Mechanisms of T cell tolerance towards the allogeneic fetus (original) (raw)
Medawar, P. B. Some immunological and endocrinological problems raised by the evolution of viviparity in vertebrates. Symp. Soc. Exp. Biol.7, 320–338 (1953). Google Scholar
Zhang, J., Chen, Z., Smith, G. N. & Croy, B. A. Natural killer cell-triggered vascular transformation: maternal care before birth? Cell. Mol. Immunol.8, 1–11 (2011). ArticlePubMed Google Scholar
Moffett, A. & Loke, C. Immunology of placentation in eutherian mammals. Nature Rev. Immunol.6, 584–594 (2006). ArticleCAS Google Scholar
Munoz-Suano, A., Kallikourdis, M., Sarris, M. & Betz, A. G. Regulatory T cells protect from autoimmune arthritis during pregnancy. J. Autoimmun.38, J103–J108 (2012). ArticleCASPubMed Google Scholar
Constantin, C. M. et al. Normal establishment of virus-specific memory CD8 T cell pool following primary infection during pregnancy. J. Immunol.179, 4383–4389 (2007). ArticleCASPubMed Google Scholar
Robbins, J. R. & Bakardjiev, A. I. Pathogens and the placental fortress. Curr. Opin. Microbiol.15, 36–43 (2012). ArticlePubMed Google Scholar
Munoz-Suano, A., Hamilton, A. B. & Betz, A. G. Gimme shelter: the immune system during pregnancy. Immunol. Rev.241, 20–38 (2011). ArticleCASPubMed Google Scholar
Taglauer, E. S., Adams Waldorf, K. M. & Petroff, M. G. The hidden maternal–fetal interface: events involving the lymphoid organs in maternal–fetal tolerance. Int. J. Dev. Biol.54, 421–430 (2010). ArticleCASPubMed Google Scholar
Nelson, J. L. The otherness of self: microchimerism in health and disease. Trends Immunol.33, 421–427 (2012). ArticleCASPubMed Google Scholar
Game, D. S. & Lechler, R. I. Pathways of allorecognition: implications for transplantation tolerance. Transpl. Immunol.10, 101–108 (2002). ArticleCASPubMed Google Scholar
Benichou, G., Valujskikh, A. & Heeger, P. S. Contributions of direct and indirect T cell alloreactivity during allograft rejection in mice. J. Immunol.162, 352–358 (1999). CASPubMed Google Scholar
Tafuri, A., Alferink, J., Moller, P., Hammerling, G. J. & Arnold, B. T cell awareness of paternal alloantigens during pregnancy. Science270, 630–633 (1995). ArticleCASPubMed Google Scholar
Erlebacher, A., Vencato, D., Price, K. A., Zhang, D. & Glimcher, L. H. Constraints in antigen presentation severely restrict T cell recognition of the allogeneic fetus. J. Clin. Invest.117, 1399–1411 (2007). This study established the Act-mOVA mating system in mice and used this system to identify the anatomical and cellular pathways that mediate the presentation of conceptus-derived antigens to maternal T cells. ArticleCASPubMed Google Scholar
Moldenhauer, L. M. et al. Cross-presentation of male seminal fluid antigens elicits T cell activation to initiate the female immune response to pregnancy. J. Immunol.182, 8080–8093 (2009). ArticleCASPubMed Google Scholar
Ehst, B. D., Ingulli, E. & Jenkins, M. K. Development of a novel transgenic mouse for the study of interactions between CD4 and CD8 T cells during graft rejection. Am. J. Transplant.3, 1355–1362 (2003). ArticleCASPubMed Google Scholar
Dakic, A. et al. Development of the dendritic cell system during mouse ontogeny. J. Immunol.172, 1018–1027 (2004). ArticleCASPubMed Google Scholar
Madeja, Z. et al. Paternal MHC expression on mouse trophoblast affects uterine vascularization and fetal growth. Proc. Natl Acad. Sci. USA108, 4012–4017 (2011). ArticleCASPubMed Google Scholar
Redline, R. W. & Lu, C. Y. Localization of fetal major histocompatibility complex antigens and maternal leukocytes in murine placenta. Implications for maternal–fetal immunological relationship. Lab. Invest.61, 27–36 (1989). CASPubMed Google Scholar
Mattsson, R., Mattsson, A., Holmdahl, R., Scheynius, A. & Van der Meide, P. H. In vivo treatment with interferon-γ during early pregnancy in mice induces strong expression of major histocompatibility complex class I and II molecules in uterus and decidua but not in extra-embryonic tissues. Biol. Reprod.46, 1176–1186 (1992). ArticleCASPubMed Google Scholar
Tilburgs, T. et al. Fetal–maternal HLA-C mismatch is associated with decidual T cell activation and induction of functional T regulatory cells. J. Reprod. Immunol.82, 148–157 (2009). ArticleCASPubMed Google Scholar
Lissauer, D., Piper, K., Goodyear, O., Kilby, M. D. & Moss, P. A. Fetal-specific CD8+ cytotoxic T cell responses develop during normal human pregnancy and exhibit broad functional capacity. J. Immunol.189, 1072–1080 (2012). ArticleCASPubMed Google Scholar
Tagliani, E. et al. Coordinate regulation of tissue macrophage and dendritic cell population dynamics by CSF-1. J. Exp. Med.208, 1901–1916 (2011). ArticleCASPubMed Google Scholar
Collins, M. K., Tay, C. S. & Erlebacher, A. Dendritic cell entrapment within the pregnant uterus inhibits immune surveillance of the maternal/fetal interface in mice. J. Clin. Invest.119, 2062–2073 (2009). This study showed that DCs are trapped within the mouse decidua, thus precluding their involvement in the presentation of conceptus-derived antigens in the uterine draining lymph nodes. CASPubMed CentralPubMed Google Scholar
Itano, A. A. et al. Distinct dendritic cell populations sequentially present antigen to CD4 T cells and stimulate different aspects of cell-mediated immunity. Immunity19, 47–57 (2003). ArticleCAS Google Scholar
Allenspach, E. J., Lemos, M. P., Porrett, P. M., Turka, L. A. & Laufer, T. M. Migratory and lymphoid-resident dendritic cells cooperate to efficiently prime naive CD4 T cells. Immunity29, 795–806 (2008). ArticleCASPubMed Google Scholar
Rieger, L. et al. Antigen-presenting cells in human endometrium during the menstrual cycle compared to early pregnancy. J. Soc. Gynecol. Investig.11, 488–493 (2004). ArticleCASPubMed Google Scholar
Volchek, M. et al. Lymphatics in the human endometrium disappear during decidualization. Hum. Reprod.25, 2455–2464 (2010). ArticlePubMed Google Scholar
Red-Horse, K. et al. Cytotrophoblast induction of arterial apoptosis and lymphangiogenesis in an in vivo model of human placentation. J. Clin. Invest.116, 2643–2652 (2006). ArticleCASPubMed Google Scholar
Tagliani, E. & Erlebacher, A. Dendritic cell function at the maternal–fetal interface. Expert Rev. Clin. Immunol.7, 593–602 (2011). ArticleCASPubMed Google Scholar
Rowe, J. H., Ertelt, J. M., Xin, L. & Way, S. S. Pregnancy imprints regulatory memory that sustains anergy to fetal antigen. Nature490, 102–106 (2012). This study demonstrates the induction of conceptus-specific induced TRegcells during mouse pregnancy. ArticleCASPubMed Google Scholar
Bizargity, P. & Bonney, E. A. Dendritic cells: a family portrait at mid-gestation. Immunology126, 565–578 (2009). ArticleCASPubMed Google Scholar
Josefowicz, S. Z., Lu, L. F. & Rudensky, A. Y. Regulatory T cells: mechanisms of differentiation and function. Annu. Rev. Immunol.30, 531–564 (2012). ArticleCASPubMed Google Scholar
Josefowicz, S. Z. et al. Extrathymically generated regulatory T cells control mucosal TH2 inflammation. Nature482, 395–399 (2012). ArticleCASPubMed Google Scholar
Aluvihare, V. R., Kallikourdis, M. & Betz, A. G. Regulatory T cells mediate maternal tolerance to the fetus. Nature Immunol.5, 266–271 (2004). Using mouse models, this study was the first to implicate a role for TRegcells in fetomaternal tolerance. ArticleCAS Google Scholar
Zenclussen, A. C. et al. Regulatory T cells induce a privileged tolerant microenvironment at the fetal–maternal interface. Eur. J. Immunol.36, 82–94 (2006). ArticleCASPubMed Google Scholar
Mjosberg, J., Berg, G., Jenmalm, M. C. & Ernerudh, J. FOXP3+ regulatory T cells and T helper 1, T helper 2, and T helper 17 cells in human early pregnancy decidua. Biol. Reprod.82, 698–705 (2010). ArticlePubMed Google Scholar
Dimova, T. et al. Maternal Foxp3 expressing CD4+ CD25+ and CD4+ CD25− regulatory T-cell populations are enriched in human early normal pregnancy decidua: a phenotypic study of paired decidual and peripheral blood samples. Am. J. Reprod. Immunol.66 (Suppl. 1), 44–56 (2011). ArticlePubMed Google Scholar
Saito, S., Nakashima, A., Shima, T. & Ito, M. Th1/Th2/Th17 and regulatory T-cell paradigm in pregnancy. Am. J. Reprod. Immunol.63, 601–610 (2010). ArticleCASPubMed Google Scholar
Toldi, G. et al. The frequency of peripheral blood CD4+ CD25high FoxP3+ and CD4+ CD25− FoxP3+ regulatory T cells in normal pregnancy and pre-eclampsia. Am. J. Reprod. Immunol.68, 175–180 (2012). ArticleCASPubMed Google Scholar
Samstein, R. M., Josefowicz, S. Z., Arvey, A., Treuting, P. M. & Rudensky, A. Y. Extrathymic generation of regulatory T cells in placental mammals mitigates maternal–fetal conflict. Cell150, 29–38 (2012). This study used mice deficient in induced TRegcells to implicate a role for these cells in fetomaternal tolerance. ArticleCASPubMed Google Scholar
Moon, J. J. et al. Quantitative impact of thymic selection on Foxp3+ and Foxp3− subsets of self-peptide/MHC class II-specific CD4+ T cells. Proc. Natl Acad. Sci. USA108, 14602–14607 (2011). ArticleCASPubMed Google Scholar
McCloskey, M. L., Curotto de Lafaille, M. A., Carroll, M. C. & Erlebacher, A. Acquisition and presentation of follicular dendritic cell-bound antigen by lymph node-resident dendritic cells. J. Exp. Med.208, 135–148 (2011). ArticleCASPubMed Google Scholar
Mincheva-Nilsson, L. & Baranov, V. The role of placental exosomes in reproduction. Am. J. Reprod. Immunol.63, 520–533 (2010). ArticleCASPubMed Google Scholar
Holland, O. J. et al. Minor histocompatibility antigens are expressed in syncytiotrophoblast and trophoblast debris: implications for maternal alloreactivity to the fetus. Am. J. Pathol.180, 256–266 (2012). ArticleCASPubMed Google Scholar
Guerin, L. R. et al. Seminal fluid regulates accumulation of FOXP3+ regulatory T cells in the preimplantation mouse uterus through expanding the FOXP3+ cell pool and CCL19-mediated recruitment. Biol. Reprod.85, 397–408 (2011). ArticleCASPubMed Google Scholar
Sharkey, D. J. et al. TGF-β mediates proinflammatory seminal fluid signaling in human cervical epithelial cells. J. Immunol.189, 1024–1035 (2012). ArticleCASPubMed Google Scholar
Shima, T. et al. Regulatory T cells are necessary for implantation and maintenance of early pregnancy but not late pregnancy in allogeneic mice. J. Reprod. Immunol.85, 121–129 (2010). ArticleCASPubMed Google Scholar
Darrasse-Jeze, G., Klatzmann, D., Charlotte, F., Salomon, B. L. & Cohen, J. L. CD4+CD25+ regulatory/suppressor T cells prevent allogeneic fetus rejection in mice. Immunol. Lett.102, 106–109 (2006). ArticlePubMed Google Scholar
Kim, J. M., Rasmussen, J. P. & Rudensky, A. Y. Regulatory T cells prevent catastrophic autoimmunity throughout the lifespan of mice. Nature Immunol.8, 191–197 (2007). ArticleCAS Google Scholar
Clark, D. A. et al. The fgl2 prothrombinase/fibroleukin gene is required for lipopolysaccharide-triggered abortions and for normal mouse reproduction. Mol. Hum. Reprod.10, 99–108 (2004). ArticleCASPubMed Google Scholar
Falcon, B. J., Cotechini, T., Macdonald-Goodfellow, S. K., Othman, M. & Graham, C. H. Abnormal inflammation leads to maternal coagulopathies associated with placental haemostatic alterations in a rat model of foetal loss. Thromb. Haemost.107, 438–447 (2012). ArticleCASPubMed Google Scholar
Erlebacher, A., Zhang, D., Parlow, A. F. & Glimcher, L. H. Ovarian insufficiency and early pregnancy loss induced by activation of the innate immune system. J. Clin. Invest.114, 39–48 (2004). ArticleCASPubMed Google Scholar
Tranguch, S. et al. FKBP52 deficiency-conferred uterine progesterone resistance is genetic background and pregnancy stage specific. J. Clin. Invest.117, 1824–1834 (2007). ArticleCASPubMed Google Scholar
Bizargity, P., Del Rio, R., Phillippe, M., Teuscher, C. & Bonney, E. A. Resistance to lipopolysaccharide-induced preterm delivery mediated by regulatory T cell function in mice. Biol. Reprod.80, 874–881 (2009). ArticleCASPubMed Google Scholar
Rowe, J. H., Ertelt, J. M., Aguilera, M. N., Farrar, M. A. & Way, S. S. Foxp3+ regulatory T cell expansion required for sustaining pregnancy compromises host defense against prenatal bacterial pathogens. Cell Host Microbe10, 54–64 (2011). ArticleCASPubMed Google Scholar
Erlebacher, A. Immune surveillance of the maternal/fetal interface: controversies and implications. Trends Endocrinol. Metab.21, 428–434 (2010). ArticleCASPubMed Google Scholar
Guleria, I. et al. A critical role for the programmed death ligand 1 in fetomaternal tolerance. J. Exp. Med.202, 231–237 (2005). ArticleCASPubMed Google Scholar
Munn, D. H. et al. Prevention of allogeneic fetal rejection by tryptophan catabolism. Science281, 1191–1193 (1998). ArticleCAS Google Scholar
Huang, L., Baban, B., Johnson, B. A. & Mellor, A. L. Dendritic cells, indoleamine 2,3 dioxygenase and acquired immune privilege. Int. Rev. Immunol.29, 133–155 (2010). ArticleCASPubMed Google Scholar
Katz, J. B., Muller, A. J. & Prendergast, G. C. Indoleamine 2,3-dioxygenase in T-cell tolerance and tumoral immune escape. Immunol. Rev.222, 206–221 (2008). ArticleCASPubMed Google Scholar
Baban, B. et al. Indoleamine 2,3-dioxygenase expression is restricted to fetal trophoblast giant cells during murine gestation and is maternal genome specific. J. Reprod. Immunol.61, 67–77 (2004). ArticleCASPubMed Google Scholar
Habicht, A. et al. A link between PDL1 and T regulatory cells in fetomaternal tolerance. J. Immunol.179, 5211–5219 (2007). ArticleCASPubMed Google Scholar
Taglauer, E. S., Yankee, T. M. & Petroff, M. G. Maternal PD-1 regulates accumulation of fetal antigen-specific CD8+ T cells in pregnancy. J. Reprod. Immunol.80, 12–21 (2009). ArticleCASPubMed Google Scholar
Svensson, L., Arvola, M., Sallstrom, M. A., Holmdahl, R. & Mattsson, R. The Th2 cytokines IL-4 and IL-10 are not crucial for the completion of allogeneic pregnancy in mice. J. Reprod. Immunol.51, 3–7 (2001). ArticleCASPubMed Google Scholar
Robertson, S. A., Care, A. S. & Skinner, R. J. Interleukin 10 regulates inflammatory cytokine synthesis to protect against lipopolysaccharide-induced abortion and fetal growth restriction in mice. Biol. Reprod.76, 738–748 (2007). ArticleCASPubMed Google Scholar
Murphy, S. P., Fast, L. D., Hanna, N. N. & Sharma, S. Uterine NK cells mediate inflammation-induced fetal demise in IL-10-null mice. J. Immunol.175, 4084–4090 (2005). ArticleCASPubMed Google Scholar
Reinhardt, R. L., Bullard, D. C., Weaver, C. T. & Jenkins, M. K. Preferential accumulation of antigen-specific effector CD4 T cells at an antigen injection site involves CD62E-dependent migration but not local proliferation. J. Exp. Med.197, 751–762 (2003). ArticleCASPubMed Google Scholar
Masopust, D. et al. Activated primary and memory CD8 T cells migrate to nonlymphoid tissues regardless of site of activation or tissue of origin. J. Immunol.172, 4875–4882 (2004). ArticleCASPubMed Google Scholar
Kallikourdis, M., Andersen, K. G., Welch, K. A. & Betz, A. G. Alloantigen-enhanced accumulation of CCR5+ 'effector' regulatory T cells in the gravid uterus. Proc. Natl Acad. Sci. USA104, 594–599 (2007). ArticleCASPubMed Google Scholar
Blois, S. M. et al. A pivotal role for galectin-1 in fetomaternal tolerance. Nature Med.13, 1450–1457 (2007). ArticleCAS Google Scholar
Nancy, P. et al. Chemokine gene silencing in decidual stromal cells limits T cell access to the maternal–fetal interface. Science336, 1317–1321 (2012). This study demonstrates the existence of an epigenetic programme of chemokine gene silencing that prevents the accumulation of activated T cells in the mouse decidua. ArticleCASPubMed Google Scholar
Margueron, R. & Reinberg, D. The Polycomb complex PRC2 and its mark in life. Nature469, 343–349 (2011). ArticleCASPubMed Google Scholar
Vassiliadou, N. & Bulmer, J. N. Quantitative analysis of T lymphocyte subsets in pregnant and nonpregnant human endometrium. Biol. Reprod.55, 1017–1022 (1996). ArticleCASPubMed Google Scholar
Kim, C. J. et al. The frequency, clinical significance, and pathological features of chronic chorioamnionitis: a lesion associated with spontaneous preterm birth. Mod. Pathol.23, 1000–1011 (2010). ArticlePubMed Google Scholar
Edmondson, N. et al. The prevalence of chronic deciduitis in cases of preterm labor without clinical chorioamnionitis. Pediatr. Dev. Pathol.12, 16–21 (2009). ArticlePubMed Google Scholar
Redline, R. W. Villitis of unknown etiology: noninfectious chronic villitis in the placenta. Hum. Pathol.38, 1439–1446 (2007). ArticlePubMed Google Scholar
Langley-Evans, S. C. & McMullen, S. Developmental origins of adult disease. Med. Princ. Pract.19, 87–98 (2010). ArticlePubMed Google Scholar