Interferons, immunity and cancer immunoediting (original) (raw)
Burnet, F. M. Cancer: a biological approach. III. Viruses associated with neoplastic conditions. IV. Practical applications. Br. Med. J.1, 841–847 (1957). CASPubMedPubMed Central Google Scholar
Thomas, L. in Cellular and Humoral Aspects of the Hypersensitive States (ed. Lawrence, H. S.) 529–532 (Hoeber–Harper, New York, 1959). Google Scholar
Dunn, G. P., Bruce, A. T., Ikeda, H., Old, L. J. & Schreiber, R. D. Cancer immunoediting: from immunosurveillance to tumor escape. Nature Immunol.3, 991–998 (2002). The first review of the concept of cancer immunoediting, with a focus on the historical evolution of the concept. CAS Google Scholar
Dunn, G. P., Old, L. J. & Schreiber, R. D. The three Es of cancer immunoediting. Annu. Rev. Immunol.22, 329–360 (2004). A comprehensive review of the concept of cancer immunoediting, including extensive discussion of evidence that cancer immunoediting also occurs in humans. CASPubMed Google Scholar
Dunn, G. P., Old, L. J. & Schreiber, R. D. The immunobiology of cancer immunosurveillance and immunoediting. Immunity21, 137–148 (2004). CASPubMed Google Scholar
Shankaran, V. et al. IFNγ and lymphocytes prevent primary tumour development and shape tumour immunogenicity. Nature410, 1107–1111 (2001). Reveals the dual function — both host protective and tumour sculpting — of cancer immunoediting. CASPubMed Google Scholar
Smyth, M. J., Dunn, G. P. & Schreiber, R. D. Cancer immunosurveillance and immunoediting: the roles of immunity in suppressing tumor development and shaping tumor immunogenicity. Adv. Immunol.90, 1–50 (2006). CASPubMed Google Scholar
Hanahan, D. & Weinberg, R. A. The hallmarks of cancer. Cell100, 57–70 (2000). A seminal review that discusses the essential hallmarks of cancer. CASPubMed Google Scholar
Dunn, G. P. et al. A critical function for type I interferons in cancer immunoediting. Nature Immunol.6, 722–729 (2005). Describes the host-protective and tumour-sculpting activities of type I IFNs in cancer immunoediting. CAS Google Scholar
Takeda, K. et al. Critical role for tumor necrosis factor-related apoptosis-inducing ligand in immune surveillance against tumor development. J. Exp. Med.195, 161–169 (2002). Reveals an overlapping role for TRAIL and IFNγ in cancer immunoediting. CASPubMedPubMed Central Google Scholar
Crowe, N. Y., Smyth, M. J. & Godfrey, D. I. A critical role for natural killer T cells in immunosurveillance of methylcholanthrene-induced sarcomas. J. Exp. Med.196, 119–127 (2002). Demonstrates the importance of NKT cells that express a semi-invariant T-cell receptor containing Jα281 and their IFNγ-producing capacity in cancer immunoediting. CASPubMedPubMed Central Google Scholar
Decker, T., Muller, M. & Stockinger, S. The Yin and Yang of type I interferon activity in bacterial infection. Nature Rev. Immunol.5, 675–687 (2005). CAS Google Scholar
Berenson, L. S., Ota, N. & Murphy, K. M. Issues in T-helper 1 development — resolved and unresolved. Immunol. Rev.202, 157–174 (2004). CASPubMed Google Scholar
Bach, E. A., Aguet, M. & Schreiber, R. D. The IFNγ receptor: a paradigm for cytokine receptor signaling. Annu. Rev. Immunol.15, 563–591 (1997). CASPubMed Google Scholar
Boehm, U., Klamp, T., Groot, M. & Howard, J. C. Cellular responses to interferon-γ. Annu. Rev. Immunol.15, 749–795 (1997). CASPubMed Google Scholar
Stark, G. R., Kerr, I. M., Williams, B. R., Silverman, R. H. & Schreiber, R. D. How cells respond to interferons. Annu. Rev. Biochem.67, 227–264 (1998). ArticleCASPubMed Google Scholar
Dighe, A. S., Richards, E., Old, L. J. & Schreiber, R. D. Enhanced in vivo growth and resistance to rejection of tumor cells expressing dominant negative IFNγ receptors. Immunity1, 447–456 (1994). CASPubMed Google Scholar
Kaplan, D. H. et al. Demonstration of an interferon γ-dependent tumor surveillance system in immunocompetent mice. Proc. Natl Acad. Sci. USA95, 7556–7561 (1998). Original description of the importance of IFNγ in cancer immunosurveillance. CASPubMedPubMed Central Google Scholar
Street, S. E., Cretney, E. & Smyth, M. J. Perforin and interferon-γ activities independently control tumor initiation, growth, and metastasis. Blood97, 192–197 (2001). CASPubMed Google Scholar
Street, S. E., Trapani, J. A., MacGregor, D. & Smyth, M. J. Suppression of lymphoma and epithelial malignancies effected by interferon-γ. J. Exp. Med.196, 129–134 (2002). Reveals that the functions of IFNγ and perforin in surveillance of spontaneous malignancies are not completely overlapping. CASPubMedPubMed Central Google Scholar
Enzler, T. et al. Deficiencies of GM-CSF and interferon-γ link inflammation and cancer. J. Exp. Med.197, 1213–1219 (2003). CASPubMedPubMed Central Google Scholar
Gao, Y. et al. γδ T cells provide an early source of interferon-γ in tumor immunity. J. Exp. Med.198, 433–442 (2003). Shows the importance of IFNγ production by γδ T cells in cancer immunosurveillance. CASPubMedPubMed Central Google Scholar
Tripp, C. S., Wolf, S. F. & Unanue, E. R. Interleukin 12 and tumor necrosis factor α are costimulators of interferon-γ production by natural killer cells in severe combined immunodeficiency mice with listeriosis, and interleukin 10 is a physiologic antagonist. Proc. Natl Acad. Sci. USA90, 3725–3729 (1993). CASPubMedPubMed Central Google Scholar
Yang, J., Murphy, T. L., Ouyang, W. & Murphy, K. M. Induction of interferon-γ production in TH1 CD4+ T cells: evidence for two distinct pathways for promoter activation. Eur. J. Immunol.29, 548–555 (1999). CASPubMed Google Scholar
Nastala, C. L. et al. Recombinant IL-12 administration induces tumor regression in association with IFN-γ production. J. Immunol.153, 1697–1706 (1994). CASPubMed Google Scholar
Noguchi, Y., Jungbluth, A., Richards, E. & Old, L. J. Effect of interleukin 12 on tumor induction by 3-methylcholanthrene. Proc. Natl Acad. Sci. USA93, 11798–11801 (1996). CASPubMedPubMed Central Google Scholar
Smyth, M. J., Crowe, N. Y. & Godfrey, D. I. NK cells and NKT cells collaborate in host protection from methylcholanthrene-induced fibrosarcoma. Int. Immunol.13, 459–463 (2001). CASPubMed Google Scholar
Gresser, I., Bourali, C., Levy, J. P., Fontaine-Brouty-Boye, D. & Thomas, M. T. Increased survival in mice inoculated with tumor cells and treated with interferon preparations. Proc. Natl Acad. Sci. USA63, 51–57 (1969). CASPubMedPubMed Central Google Scholar
Gresser, I., Maury, C. & Brouty-Boye, D. Mechanism of the antitumour effect of interferon in mice. Nature239, 167–168 (1972). CASPubMed Google Scholar
Belardelli, F., Ferrantini, M., Proietti, E. & Kirkwood, J. M. Interferon-α in tumor immunity and immunotherapy. Cytokine Growth Factor Rev.13, 119–134 (2002). CASPubMed Google Scholar
Reid, L. M. et al. Influence of anti-mouse interferon serum on the growth and metastasis of tumor cells persistently infected with virus and of human prostatic tumors in athymic nude mice. Proc. Natl Acad. Sci. USA78, 1171–1175 (1981). CASPubMedPubMed Central Google Scholar
Gresser, I., Belardelli, F., Maury, C., Maunoury, M. T. & Tovey, M. G. Injection of mice with antibody to interferon enhances the growth of transplantable murine tumors. J. Exp. Med.158, 2095–2107 (1983). CASPubMed Google Scholar
Picaud, S., Bardot, B., De Maeyer, E. & Seif, I. Enhanced tumor development in mice lacking a functional type I interferon receptor. J. Interferon Cytokine Res.22, 457–462 (2002). CASPubMed Google Scholar
Sheehan, K. C. F. et al. Blocking monoclonal antibodies specific for mouse IFN-α/β receptor subunit 1 (IFNAR1) from mice immunized by in vivo hydrodynamic transfection. J. Interferon Cytokine Res.26, 809–819 (2006). Google Scholar
Hahn, W. C. & Weinberg, R. A. Rules for making human tumor cells. N. Engl. J. Med.347, 1593–1603 (2002). CASPubMed Google Scholar
Vogelstein, B. & Kinzler, K. W. Cancer genes and the pathways they control. Nature Med.10, 789–799 (2004). CASPubMed Google Scholar
Wheelock, E. F., Weinhold, K. J. & Levich, J. The tumor dormant state. Adv. Cancer Res.34, 107–140 (1981). CASPubMed Google Scholar
Uhr, J. W., Tucker, T., May, R. D., Siu, H. & Vitetta, E. S. Cancer dormancy: studies of the murine BCL1 lymphoma. Cancer Res.51, 5045s–5053s (1991). CASPubMed Google Scholar
Smyth, M. J. et al. NKG2D function protects the host from tumor initiation. J. Exp. Med.202, 583–588 (2005). Provides evidence that supports the idea of perforin-dependent cancer immunoediting of NKG2D ligands. CASPubMedPubMed Central Google Scholar
Smyth, M. J. et al. Differential tumor surveillance by natural killer (NK) and NKT cells. J. Exp. Med.191, 661–668 (2000). CASPubMedPubMed Central Google Scholar
Willimsky, G. & Blankenstein, T. Sporadic immunogenic tumours avoid destruction by inducing T-cell tolerance. Nature437, 141–146 (2005). CASPubMed Google Scholar
Dunn, G. P., Sheehan, K. C., Old, L. J. & Schreiber, R. D. IFN unresponsiveness in LNCaP cells due to the lack of JAK1 gene expression. Cancer Res.65, 3447–3453 (2005). CASPubMed Google Scholar
Sanda, M. G. et al. Molecular characterization of defective antigen processing in human prostate cancer. J. Natl Cancer Inst.87, 280–285 (1995). CASPubMed Google Scholar
Wong, L. H. et al. Interferon-resistant human melanoma cells are deficient in ISGF3 components, STAT1, STAT2, and p48-ISGF3γ. J. Biol. Chem.272, 28779–28785 (1997). CASPubMed Google Scholar
Xi, S. et al. Decreased STAT1 expression by promoter methylation in squamous cell carcinogenesis. J. Natl Cancer Inst.98, 181–189 (2006). CASPubMed Google Scholar
Wellbrock, C. et al. STAT5 contributes to interferon resistance of melanoma cells. Curr. Biol.15, 1629–1639 (2005). CASPubMed Google Scholar
Seliger, B., Maeurer, M. J. & Ferrone, S. Antigen-processing machinery breakdown and tumor growth. Immunol. Today21, 455–464 (2000). CASPubMed Google Scholar
Algarra, I., Cabrera, T. & Garrido, F. The HLA crossroad in tumor immunology. Hum. Immunol.61, 65–73 (2000). CASPubMed Google Scholar
Marincola, F. M., Jaffee, E. M., Hicklin, D. J. & Ferrone, S. Escape of human solid tumors from T-cell recognition: molecular mechanisms and functional significance. Adv. Immunol.74, 181–273 (2000). CASPubMed Google Scholar
Li, Z. et al. Expression of SOCS-1, suppressor of cytokine signalling-1, in human melanoma. J. Invest. Dermatol.123, 737–745 (2004). CASPubMed Google Scholar
Dighe, A. S., Farrar, M. A. & Schreiber, R. D. Inhibition of cellular responsiveness to interferon-γ (IFNγ) induced by overexpression of inactive forms of the IFNγ receptor. J. Biol. Chem.268, 10645–10653 (1993). CASPubMed Google Scholar
Coughlin, C. M. et al. Tumor cell responses to IFNγ affect tumorigenicity and response to IL-12 therapy and antiangiogenesis. Immunity9, 25–34 (1998). CASPubMed Google Scholar
Beatty, G. & Paterson, Y. IFN-γ-dependent inhibition of tumor angiogenesis by tumor-infiltrating CD4+ T cells requires tumor responsiveness to IFN-γ. J. Immunol.166, 2276–2282 (2001). CASPubMed Google Scholar
Bui, J. D., Carayannopoulos, L. N., Lanier, L. L., Yokoyama, W. M. & Schreiber, R. D. IFN-dependent down-regulation of the NKG2D ligand H60 on tumors. J. Immunol.176, 905–913 (2006). CASPubMed Google Scholar
Chin, Y. E. et al. Cell growth arrest and induction of cyclin-dependent kinase inhibitor p21WAF1/CIP1 mediated by STAT1. Science272, 719–722 (1996). CASPubMed Google Scholar
Bromberg, J. F., Horvath, C. M., Wen, Z., Schreiber, R. D. & Darnell, J. E. Jr. Transcriptionally active Stat1 is required for the antiproliferative effects of both interferon α and interferon γ. Proc. Natl Acad. Sci. USA93, 7673–7678 (1996). CASPubMedPubMed Central Google Scholar
Chin, Y. E., Kitagawa, M., Kuida, K., Flavell, R. A. & Fu, X. Y. Activation of the STAT signaling pathway can cause expression of caspase 1 and apoptosis. Mol. Cell. Biol.17, 5328–5337 (1997). CASPubMedPubMed Central Google Scholar
Xu, X., Fu, X. Y., Plate, J. & Chong, A. S. IFN-γ induces cell growth inhibition by Fas-mediated apoptosis: requirement of STAT1 protein for up-regulation of Fas and FasL expression. Cancer Res.58, 2832–2837 (1998). CASPubMed Google Scholar
Meng, R. D. & El-Deiry, W. S. p53-independent upregulation of KILLER/DR5 TRAIL receptor expression by glucocorticoids and interferon-γ. Exp. Cell Res.262, 154–169 (2001). CASPubMed Google Scholar
Luster, A. D. & Leder, P. IP-10, a C-X-C-chemokine, elicits a potent thymus-dependent antitumor response in vivo. J. Exp. Med.178, 1057–1065 (1993). CASPubMed Google Scholar
Mumberg, D. et al. CD4+ T cells eliminate MHC class II-negative cancer cells in vivo by indirect effects of IFN-γ. Proc. Natl Acad. Sci. USA96, 8633–8638 (1999). CASPubMedPubMed Central Google Scholar
Fallarino, F. & Gajewski, T. F. Differentiation of antitumor CTL in vivo requires host expression of Stat1. J. Immunol.163, 4109–4113 (1999). CASPubMed Google Scholar
Kacha, A. K., Fallarino, F., Markiewicz, M. A. & Gajewski, T. F. Spontaneous rejection of poorly immunogenic P1.HTR tumors by Stat6-deficient mice. J. Immunol.165, 6024–6028 (2000). CASPubMed Google Scholar
Nishikawa, H. et al. IFN-γ controls the generation/activation of CD4+CD25+ regulatory T cells in antitumor immune response. J. Immunol.175, 4433–4440 (2005). Illustrates the important influence of IFNγ on TReg-cell-dependent suppression of cancer immunosurveillance. CASPubMed Google Scholar
Nishikawa, H. et al. CD4+ CD25+ T cells responding to serologically defined autoantigens suppress antitumor immune responses. Proc. Natl Acad. Sci. USA100, 10902–10906 (2003). CASPubMedPubMed Central Google Scholar
de Visser, K. E., Eichten, A. & Coussens, L. M. Paradoxical roles of the immune system during cancer development. Nature Rev. Cancer6, 24–37 (2006). CAS Google Scholar
Kawanishi, S., Hiraku, Y., Pinlaor, S. & Ma, N. Oxidative and nitrative DNA damage in animals and patients with inflammatory diseases in relation to inflammation-related carcinogenesis. Biol. Chem.387, 365–372 (2006). CASPubMed Google Scholar
Langowski, J. L. et al. IL-23 promotes tumour incidence and growth. Nature442, 461–465 (2006). Details the importance of the IL-12 and IL-23 cytokine milieu in determining the balance between the tumour-promoting and tumour-suppressive actions of the antitumour immune response. And begins to synthesize, into one process, the seemingly contradictory processes of tumour-promoting inflammatory reactions and host-protective immune responses. CASPubMed Google Scholar
Moore, R. J. et al. Mice deficient in tumor necrosis factor-α are resistant to skin carcinogenesis. Nature Med.5, 828–831 (1999). CASPubMed Google Scholar
Hanada, T. et al. IFNγ-dependent, spontaneous development of colorectal carcinomas in SOCS1-deficient mice. J. Exp. Med.203, 1391–1397 (2006). CASPubMedPubMed Central Google Scholar
Brassard, D. L., Grace, M. J. & Bordens, R. W. Interferon-α as an immunotherapeutic protein. J. Leukoc. Biol.71, 565–581 (2002). CASPubMed Google Scholar
Belardelli, F., Gresser, I., Maury, C. & Maunoury, M. T. Antitumor effects of interferon in mice injected with interferon-sensitive and interferon-resistant Friend leukemia cells. I. Int. J. Cancer30, 813–820 (1982). CASPubMed Google Scholar
Lesinski, G. B. et al. The antitumor effects of IFN-α are abrogated in a STAT1-deficient mouse. J. Clin. Invest.112, 170–180 (2003). CASPubMedPubMed Central Google Scholar
Bogdan, C., Mattner, J. & Schleicher, U. The role of type I interferons in non-viral infections. Immunol. Rev.202, 33–48 (2004). CASPubMed Google Scholar
Kerbel, R. & Folkman, J. Clinical translation of angiogenesis inhibitors. Nature Rev. Cancer2, 727–739 (2002). CAS Google Scholar
Takaoka, A. et al. Integration of interferon-α/β signalling to p53 responses in tumour suppression and antiviral defence. Nature424, 516–523 (2003). CASPubMed Google Scholar
Silverman, R. H. Implications for RNase L in prostate cancer biology. Biochemistry42, 1805–1812 (2003). CASPubMed Google Scholar
Carpten, J. et al. Germline mutations in the ribonuclease L gene in families showing linkage with HPC1. Nature Genet.30, 181–184 (2002). CASPubMed Google Scholar
Casey, G. et al. RNASEL Arg462Gln variant is implicated in up to 13% of prostate cancer cases. Nature Genet.32, 581–583 (2002). CASPubMed Google Scholar
Urisman, A. et al. Identification of a novel γ retrovirus in prostate tumors of patients homozygous for R462Q RNASEL variant. PLoS Pathog.2, e25 (2006). PubMedPubMed Central Google Scholar
Kirkwood, J. M. et al. Interferon α-2b adjuvant therapy of high-risk resected cutaneous melanoma: the Eastern Cooperative Oncology Group Trial EST 1684. J. Clin. Oncol.14, 7–17 (1996). CASPubMed Google Scholar
Gogas, H. et al. Prognostic significance of autoimmunity during treatment of melanoma with interferon. N. Engl. J. Med.354, 709–718 (2006). CASPubMed Google Scholar
Gleave, M. E. et al. Interferon γ-1b compared with placebo in metastatic renal-cell carcinoma. Canadian Urologic Oncology Group. N. Engl. J. Med.338, 1265–1271 (1998). CASPubMed Google Scholar
Wiesenfeld, M. et al. Controlled clinical trial of interferon-γ as postoperative surgical adjuvant therapy for colon cancer. J. Clin. Oncol.13, 2324–2329 (1995). CASPubMed Google Scholar
Jett, J. R. et al. Phase III trial of recombinant interferon γ in complete responders with small-cell lung cancer. J. Clin. Oncol.12, 2321–2326 (1994). CASPubMed Google Scholar
Windbichler, G. H. et al. Interferon-γ in the first-line therapy of ovarian cancer: a randomized phase III trial. Br. J. Cancer82, 1138–1144 (2000). CASPubMedPubMed Central Google Scholar
Giannopoulos, A. et al. The immunomodulating effect of interferon-γ intravesical instillations in preventing bladder cancer recurrence. Clin. Cancer Res.9, 5550–5558 (2003). CASPubMed Google Scholar
Lienard, D., Eggermont, A. M., Kroon, B. B., Schraffordt Koops, H. & Lejeune, F. J. Isolated limb perfusion in primary and recurrent melanoma: indications and results. Semin. Surg. Oncol.14, 202–209 (1998). CASPubMed Google Scholar
Gasser, S. & Raulet, D. H. The DNA damage response arouses the immune system. Cancer Res.66, 3959–3962 (2006). CASPubMed Google Scholar
Zhang, J. J. et al. Two contact regions between Stat1 and CBP/p300 in interferon γ signaling. Proc. Natl Acad. Sci. USA93, 15092–15096 (1996). CASPubMedPubMed Central Google Scholar
DaFonseca, C. J., Shu, F. & Zhang, J. J. Identification of two residues in MCM5 critical for the assembly of MCM complexes and Stat1-mediated transcription activation in response to IFN-γ. Proc. Natl Acad. Sci. USA98, 3034–3039 (2001). CASPubMedPubMed Central Google Scholar
Schreiber, G. H. & Schreiber, R. D. in The Cytokine Handbook 4th edn (eds Thomson, A. & Lotze, M.) 567–601 (Academic, London, 2003). Google Scholar
Alexander, W. S. et al. SOCS1 is a critical inhibitor of interferon γ signaling and prevents the potentially fatal neonatal actions of this cytokine. Cell98, 597–608 (1999). CASPubMed Google Scholar
Marine, J. C. et al. SOCS1 deficiency causes a lymphocyte-dependent perinatal lethality. Cell98, 609–616 (1999). CASPubMed Google Scholar
Liu, B. et al. PIAS1 selectively inhibits interferon-inducible genes and is important in innate immunity. Nature Immunol.5, 891–898 (2004). CAS Google Scholar
Platanias, L. C. Mechanisms of type-I- and type-II-interferon-mediated signalling. Nature Rev. Immunol.5, 375–386 (2005). CAS Google Scholar
Pestka, S., Krause, C. D. & Walter, M. R. Interferons, interferon-like cytokines, and their receptors. Immunol. Rev.202, 8–32 (2004). CASPubMed Google Scholar
Karaghiosoff, M. et al. Partial impairment of cytokine responses in Tyk2-deficient mice. Immunity13, 549–560 (2000). CASPubMed Google Scholar
Shimoda, K. et al. Tyk2 plays a restricted role in IFNα signaling, although it is required for IL-12-mediated T cell function. Immunity13, 561–571 (2000). CASPubMed Google Scholar
Girardi, M. et al. Regulation of cutaneous malignancy by γδ T cells. Science294, 605–609 (2001). CASPubMed Google Scholar
Girardi, M. et al. The distinct contributions of murine T cell receptor (TCR)γδ+ and TCRαβ+ T cells to different stages of chemically induced skin cancer. J. Exp. Med.198, 747–755 (2003). CASPubMedPubMed Central Google Scholar
Smyth, M. J. et al. Perforin-mediated cytotoxicity is critical for surveillance of spontaneous lymphoma. J. Exp. Med.192, 755–760 (2000). CASPubMedPubMed Central Google Scholar
Hayashi, T. & Faustman, D. L. Development of spontaneous uterine tumors in low molecular mass polypeptide-2 knockout mice. Cancer Res.62, 24–27 (2002). CASPubMed Google Scholar
Nishikawa, H. et al. Accelerated chemically induced tumor development mediated by CD4+CD25+ regulatory T cells in wild-type hosts. Proc. Natl Acad. Sci. USA102, 9253–9257 (2005). CASPubMedPubMed Central Google Scholar
Mitra-Kaushik, S., Harding, J., Hess, J., Schreiber, R. & Ratner, L. Enhanced tumorigenesis in HTLV-1 _tax_-transgenic mice deficient in interferon-γ. Blood104, 3305–3311 (2004). CASPubMed Google Scholar
Street, S. E. et al. Innate immune surveillance of spontaneous B cell lymphomas by natural killer cells and γδ T cells. J. Exp. Med.199, 879–884 (2004). CASPubMedPubMed Central Google Scholar
van den Broek, M. F. et al. Decreased tumor surveillance in perforin-deficient mice. J. Exp. Med.184, 1781–1790 (1996). CASPubMed Google Scholar
Cretney, E. et al. Increased susceptibility to tumor initiation and metastasis in TNF-related apoptosis-inducing ligand-deficient mice. J. Immunol.168, 1356–1361 (2002). CASPubMed Google Scholar
Zerafa, N. et al. TRAIL deficiency accelerates hematological malignancies. J. Immunol.175, 5586–5590 (2005). CASPubMed Google Scholar
Hayakawa, Y., Rovero, S., Forni, G. & Smyth, M. J. α-Galactosylceramide (KRN7000) suppression of chemical- and oncogene-dependent carcinogenesis. Proc. Natl Acad. Sci. USA100, 9464–9469 (2003). CASPubMedPubMed Central Google Scholar
Barchet, W., Blasius, A., Cella, M. & Colonna, M. Plasmacytoid dendritic cells: in search of their niche in immune responses. Immunol. Res.32, 75–84 (2005). CASPubMed Google Scholar
Ikeda, H., Old, L. J. & Schreiber, R. D. The roles of IFNγ in protection against tumor development and cancer immunoediting. Cytokine Growth Factor Rev.13, 95–109 (2002). CASPubMed Google Scholar
Galon, J. et al. Type, density, and location of immune cells within human colorectal tumors predict clinical outcome. Science313, 1960–1964 (2006). CASPubMed Google Scholar