Parasitology115, 467–474 (1997). ArticleCASPubMed Google Scholar
Christophers, S. R. The mechanism of immunity against malaria in communities living under hyperendemic conditions. Indian J. Med. Res.12, 273–294 (1924). Google Scholar
Sinton, J. A. A summary of our present knowledge of the mechanism of immunity in malaria. J. Malaria Inst. India2, 71–83 (1939). Google Scholar
McGregor, I. A., Giles, H. M., Walters, J. H., Davies, A. H. & Pearson, F. A. Effects of heavy and repeated malarial infections on Gambian infants and children. Br. Med. J.2, 686–692 (1956). ArticleCASPubMedPubMed Central Google Scholar
Molineaux, L., Trauble, M., Collins, W. E., Jeffery, G. M. & Dietz, K. Malaria therapy reinoculation data suggest individual variation of an innate immune response and independent acquisition of antiparasitic and antitoxic immunities. Trans. R. Soc. Trop. Med. Hyg.96, 205–209 (2002). ArticleCASPubMed Google Scholar
Gupta, S., Snow, R. W., Donnelly, C. A., Marsh, K. & Newbold, C. Immunity to non-cerebral severe malaria is acquired after one or two infections. Nature Med.5, 340–343 (1999). References 117–121 elucidate that antitoxic immunity precedes, and is dissociable from, antiparasite immunity and that it protects hosts after only a few infections. ArticleCASPubMed Google Scholar
Polley, S. D. et al. Human antibodies to recombinant protein constructs of Plasmodium falciparum apical membrane antigen 1 (AMA1) and their associations with protection from malaria. Vaccine23, 718–728 (2004). ArticleCASPubMed Google Scholar
Mackintosh, C. L., Beeson, J. G. & Marsh, K. Clinical features and pathogenesis of severe malaria. Trends Parasitol.20, 597–603 (2004). ArticleCASPubMed Google Scholar
Perraut, R. B. et al. Differential antibody responses to Plasmodium falciparum glycosylphosphatidylinositol anchors in patients with cerebral and mild malaria. Microbes Infect.7, 682–687 (2005). ArticleCASPubMed Google Scholar
Hudson Keenihan, S. N. et al. Age-dependent impairment of IgG responses to glycosylphosphatidylinositol with equal exposure to Plasmodium falciparum among Javanese migrants to Papua, Indonesia. Am. J. Trop. Med. Hyg.69, 36–41 (2003). ArticleCASPubMed Google Scholar
Boutlis, C. S. et al. Antibodies to Plasmodium falciparum glycosylphosphatidylinositols: inverse association with tolerance of parasitemia in Papua New Guinean children and adults. Infect. Immun.70, 5052–5057 (2002). ArticleCASPubMedPubMed Central Google Scholar
Alonso, P. L. et al. Efficacy of the RTS,S/AS02A vaccine against Plasmodium falciparum infection and disease in young African children: randomised controlled trial. Lancet364, 1411–1420 (2004). ArticleCASPubMed Google Scholar
Smith, J. D. & Deitsch, K. W. Pregnancy-associated malaria and the prospects for syndrome-specific antimalaria vaccines. J. Exp. Med.200, 1093–1097 (2004). ArticleCASPubMedPubMed Central Google Scholar
Schofield, L., Hewitt, M. C., Evans, K., Siomos, M. A. & Seeberger, P. H. Synthetic GPI as a candidate anti-toxic vaccine in a model of malaria. Nature418, 785–789 (2002). This paper shows a causal role for GPI in the pathogenesis of malaria in rodents, and it provides proof of principle for the development of an antitoxic vaccine against malaria. ArticleCASPubMed Google Scholar
Kwiatkowski, D. TNF-inducing malaria toxin: a sheep in wolf's clothing? Ann. Trop. Med. Parasitol.87, 613–616 (1993). ArticleCASPubMed Google Scholar
Kwiatkowski, D. Genetic susceptibility to malaria getting complex. Curr. Opin. Genet. Dev.10, 320–324 (2000). ArticleCASPubMed Google Scholar
Lou, J., Lucas, R. & Grau, G. E. Pathogenesis of cerebral malaria: recent experimental data and possible applications for humans. Clin. Microbiol. Rev.14, 810–820 (2001). ArticleCASPubMedPubMed Central Google Scholar