Balancing natural killer cell activation through paired receptors (original) (raw)
Vivier, E., Tomasello, E., Baratin, M., Walzer, T. & Ugolini, S. Functions of natural killer cells. Nature Immunol.9, 503–510 (2008). CAS Google Scholar
Long, E. O., Kim, H. S., Liu, D., Peterson, M. E. & Rajagopalan, S. Controlling natural killer cell responses: integration of signals for activation and inhibition. Annu. Rev. Immunol.31, 227–258 (2013). This is an outstanding and comprehensive review on the control of NK cell functions through activating and inhibitory receptors. CASPubMed Google Scholar
Karre, K. Natural killer cell recognition of missing self. Nature Immunol.9, 477–480 (2008). Google Scholar
Lanier, L. L. Up on the tightrope: natural killer cell activation and inhibition. Nature Immunol.9, 495–502 (2008). CAS Google Scholar
Chan, C. J. et al. The receptors CD96 and CD226 oppose each other in the regulation of natural killer cell functions. Nature Immunol.15, 431–438 (2014). This is the first paper showing a crucial role for CD96 in limiting NK cell functionsin vivousingCd96−/−mice. CAS Google Scholar
Stanietsky, N. et al. The interaction of TIGIT with PVR and PVRL2 inhibits human NK cell cytotoxicity. Proc. Natl Acad. Sci. USA106, 17858–17863 (2009). This study shows a potential role for TIGIT in limiting human NK cell cytotoxicity. CASPubMed Google Scholar
Gilfillan, S. et al. DNAM-1 promotes activation of cytotoxic lymphocytes by nonprofessional antigen-presenting cells and tumors. J. Exp. Med.205, 2965–2973 (2008). CASPubMedPubMed Central Google Scholar
Shibuya, A. et al. DNAM-1, a novel adhesion molecule involved in the cytolytic function of T lymphocytes. Immunity4, 573–581 (1996). CASPubMed Google Scholar
Bottino, C. et al. Identification of PVR (CD155) and Nectin-2 (CD112) as cell surface ligands for the human DNAM-1 (CD226) activating molecule. J. Exp. Med.198, 557–567 (2003). References 8 and 9 report that CD226 engagement by its ligands, CD112 and CD155, on target cells stimulates NK cell cytolytic functions. CASPubMedPubMed Central Google Scholar
Sakisaka, T. & Takai, Y. Biology and pathology of nectins and nectin-like molecules. Curr. Opin. Cell Biol.16, 513–521 (2004). CASPubMed Google Scholar
Chan, C. J., Smyth, M. J. & Martinet, L. Molecular mechanisms of natural killer cell activation in response to cellular stress. Cell Death Differ.21, 5–14 (2014). CASPubMed Google Scholar
Bernhardt, G. TACTILE becomes tangible: CD96 discloses its inhibitory peculiarities. Nature Immunol.15, 406–408 (2014). CAS Google Scholar
Minton, K. Natural killer cells: a TACTILE restraint. Nature Rev. Immunol.14, 285 (2014). Google Scholar
Yu, X. et al. The surface protein TIGIT suppresses T cell activation by promoting the generation of mature immunoregulatory dendritic cells. Nature Immunol.10, 48–57 (2009). This is the first identification of TIGIT and its inhibitory functions through its interaction with CD155. CAS Google Scholar
Seth, S. et al. Heterogeneous expression of the adhesion receptor CD226 on murine NK and T cells and its function in NK-mediated killing of immature dendritic cells. J. Leukoc. Biol.86, 91–101 (2009). CASPubMed Google Scholar
Tahara-Hanaoka, S. et al. Functional characterization of DNAM-1 (CD226) interaction with its ligands PVR (CD155) and nectin-2 (PRR-2/CD112). Int. Immunol.16, 533–538 (2004). CASPubMed Google Scholar
Liu, J. et al. Crystal structure of cell adhesion molecule nectin-2/CD112 and its binding to immune receptor DNAM-1/CD226. J. Immunol.188, 5511–5520 (2012). CASPubMed Google Scholar
Hou, S. et al. CD226 protein is involved in immune synapse formation and triggers natural killer (NK) cell activation via its first extracellular domain. J. Biol. Chem.289, 6969–6977 (2014). CASPubMedPubMed Central Google Scholar
Tahara-Hanaoka, S. et al. Tumor rejection by the poliovirus receptor family ligands of the DNAM-1 (CD226) receptor. Blood107, 1491–1496 (2006). CASPubMed Google Scholar
Stanietsky, N. et al. Mouse TIGIT inhibits NK-cell cytotoxicity upon interaction with PVR. Eur. J. Immunol.43, 2138–2150 (2013). CASPubMedPubMed Central Google Scholar
Boles, K. S. et al. A novel molecular interaction for the adhesion of follicular CD4 T cells to follicular DC. Eur. J. Immunol.39, 695–703 (2009). CASPubMedPubMed Central Google Scholar
Levin, S. D. et al. Vstm3 is a member of the CD28 family and an important modulator of T-cell function. Eur. J. Immunol.41, 902–915 (2011). CASPubMedPubMed Central Google Scholar
Georgiev, H. et al. To the Editor: TIGIT versus CD226: hegemony or coexistence? Eur. J. Immunol.44, 307–308 (2014). CASPubMed Google Scholar
Johnston, R. J. et al. The immunoreceptor TIGIT regulates antitumor and antiviral CD8+ T cell effector function. Cancer Cell26, 923–937 (2014). This study shows that TIGIT is expressed by PD1+ exhausted tumour-infiltrating T cells and that targeting these receptors with monoclonal antibodies represents a promising strategy to restore CD8+ T cell functions in cancer or in chronic infectious disease. CASPubMed Google Scholar
Wang, P. L., O'Farrell, S., Clayberger, C. & Krensky, A. M. Identification and molecular cloning of tactile. A novel human T cell activation antigen that is a member of the Ig gene superfamily. J. Immunol.148, 2600–2608 (1992). CASPubMed Google Scholar
Meyer, D. et al. CD96 interaction with CD155 via its first Ig-like domain is modulated by alternative splicing or mutations in distal Ig-like domains. J. Biol. Chem.284, 2235–2244 (2009). CASPubMed Google Scholar
Seth, S. et al. The murine pan T cell marker CD96 is an adhesion receptor for CD155 and nectin-1. Biochem. Biophys. Res. Commun.364, 959–965 (2007). CASPubMed Google Scholar
de Andrade, L. F., Smyth, M. J. & Martinet, L. DNAM-1 control of natural killer cells functions through nectin and nectin-like proteins. Immunol. Cell Biol.92, 237–244 (2014). PubMed Google Scholar
Fuchs, A., Cella, M., Giurisato, E., Shaw, A. S. & Colonna, M. Cutting edge: CD96 (tactile) promotes NK cell-target cell adhesion by interacting with the poliovirus receptor (CD155). J. Immunol.172, 3994–3998 (2004). CASPubMed Google Scholar
Stengel, K. F. et al. Structure of TIGIT immunoreceptor bound to poliovirus receptor reveals a cell-cell adhesion and signaling mechanism that requires _cis_-trans receptor clustering. Proc. Natl Acad. Sci. USA109, 5399–5404 (2012). CASPubMed Google Scholar
Liu, S. et al. Recruitment of Grb2 and SHIP1 by the ITT-like motif of TIGIT suppresses granule polarization and cytotoxicity of NK cells. Cell Death Differ.20, 456–464 (2013). CASPubMed Google Scholar
Orange, J. S. Formation and function of the lytic NK-cell immunological synapse. Nature Rev. Immunol.8, 713–725 (2008). CAS Google Scholar
Ramsbottom, K. M. et al. Cutting edge: DNAX accessory molecule 1-deficient CD8+ T cells display immunological synapse defects that impair antitumor immunity. J. Immunol.192, 553–557 (2014). CASPubMed Google Scholar
Lagrue, K. et al. The central role of the cytoskeleton in mechanisms and functions of the NK cell immune synapse. Immunol. Rev.256, 203–221 (2013). CASPubMed Google Scholar
Gross, C. C., Brzostowski, J. A., Liu, D. & Long, E. O. Tethering of intercellular adhesion molecule on target cells is required for LFA-1-dependent NK cell adhesion and granule polarization. J. Immunol.185, 2918–2926 (2010). CASPubMed Google Scholar
Vyas, Y. M. et al. Spatial organization of signal transduction molecules in the NK cell immune synapses during MHC class I-regulated noncytolytic and cytolytic interactions. J. Immunol.167, 4358–4367 (2001). CASPubMed Google Scholar
Shibuya, K. et al. CD226 (DNAM-1) is involved in lymphocyte function-associated antigen 1 costimulatory signal for naive T cell differentiation and proliferation. J. Exp. Med.198, 1829–1839 (2003). CASPubMedPubMed Central Google Scholar
Ralston, K. J. et al. The LFA-1-associated molecule PTA-1 (CD226) on T cells forms a dynamic molecular complex with protein 4.1G and human discs large. J. Biol. Chem.279, 33816–33828 (2004). CASPubMed Google Scholar
Shibuya, K. et al. Physical and functional association of LFA-1 with DNAM-1 adhesion molecule. Immunity11, 615–623 (1999). CASPubMed Google Scholar
Bryceson, Y. T., Ljunggren, H. G. & Long, E. O. Minimal requirement for induction of natural cytotoxicity and intersection of activation signals by inhibitory receptors. Blood114, 2657–2666 (2009). CASPubMedPubMed Central Google Scholar
Lozano, E., Dominguez-Villar, M., Kuchroo, V. & Hafler, D. A. The TIGIT/CD226 axis regulates human T cell function. J. Immunol.188, 3869–3875 (2012). CASPubMedPubMed Central Google Scholar
Lozano, E., Joller, N., Cao, Y., Kuchroo, V. K. & Hafler, D. A. The CD226/CD155 interaction regulates the proinflammatory (TH1/TH17)/anti-inflammatory (TH2) balance in humans. J. Immunol.191, 3673–3680 (2013). CASPubMed Google Scholar
Bi, J. et al. TIGIT safeguards liver regeneration through regulating NK cell-hepatocyte crosstalk. Hepatology60, 1389–1398 (2014). CASPubMed Google Scholar
Li, M. et al. T-cell immunoglobulin and ITIM domain (TIGIT) receptor/poliovirus receptor (PVR) ligand engagement suppresses interferon-γ production of natural killer cells via β-arrestin 2-mediated negative signaling. J. Biol. Chem.289, 17647–17657 (2014). CASPubMedPubMed Central Google Scholar
Pende, D. et al. Expression of the DNAM-1 ligands, Nectin-2 (CD112) and poliovirus receptor (CD155), on dendritic cells: relevance for natural killer-dendritic cell interaction. Blood107, 2030–2036 (2006). CASPubMed Google Scholar
Maier, M. K. et al. The adhesion receptor CD155 determines the magnitude of humoral immune responses against orally ingested antigens. Eur. J. Immunol.37, 2214–2225 (2007). CASPubMed Google Scholar
Kamran, N. et al. Toll-like receptor ligands induce expression of the costimulatory molecule CD155 on antigen-presenting cells. PLoS ONE8, e54406 (2013). CASPubMedPubMed Central Google Scholar
Oda, T., Ohka, S. & Nomoto, A. Ligand stimulation of CD155alpha inhibits cell adhesion and enhances cell migration in fibroblasts. Biochem. Biophys. Res. Commun.319, 1253–1264 (2004). CASPubMed Google Scholar
Sato, T. et al. Common signaling pathway is used by the _trans_-interaction of Necl-5/Tage4/PVR/CD155 and nectin, and of nectin and nectin during the formation of cell-cell adhesion. Cancer Sci.96, 578–589 (2005). CASPubMed Google Scholar
Walzer, T., Dalod, M., Robbins, S. H., Zitvogel, L. & Vivier, E. Natural-killer cells and dendritic cells: “l'union fait la force”. Blood106, 2252–2258 (2005). CASPubMed Google Scholar
Morandi, B. et al. Dendritic cell editing by activated natural killer cells results in a more protective cancer-specific immune response. PLoS ONE7, e39170 (2012). CASPubMedPubMed Central Google Scholar
Zingoni, A., Ardolino, M., Santoni, A. & Cerboni, C. NKG2D and DNAM-1 activating receptors and their ligands in NK-T cell interactions: role in the NK cell-mediated negative regulation of T cell responses. Frontiers Immunol.3, 408 (2012). Google Scholar
Ardolino, M. et al. DNAM-1 ligand expression on Ag-stimulated T lymphocytes is mediated by ROS-dependent activation of DNA-damage response: relevance for NK-T cell interaction. Blood117, 4778–4786 (2011). CASPubMed Google Scholar
O'Leary, J. G., Goodarzi, M., Drayton, D. L. & von Andrian, U. H. T cell- and B cell-independent adaptive immunity mediated by natural killer cells. Nature Immunol.7, 507–516 (2006). CAS Google Scholar
Sun, J. C., Beilke, J. N. & Lanier, L. L. Adaptive immune features of natural killer cells. Nature457, 557–561 (2009). CASPubMedPubMed Central Google Scholar
Paust, S., Senman, B. & von Andrian, U. H. Adaptive immune responses mediated by natural killer cells. Immunol. Rev.235, 286–296 (2010). CASPubMedPubMed Central Google Scholar
Foley, B. et al. Cytomegalovirus reactivation after allogeneic transplantation promotes a lasting increase in educated NKG2C+ natural killer cells with potent function. Blood119, 2665–2674 (2012). CASPubMedPubMed Central Google Scholar
Lopez-Verges, S. et al. Expansion of a unique CD57+NKG2Chi natural killer cell subset during acute human cytomegalovirus infection. Proc. Natl Acad. Sci. USA108, 14725–14732 (2011). CASPubMed Google Scholar
Nabekura, T. et al. Costimulatory molecule DNAM-1 is essential for optimal differentiation of memory natural killer cells during mouse cytomegalovirus infection. Immunity40, 225–234 (2014). CASPubMedPubMed Central Google Scholar
Shibuya, A., Lanier, L. L. & Phillips, J. H. Protein kinase C is involved in the regulation of both signaling and adhesion mediated by DNAX accessory molecule-1 receptor. J. Immunol.161, 1671–1676 (1998). CASPubMed Google Scholar
Bryceson, Y. T., March, M. E., Ljunggren, H. G. & Long, E. O. Synergy among receptors on resting NK cells for the activation of natural cytotoxicity and cytokine secretion. Blood107, 159–166 (2006). CASPubMedPubMed Central Google Scholar
Kim, H. S., Das, A., Gross, C. C., Bryceson, Y. T. & Long, E. O. Synergistic signals for natural cytotoxicity are required to overcome inhibition by c-Cbl ubiquitin ligase. Immunity32, 175–186 (2010). CASPubMedPubMed Central Google Scholar
Kim, H. S. & Long, E. O. Complementary phosphorylation sites in the adaptor protein SLP-76 promote synergistic activation of natural killer cells. Sci. Signal.5, ra49 (2012). PubMed Google Scholar
Rozsnyay, Z. Signaling complex formation of CD44 with src-related kinases. Immunol. Lett.68, 101–108 (1999). CASPubMed Google Scholar
Chambers, C. A. The expanding world of co-stimulation: the two-signal model revisited. Trends Immunol.22, 217–223 (2001). CASPubMed Google Scholar
Soriani, A. et al. ATM-ATR-dependent up-regulation of DNAM-1 and NKG2D ligands on multiple myeloma cells by therapeutic agents results in enhanced NK-cell susceptibility and is associated with a senescent phenotype. Blood113, 3503–3511 (2009). CASPubMed Google Scholar
Carlsten, M. et al. Primary human tumor cells expressing CD155 impair tumor targeting by down-regulating DNAM-1 on NK cells. J. Immunol.183, 4921–4930 (2009). CASPubMed Google Scholar
El-Sherbiny, Y. M. et al. The requirement for DNAM-1, NKG2D, and NKp46 in the natural killer cell-mediated killing of myeloma cells. Cancer Res.67, 8444–8449 (2007). CASPubMed Google Scholar
Lakshmikanth, T. et al. NCRs and DNAM-1 mediate NK cell recognition and lysis of human and mouse melanoma cell lines in vitro and in vivo. J. Clin. Invest.119, 1251–1263 (2009). CASPubMedPubMed Central Google Scholar
Sanchez-Correa, B. et al. Decreased expression of DNAM-1 on NK cells from acute myeloid leukemia patients. Immunol. Cell Biol.90, 109–115 (2012). CASPubMed Google Scholar
Mamessier, E. et al. Human breast cancer cells enhance self tolerance by promoting evasion from NK cell antitumor immunity. J. Clin. Invest.121, 3609–3622 (2011). CASPubMedPubMed Central Google Scholar
Oshima, T. et al. Nectin-2 is a potential target for antibody therapy of breast and ovarian cancers. Mol. Cancer12, 60 (2013). CASPubMedPubMed Central Google Scholar
Iguchi-Manaka, A. et al. Accelerated tumor growth in mice deficient in DNAM-1 receptor. J. Exp. Med.205, 2959–2964 (2008). This paper, together with reference 7, was the first to show the role of CD226 in NK cell- and CD8+ T cell-mediated tumour immunosurveillance usingCd226−/−mice. CASPubMedPubMed Central Google Scholar
Croxford, J. L. et al. ATM-dependent spontaneous regression of early Emu-myc-induced murine B cell leukemia depends on NK and T cells. Blood121, 2512–2521 (2013). CASPubMedPubMed Central Google Scholar
Chan, C. J. et al. DNAM-1/CD155 interactions promote cytokine and NK cell-mediated suppression of poorly immunogenic melanoma metastases. J. Immunol.184, 902–911 (2010). CASPubMed Google Scholar
Smyth, M. J., Crowe, N. Y. & Godfrey, D. I. NK cells and NKT cells collaborate in host protection from methylcholanthrene-induced fibrosarcoma. Int. Immunol.13, 459–463 (2001). CASPubMed Google Scholar
Welch, M. J., Teijaro, J. R., Lewicki, H. A., Colonna, M. & Oldstone, M. B. CD8 T cell defect of TNFα and IL-2 in DNAM-1 deficient mice delays clearance in vivo of a persistent virus infection. Virology429, 163–170 (2012). CASPubMedPubMed Central Google Scholar
Magri, G. et al. NKp46 and DNAM-1 NK-cell receptors drive the response to human cytomegalovirus-infected myeloid dendritic cells overcoming viral immune evasion strategies. Blood117, 848–856 (2011). CASPubMed Google Scholar
Prod'homme, V. et al. Human cytomegalovirus UL141 promotes efficient downregulation of the natural killer cell activating ligand CD112. J. Gen. Virol.91, 2034–2039 (2010). CASPubMedPubMed Central Google Scholar
Tomasec, P. et al. Downregulation of natural killer cell-activating ligand CD155 by human cytomegalovirus UL141. Nature Immunol.6, 181–188 (2005). CAS Google Scholar
Matusali, G., Potesta, M., Santoni, A., Cerboni, C. & Doria, M. The human immunodeficiency virus type 1 Nef and Vpu proteins downregulate the natural killer cell-activating ligand PVR. J. Virol.86, 4496–4504 (2012). References 79–81 show that the downregulation of CD112 and CD155 expression is a common evasion strategy developed by viruses to avoid CD226-mediated NK cell recognition. CASPubMedPubMed Central Google Scholar
Todd, J. A. et al. Robust associations of four new chromosome regions from genome-wide analyses of type 1 diabetes. Nature Genet.39, 857–864 (2007). CASPubMed Google Scholar
Song, G., Bae, S. C., Choi, S., Ji, J. & Lee, Y. Association between the CD226 rs763361 polymorphism and susceptibility to autoimmune diseases: a meta-analysis. Lupus21, 1522–1530 (2012). PubMed Google Scholar
Du, Y. et al. Association of the CD226 single nucleotide polymorphism with systemic lupus erythematosus in the Chinese Han population. Tissue Antigens77, 65–67 (2011). CASPubMed Google Scholar
Maiti, A. K. et al. Non-synonymous variant (Gly307Ser) in CD226 is associated with susceptibility to multiple autoimmune diseases. Rheumatology49, 1239–1244 (2010). CASPubMed Google Scholar
Wieczorek, S. et al. Novel association of the CD226 (DNAM-1) Gly307Ser polymorphism in Wegener's granulomatosis and confirmation for multiple sclerosis in German patients. Genes Immun.10, 591–595 (2009). CASPubMed Google Scholar
Flodstrom-Tullberg, M., Bryceson, Y. T., Shi, F. D., Hoglund, P. & Ljunggren, H. G. Natural killer cells in human autoimmunity. Curr. Opin. Immunol.21, 634–640 (2009). PubMed Google Scholar
Parham, P. MHC class I molecules and KIRs in human history, health and survival. Nature Rev. Immunol.5, 201–214 (2005). CAS Google Scholar
Thielens, A., Vivier, E. & Romagne, F. NK cell MHC class I specific receptors (KIR): from biology to clinical intervention. Curr. Opin. Immunol.24, 239–245 (2012). CASPubMed Google Scholar
Raulet, D. H. & Vance, R. E. Self-tolerance of natural killer cells. Nature Rev. Immunol.6, 520–531 (2006). CAS Google Scholar
Huse, M., Catherine Milanoski, S. & Abeyweera, T. P. Building tolerance by dismantling synapses: inhibitory receptor signaling in natural killer cells. Immunol. Rev.251, 143–153 (2013). PubMed Google Scholar
Stebbins, C. C. et al. Vav1 dephosphorylation by the tyrosine phosphatase SHP-1 as a mechanism for inhibition of cellular cytotoxicity. Mol. Cell. Biol.23, 6291–6299 (2003). CASPubMedPubMed Central Google Scholar
Abeyweera, T. P., Merino, E. & Huse, M. Inhibitory signaling blocks activating receptor clustering and induces cytoskeletal retraction in natural killer cells. J. Cell Biol.192, 675–690 (2011). CASPubMedPubMed Central Google Scholar
Peterson, M. E. & Long, E. O. Inhibitory receptor signaling via tyrosine phosphorylation of the adaptor Crk. Immunity29, 578–588 (2008). CASPubMedPubMed Central Google Scholar
Stewart, C. A. et al. Recognition of peptide-MHC class I complexes by activating killer immunoglobulin-like receptors. Proc. Natl Acad. Sci. USA102, 13224–13229 (2005). CASPubMed Google Scholar
Sivori, S. et al. Natural killer cells expressing the KIR2DS1-activating receptor efficiently kill T-cell blasts and dendritic cells: implications in haploidentical HSCT. Blood117, 4284–4292 (2011). CASPubMed Google Scholar
Graef, T. et al. KIR2DS4 is a product of gene conversion with KIR3DL2 that introduced specificity for HLA-A*11 while diminishing avidity for HLA-C. J. Exp. Med.206, 2557–2572 (2009). CASPubMedPubMed Central Google Scholar
Rajagopalan, S. & Long, E. O. Understanding how combinations of HLA and KIR genes influence disease. J. Exp. Med.201, 1025–1029 (2005). CASPubMedPubMed Central Google Scholar
Khakoo, S. I. et al. HLA and NK cell inhibitory receptor genes in resolving hepatitis C virus infection. Science305, 872–874 (2004). This study suggests that inhibitory NK cell interactions are important in determining antiviral immunity and that diminished inhibitory responses confer protection against viral infections. CASPubMed Google Scholar
Alter, G. et al. Differential natural killer cell-mediated inhibition of HIV-1 replication based on distinct KIR/HLA subtypes. J. Exp. Med.204, 3027–3036 (2007). CASPubMedPubMed Central Google Scholar
Carr, W. H. et al. Cutting edge: KIR3DS1, a gene implicated in resistance to progression to AIDS, encodes a DAP12-associated receptor expressed on NK cells that triggers NK cell activation. J. Immunol.178, 647–651 (2007). CASPubMedPubMed Central Google Scholar
Malnati, M. S. et al. Peptide specificity in the recognition of MHC class I by natural killer cell clones. Science267, 1016–1018 (1995). CASPubMed Google Scholar
Zappacosta, F., Borrego, F., Brooks, A. G., Parker, K. C. & Coligan, J. E. Peptides isolated from HLA-Cw*0304 confer different degrees of protection from natural killer cell-mediated lysis. Proc. Natl Acad. Sci. USA94, 6313–6318 (1997). CASPubMed Google Scholar
Fadda, L. et al. Peptide antagonism as a mechanism for NK cell activation. Proc. Natl Acad. Sci. USA107, 10160–10165 (2010). CASPubMed Google Scholar
Rajagopalan, S. & Long, E. O. Antagonizing inhibition gets NK cells going. Proc. Natl Acad. Sci. USA107, 10333–10334 (2010). CASPubMed Google Scholar
Alter, G. & Altfeld, M. NK cells in HIV-1 infection: evidence for their role in the control of HIV-1 infection. J. Internal Med.265, 29–42 (2009). CASPubMed Google Scholar
Katz, G. et al. MHC class I-independent recognition of NK-activating receptor KIR2DS4. J. Immunol.173, 1819–1825 (2004). CASPubMed Google Scholar
Brooks, A. G., Posch, P. E., Scorzelli, C. J., Borrego, F. & Coligan, J. E. NKG2A complexed with CD94 defines a novel inhibitory natural killer cell receptor. J. Exp. Med.185, 795–800 (1997). CASPubMedPubMed Central Google Scholar
Borrego, F., Ulbrecht, M., Weiss, E. H., Coligan, J. E. & Brooks, A. G. Recognition of human histocompatibility leukocyte antigen (HLA)-E complexed with HLA class I signal sequence-derived peptides by CD94/NKG2 confers protection from natural killer cell-mediated lysis. J. Exp. Med.187, 813–818 (1998). CASPubMedPubMed Central Google Scholar
Carretero, M. et al. Specific engagement of the CD94/NKG2-A killer inhibitory receptor by the HLA-E class Ib molecule induces SHP-1 phosphatase recruitment to tyrosine-phosphorylated NKG2-A: evidence for receptor function in heterologous transfectants. Eur. J. Immunol.28, 1280–1291 (1998). CASPubMed Google Scholar
Lanier, L. L., Corliss, B., Wu, J. & Phillips, J. H. Association of DAP12 with activating CD94/NKG2C NK cell receptors. Immunity8, 693–701 (1998). CASPubMed Google Scholar
Braud, V. M. et al. HLA-E binds to natural killer cell receptors CD94/NKG2A, B and C. Nature391, 795–799 (1998). CASPubMed Google Scholar
Tomasec, P. et al. Surface expression of HLA-E, an inhibitor of natural killer cells, enhanced by human cytomegalovirus gpUL40. Science287, 1031 (2000). CASPubMed Google Scholar
Bossard, C. et al. HLA-E/beta2 microglobulin overexpression in colorectal cancer is associated with recruitment of inhibitory immune cells and tumor progression. Int. J. Cancer131, 855–863 (2012). CASPubMed Google Scholar
Kraemer, T., Blasczyk, R. & Bade-Doeding, C. HLA-E: a novel player for histocompatibility. J. Immunol. Res.2014, 352160 (2014). PubMedPubMed Central Google Scholar
Vance, R. E., Kraft, J. R., Altman, J. D., Jensen, P. E. & Raulet, D. H. Mouse CD94/NKG2A is a natural killer cell receptor for the nonclassical major histocompatibility complex (MHC) class I molecule Qa-1(b). J. Exp. Med.188, 1841–1848 (1998). CASPubMedPubMed Central Google Scholar
Fang, M. et al. CD94 is essential for NK cell-mediated resistance to a lethal viral disease. Immunity34, 579–589 (2011). This study using CD94-deficient mice shows that the activating receptor formed by CD94 and NKG2E is essential for the resistance of C57BL/6 mice to mousepox. CASPubMedPubMed Central Google Scholar
Guma, M. et al. Imprint of human cytomegalovirus infection on the NK cell receptor repertoire. Blood104, 3664–3671 (2004). CASPubMed Google Scholar
Beziat, V. et al. CMV drives clonal expansion of NKG2C+ NK cells expressing self-specific KIRs in chronic hepatitis patients. Eur. J. Immunol.42, 447–457 (2012). CASPubMed Google Scholar
Guma, M. et al. Expansion of CD94/NKG2C+ NK cells in response to human cytomegalovirus-infected fibroblasts. Blood107, 3624–3631 (2006). CASPubMed Google Scholar
Lopez-Botet, M., Muntasell, A. & Vilches, C. The CD94/NKG2C+ NK-cell subset on the edge of innate and adaptive immunity to human cytomegalovirus infection. Semin. Immunol.26, 145–151 (2014). CASPubMed Google Scholar
Kim, S. et al. Licensing of natural killer cells by host major histocompatibility complex class I molecules. Nature436, 709–713 (2005). CASPubMed Google Scholar
Anfossi, N. et al. Human NK cell education by inhibitory receptors for MHC class I. Immunity25, 331–342 (2006). CASPubMed Google Scholar
Viant, C. et al. SHP-1-mediated inhibitory signals promote responsiveness and anti-tumour functions of natural killer cells. Nature Commun.5, 5108 (2014). CAS Google Scholar
Elliott, J. M. & Yokoyama, W. M. Unifying concepts of MHC-dependent natural killer cell education. Trends Immunol.32, 364–372 (2011). CASPubMedPubMed Central Google Scholar
Tripathy, S. K. et al. Continuous engagement of a self-specific activation receptor induces NK cell tolerance. J. Exp. Med.205, 1829–1841 (2008). CASPubMedPubMed Central Google Scholar
Pradeu, T., Jaeger, S. & Vivier, E. The speed of change: towards a discontinuity theory of immunity? Nature Rev. Immunol.13, 764–769 (2013). This is an outstanding review on the formulation of a new immune paradigm 'the discontinuity theory'. CAS Google Scholar
Seth, S. et al. Intranodal interaction with dendritic cells dynamically regulates surface expression of the co-stimulatory receptor CD226 protein on murine T cells. J. Biol. Chem.286, 39153–39163 (2011). CASPubMedPubMed Central Google Scholar
Callahan, M. K. & Wolchok, J. D. At the Bedside: CTLA-4- and PD-1-blocking antibodies in cancer immunotherapy. J. Leukoc. Biol.94, 41–53 (2013). CASPubMedPubMed Central Google Scholar
Koyama, M. et al. Promoting regulation via the inhibition of DNAM-1 after transplantation. Blood121, 3511–3520 (2013). CASPubMed Google Scholar
Takai, Y., Miyoshi, J., Ikeda, W. & Ogita, H. Nectins and nectin-like molecules: roles in contact inhibition of cell movement and proliferation. Nature Rev. Mol. Cell Biol.9, 603–615 (2008). CAS Google Scholar
Erickson, B. M., Thompson, N. L. & Hixson, D. C. Tightly regulated induction of the adhesion molecule necl-5/CD155 during rat liver regeneration and acute liver injury. Hepatology43, 325–334 (2006). CASPubMed Google Scholar
Hirota, T., Irie, K., Okamoto, R., Ikeda, W. & Takai, Y. Transcriptional activation of the mouse Necl-5/Tage4/PVR/CD155 gene by fibroblast growth factor or oncogenic Ras through the Raf–MEK–ERK–AP-1 pathway. Oncogene24, 2229–2235 (2005). CASPubMed Google Scholar
Sloan, K. E. et al. CD155/PVR plays a key role in cell motility during tumor cell invasion and migration. BMC Cancer4, 73 (2004). PubMedPubMed Central Google Scholar
Tane, S. et al. The role of Necl-5 in the invasive activity of lung adenocarcinoma. Exp. Mol. Pathol.94, 330–335 (2013). CASPubMed Google Scholar
Nakai, R. et al. Overexpression of Necl-5 correlates with unfavorable prognosis in patients with lung adenocarcinoma. Cancer Sci.101, 1326–1330 (2010). CASPubMed Google Scholar
Morimoto, K. et al. Interaction of cancer cells with platelets mediated by Necl-5/poliovirus receptor enhances cancer cell metastasis to the lungs. Oncogene27, 264–273 (2008). CASPubMed Google Scholar
Vassena, L., Giuliani, E., Matusali, G., Cohen, E. & Doria, M. The human immunodeficiency virus type 1 Vpr protein upregulates PVR via activation of the ATR-mediated DNA damage response pathway. J. General Virol.94, 2664–2669 (2013). CAS Google Scholar
Cerboni, C. et al. The DNA damage response: a common pathway in the regulation of NKG2D and DNAM-1 ligand expression in normal, infected, and cancer cells. Front. Immunol.4, 508 (2014). PubMedPubMed Central Google Scholar
Kennedy, J. et al. A molecular analysis of NKT cells: identification of a class-I restricted T cell-associated molecule (CRTAM). J. Leukoc. Biol.67, 725–734 (2000). CASPubMed Google Scholar
Arase, N. et al. Heterotypic interaction of CRTAM with Necl2 induces cell adhesion on activated NK cells and CD8+ T cells. Int. Immunol.17, 1227–1237 (2005). CASPubMed Google Scholar
Boles, K. S., Barchet, W., Diacovo, T., Cella, M. & Colonna, M. The tumor suppressor TSLC1/NECL-2 triggers NK-cell and CD8+ T-cell responses through the cell-surface receptor CRTAM. Blood106, 779–786 (2005). CASPubMed Google Scholar
Takeuchi, A. et al. CRTAM confers late-stage activation of CD8+ T cells to regulate retention within lymph node. J. Immunol.183, 4220–4228 (2009). CASPubMed Google Scholar
Yeh, J. H., Sidhu, S. S. & Chan, A. C. Regulation of a late phase of T cell polarity and effector functions by Crtam. Cell132, 846–859 (2008). This article provides an in-depth analysis of the role and signalling of CRTAM in CD4+ T cells using CRTAM-deficient mice. CASPubMed Google Scholar
Ikeda, W. et al. Nectin-like molecule-5/Tage4 enhances cell migration in an integrin-dependent, Nectin-3-independent manner. J. Biol. Chem.279, 18015–18025 (2004). CASPubMed Google Scholar
Freistadt, M. S. & Eberle, K. E. Physical association between CD155 and CD44 in human monocytes. Mol. Immunol.34, 1247–1257 (1997). CASPubMed Google Scholar
Mueller, S. & Wimmer, E. Recruitment of nectin-3 to cell-cell junctions through _trans_-heterophilic interaction with CD155, a vitronectin and poliovirus receptor that localizes to αvβ3 integrin-containing membrane microdomains. J. Biol. Chem.278, 31251–31260 (2003). CASPubMed Google Scholar