Stem cell medicine encounters the immune system (original) (raw)
Clarke, D. L. et al. Generalized potential of adult neural stem cells. Science288, 1660–1663 (2000). ArticleCASPubMed Google Scholar
Jiang, Y. et al. Pluripotency of mesenchymal stem cells derived from adult marrow. Nature418, 41–49 (2002).Multipotent adult progenitor cells can be isolated from non-haematopoietic bone-marrow cells, expanded for more than 80 population doublings and differentiatedin vitro, at the single-cell level, to form the products of all three germ layers. ArticleCASPubMed Google Scholar
Thomson, J. A. et al. Embryonic stem-cell lines derived from human blastocysts. Science282, 1145–1147 (1998).A landmark paper describing, for the first time, the derivation of human embryonic stem (hES) cells. ArticleCASPubMed Google Scholar
Amit, M. et al. Clonally derived human embryonic stem-cell lines maintain pluripotency and proliferative potential for prolonged periods of culture. Dev. Biol.227, 271–278 (2000). ArticleCASPubMed Google Scholar
Reubinoff, B. E., Pera, M. F., Fong, C. Y., Trounson, A. & Bongso, A. Embryonic stem-cell lines from human blastocysts: somatic differentiation in vitro. Nature Biotechnol.18, 399–404 (2000). ArticleCAS Google Scholar
Evans, M. J. & Kaufman, M. H. Establishment in culture of pluripotential cells from mouse embryos. Nature292, 154–156 (1981). ArticleCASPubMed Google Scholar
Martin, G. R. Isolation of a pluripotent cell line from early mouse embryos cultured in medium conditioned by teratocarcinoma stem cells. Proc. Natl Acad. Sci. USA78, 7634–7638 (1981). ArticleCASPubMedPubMed Central Google Scholar
McLaren, A. Ethical and social considerations of stem-cell research. Nature414, 129–131 (2001). ArticleCASPubMed Google Scholar
Kim, J. H. et al. Dopamine neurons derived from embryonic stem cells function in an animal model of Parkinson's disease. Nature418, 50–56 (2002). ArticleCASPubMed Google Scholar
Bjorklund, L. M. et al. Embryonic stem cells develop into functional dopaminergic neurons after transplantation in a Parkinson rat model. Proc. Natl Acad. Sci. USA99, 2344–2349 (2002). ArticleCASPubMedPubMed Central Google Scholar
McDonald, J. W. et al. Transplanted embryonic stem cells survive, differentiate and promote recovery in injured rat spinal cord. Nature Med.5, 1410–1412 (1999). ArticleCASPubMed Google Scholar
Brustle, O. et al. Embryonic stem-cell-derived glial precursors: a source of myelinating transplants. Science285, 754–756 (1999). ArticleCASPubMed Google Scholar
Soria, B. et al. Insulin-secreting cells derived from embryonic stem cells normalize glycemia in streptozotocin-induced diabetic mice. Diabetes49, 157–162 (2000). ArticleCASPubMed Google Scholar
Lumelsky, N. et al. Differentiation of embryonic stem cells to insulin-secreting structures similar to pancreatic islets. Science292, 1389–1394 (2001). ArticleCASPubMed Google Scholar
Chinzei, R. et al. Embryoid body cells derived from a mouse embryonic stem cell line show differentiation into functional hepatocytes. Hepatology36, 22–29 (2002). ArticlePubMed Google Scholar
Min, J. Y. et al. Transplantation of embryonic stem cells improves cardiac function in postinfarcted rats. J. Appl. Physiol.92, 288–296 (2002). ArticlePubMed Google Scholar
Zhang, S. C., Wernig, M., Duncan, I. D., Brustle, O. & Thompson, J. A. In vitro differentiation of transplantable neural precursors from human embryonic stem cells. Nature Biotechnol.19, 1129–1133 (2001). ArticleCAS Google Scholar
Auchincloss, H. & Bonventre, J. V. Transplanting cloned cells into therapeutic promise. Nature Biotechnol.20, 665–666 (2002). ArticleCAS Google Scholar
Odorico, J. S., Kaufman, D. S. & Thomson, J. A. Multilineage differentiation from human embryonic stem-cell lines. Stem Cells19, 193–204 (2001). ArticleCASPubMed Google Scholar
Clausen, H. & Hakomori, S. ABH and related histo-blood group antigens; immunochemical differences in carrier isotypes and their distribution. Vox. Sang.56, 1–20 (1989). ArticleCASPubMed Google Scholar
Ito, N. & Hirota, T. Histochemical and cytochemical localisation of blood-group antigens. Prog. Histochem. Cytochem.25, 1–85 (1992). ArticleCASPubMed Google Scholar
Springer, G. F. & Horton, R. E. Blood group isoantibody stimulation in man by feeding blood group-active bacteria. J. Clin. Invest.48, 1280–1291 (1969). ArticleCASPubMedPubMed Central Google Scholar
Paul, L. C. & Baldwin, W. M. Humoral rejection mechanisms and ABO incompatibility in renal transplantation. Transplant Proc.19, 4463–4467 (1987). CASPubMed Google Scholar
Cooper, D. K. Clinical survey of heart transplantation between ABO blood-group-incompatible recipients and donors. J. Heart Transplant.9, 376–381 (1990). CASPubMed Google Scholar
Clayton, H. A., Swift, S. M., James, R. F., Horsburgh, T. & London, N. J. Human islet transplantation — is blood group compatibility important? Transplantation56, 1538–1540 (1993). CASPubMed Google Scholar
Borderie, V. M., Lopez, M., Vedie, F. & Laroche, L. ABO antigen blood-group compatibility in corneal transplantation. Cornea16, 1–6 (1997). CASPubMed Google Scholar
Draper, J. S., Pigott, C., Thomson, J. A. & Andrews, P. W. Surface antigens of human embryonic stem cells: changes upon differentiation in culture. J. Anat.200, 249–258 (2002). ArticleCASPubMedPubMed Central Google Scholar
Drukker, M. et al. Characterisation of MHC protein expression in human embryonic stem cells. Proc. Natl Acad. Sci.99, 9864–9869 (2002).Human ES cells express low levels of MHC class I molecules and are MHC class II negative, even when cultured with IFN-γ. ArticleCASPubMedPubMed Central Google Scholar
Simpson, E. et al. Minor H antigens: genes and peptides. Eur. J. Immunogenet.28, 505–513 (2001). ArticleCASPubMed Google Scholar
Lechler, R. I. & Batchelor, J. R. Restoration of immunogenicity to passenger-cell-depleted kidney allografts by the addition of donor-strain dendritic cells. J. Exp. Med.155, 31–34 (1982). ArticleCASPubMed Google Scholar
Iwai, H. et al. Acceptance of murine thyroid allografts by pretreatment of anti-Ia antibody or anti-dendritic cell antibody in vitro. Transplantation47, 45–49 (1989). ArticleCASPubMed Google Scholar
Bowan, K. M., Andrus, L. & Lafferty, K. J. Successful allotransplantation of mouse pancreatic islets to nonimmunosuppressed recipients. Diabetes29, 98–104 (1980). Article Google Scholar
Munsie, M. J. et al. Isolation of pluripotent embryonic stem cells from reprogrammed adult mouse somatic-cell nuclei. Curr. Biol.10, 989–992 (2000). ArticleCASPubMed Google Scholar
Kawase, E., Yamazaki, Y., Yagi, T., Yanagimachi, R. & Pedersen, R. A. Mouse embryonic stem (ES) cell lines established from neuronal-cell-derived cloned blastocysts. Genesis28, 156–163 (2000).References34and35established proof of principle of ES-cell derivation from cloned mammalian embryos. ArticleCASPubMed Google Scholar
Wakayama, T. et al. Differentiation of embryonic stem-cell lines generated from adult somatic cells by nuclear transfer. Science292, 740–743 (2001). ArticleCASPubMed Google Scholar
Hochedlinger, K. & Jaenisch, R. Monoclonal mice generated by nuclear transfer from mature B and T donor cells. Nature415, 1035–1038 (2002). ArticleCASPubMed Google Scholar
Rideout, W. M. 3rd, Hochedlinger, K., Kyba, M., Daley, G. Q. & Jaenisch, R. Correction of a genetic defect by nuclear transplantation and combined cell and gene therapy. Cell109, 17–27 (2002). ArticleCASPubMed Google Scholar
Lanza, R. P. et al. Generation of histocompatible tissues using nuclear transplantation. Nature Biotechnol.20, 689–696 (2002). ArticleCAS Google Scholar
Cibelli, J. B. et al. Somatic-cell nuclear transfer in humans: pronuclear and early embryonic development. E-biomed. J. Regener. Med.2, 25–31 (2001).A demonstration of arrested embryonic development after somatic-cell nuclear transfer to human oocytes. Article Google Scholar
Mitalipov, S. M., Yeoman, R. R., Nusser, K. D. & Wolf, D. P. Rhesus monkey embryos produced by nuclear transfer from embryonic blastomeres or somatic cells. Biol. Reprod.66, 1367–1373 (2002). ArticleCASPubMed Google Scholar
Opelz, G., Wujciak, T., Dohler, B., Scherer, S. & Mytilineos, J. HLA compatibility and organ transplant survival. Collaborative Transplant Study. Rev. Immunogenet.1, 334–342 (1999). CASPubMed Google Scholar
Petersdorf, E. W. et al. Major-histocompatibility-complex class I alleles and antigens in hematopoietic-cell transplantation. N. Engl. J. Med.345, 1794–1800 (2001). ArticleCASPubMed Google Scholar
Petersdorf, E. W. et al. Association of HLA-C disparity with graft failure after marrow transplantation from unrelated donors. Blood89, 1818–1823 (1997). CASPubMed Google Scholar
Petersdorf, E. W. et al. Optimising outcome after unrelated marrow transplantation by comprehensive matching of HLA class I and II alleles in the donor and recipient. Blood92, 3515–3520 (1998). CASPubMed Google Scholar
Baur, M. P., Neugebauer, M. & Albert, E. D. in Histocompatibility Testing (eds Albert, E. D., Baur, M. P. & Mayr, W. R.) 756–757 (Springer Verlag, 1984). Google Scholar
Kollman, C. et al. Non-HLA barriers to unrelated donor stem-cell transplantation. Bone Marrow Transplant.27, 581–587 (2001). ArticleCASPubMed Google Scholar
Shaw, B. E., Madrigal, J. A. & Potter, M. Improving the outcome of unrelated donor stem-cell transplantation by molecular matching. Blood Rev.15, 167–174 (2001). ArticleCASPubMed Google Scholar
Patel, R. & Terasaki, P. I. Significance of the positive crossmatch test in kidney transplantaion: N. Engl. J. Med.280, 735–739 (1969). ArticleCASPubMed Google Scholar
Itescu, S. et al. Performed IgG antibodies against major histocompatibility complex class II antigens are major risk factors for high-grade cellular rejection in recipients of heart transplantation. Circulation98, 786–793 (1998). ArticleCASPubMed Google Scholar
Kung, L., Gourishankar, S. & Halloran, P. F. Molecular pharmacology of immunosupressive agents in relation to their clinical use. Curr. Opin. Organ Transplant.5, 268–275 (2000). Article Google Scholar
Gourishankar, S., Turner, P. & Halloran, P. New developments in immunosuppressive therapy in renal transplantation. Expert Opin. Biol. Ther.2, 483–501 (2002). ArticleCASPubMed Google Scholar
Simon, D. M. & Levin, S. Infectious complications of solid organ transplantations. Infect. Dis. Clin. North Am.15, 521–549 (2001). ArticleCASPubMed Google Scholar
Penn, I. Post-transplant malignancy: the role of immunosuppression. Drug. Safety23, 101–113 (2000). ArticleCASPubMed Google Scholar
Mayer, A. D. et al. Multicentre randomised trial comparing tacrolimus (FK506) and cyclosporin in the prevention of renal allograft rejection. Transplantation64, 436–443 (1997). ArticleCASPubMed Google Scholar
Zijlstra, M. et al. β2-microglobulin-deficient mice lack CD4-8+ cytolytic T cells. Nature344, 742–746 (1990). ArticleCASPubMed Google Scholar
Grusby, M. J., Johnson, R. S., Papaioannou, V. E. & Glimcher, L. H. Depletion of CD4+ T cells in major histocompatibility complex class-II-deficient mice. Science253, 1417–1420 (1991). ArticleCASPubMed Google Scholar
Vugmeyster, Y. et al. Major histocompatibility complex (MHC) class I KbDb−/− deficient mice possess functional CD8+ T cells and natural killer cells. Proc. Natl Acad. Sci. USA95, 12492–12497 (1998). ArticleCASPubMedPubMed Central Google Scholar
Grusby, M. J. et al. Mice lacking major histocompatibility complex class I and class II molecules. Proc. Natl Acad. Sci. USA90, 3913–3917 (1993). ArticleCASPubMedPubMed Central Google Scholar
Lee, R. S. et al. CD8+ effector cells responding to residual class I antigens, with help from CD4+ cells stimulated indirectly, cause rejection of 'major histocompatibility complex-deficient' skin grafts>. Transplantation63, 1123–1133 (1997).References57and58showed that mouse skin grafts deficient in MHC molecules are still rejected rapidly by allogeneic recipients. ArticleCASPubMed Google Scholar
van den Elsen, P. J., Gobin, S. J., van Eggermond, M. C. & Peijnenburg, A. Regulation of MHC class I and II gene transcription: differences and similarities. Immunogenetics48, 208–221 (1998). ArticleCASPubMed Google Scholar
Gobin, S. J., van Zutphen, M., Westerheide, S. D., Boss, J. M. & van den Elsen, P. J. The MHC-specific enhanceosome and its role in MHC class I and β(2)-microglobulin gene transactivation. J. Immunol.167, 5175–5184 (2001). ArticleCASPubMed Google Scholar
Restifo, N. P. et al. Identification of human cancers deficient in antigen processing. J. Exp. Med.177, 265–272 (1993). ArticleCASPubMed Google Scholar
Cromme, F. V. et al. Loss of transporter protein, encoded by the TAP1 gene, is highly correlated with loss of HLA expression in cervical carcinomas. J. Exp. Med.179, 335–340 (1994). ArticleCASPubMed Google Scholar
Chen, H. L. et al. A functionally defective allele of TAP1 results in loss of MHC class I antigen presentation in a human lung cancer. Nature Genet.13, 210–213 (1996). ArticleCASPubMed Google Scholar
Hicklin, D. J. et al. β2-microglobulin mutations, HLA-class I antigen loss and tumor progression in melanoma. J. Clin. Invest.101, 2720–2729 (1998). ArticleCASPubMedPubMed Central Google Scholar
Burgert, H. G. & Kvist, S. An adenovirus type 2 glycoprotein blocks cell-surface expression of human histocompatibility class I antigens. Cell41, 987–997 (1985). ArticleCASPubMed Google Scholar
Früh, K. et al. A viral inhibitor of peptide transporters for antigen presentation. Nature375, 415–418 (1995). ArticlePubMed Google Scholar
Storkus, W. J., Howell, D. N., Salter, R. D., Dawson, J. R. & Cresswell, P. NK susceptibility varies inversely with target cell class I HLA antigen expression. J. Immunol.138, 1657–1659 (1987). CASPubMed Google Scholar
Storkus, W. J., Alexander, J., Payne, J. A., Dawson, J. R. & Cresswell, P. Reversal of natural killing susceptibility in target cells expressing transfected class I HLA genes. Proc. Natl Acad. Sci. USA86, 2361–2364 (1989). ArticleCASPubMedPubMed Central Google Scholar
Zeidler, R. et al. Downregulation of TAP1 in B lymphocytes by cellular and Epstein–Barr virus-encoded interleukin-10. Blood90, 2390–2397 (1997). CASPubMed Google Scholar
Bellgrau, D. et al. A role for CD95 ligand in preventing graft rejection. Nature377, 630–632 (1995). ArticleCASPubMed Google Scholar
Strand, S. et al. Lymphocyte apoptosis induced by CD95 (APO-1/Fas) ligand-expressing tumor cells — a mechanism of immune evasion? Nature Med.2, 1361–1366 (1996). ArticleCASPubMed Google Scholar
Swenson, K. M. et al. Fas ligand gene transfer to renal allografts in rats: effects on allograft survival. Transplantation65, 155–160 (1998). ArticleCASPubMed Google Scholar
Matsuda, M. et al. Interleukin-10 pretreatment protects target cells from tumor- and allo-specific cytotoxic T cells and downregulates HLA class I expression. J. Exp. Med.180, 2371–2376 (1994). ArticleCASPubMed Google Scholar
Qin, L. et al. Retrovirus-mediated transfer of viral IL-10 gene prolongs murine cardiac allograft survival. J. Immunol.156, 2316–2323 (1996). CASPubMed Google Scholar
Lewandoski, M. Conditional control of gene expression in the mouse. Nature Rev. Genet.2, 743–755 (2001). ArticleCASPubMed Google Scholar
Grey, S. T., Arvelo, M. B., Hasenkamp, W., Bach, F. H. & Ferran, C. A20 inhibits cytokine-induced apoptosis and nuclear factor-κB-dependent gene activation in islets. J. Exp. Med.190, 1135–1146 (1999). ArticleCASPubMedPubMed Central Google Scholar
Arase, H., Mocarski, E. S., Campbell, A. E., Hill, A. B. & Lanier, L. L. Direct recognition of cytomegalovirus by activating and inhibitory NK-cell receptors. Science296, 1323–1326 (2002). ArticleCASPubMed Google Scholar
Karim, M., Steger, U., Bushell, A. R. & Wood, K. J. The role of the graft in establishing tolerance. Front. Biosci.7, e129–e154 (2002). ArticleCASPubMed Google Scholar
Wood, K. J., Jones, N. D., Bushell, A. R. & Morris, P. J. Alloantigen-induced specific immunological unresponsiveness. Philos. Trans. R. Soc. Lond. B356, 665–680 (2001). ArticleCAS Google Scholar
Knechtle, S. J., Hamawy, M. M., Hu, H., Fechner, J. H. & Cho, C. S. Tolerance and near-tolerance strategies in monkeys and their application to human renal transplantation. Immunol. Rev.183, 205–213 (2001). ArticleCASPubMed Google Scholar
Fairchild, P. J. & Waldmann, H. Dendritic cells and prospects for transplantation tolerance. Curr. Opin. Immunol.12, 528–535 (2000). ArticleCASPubMed Google Scholar
Coutinho, A., Hori, S., Carvalho, T. & Demengeot, J. Regulatory T cells: the physiology of autoreactivity in dominant tolerance and 'quality control' of immune responses. Immunol. Rev.182, 89–98 (2001). ArticleCASPubMed Google Scholar
Millan, M. T. et al. Mixed chimerism and immunosuppressive drug withdrawal after HLA-mismatched kidney and hematopoietic progenitor transplantation. Transplantation73, 1386–1391 (2002). ArticlePubMed Google Scholar
Kaufman, D. S., Hanson, E. T., Lewis, R. L., Auerbach, R. & Thomson, J. A. Hematopoietic colony-forming cells derived from human embryonic stem cells. Proc. Natl Acad. Sci. USA98, 10716–10721 (2001).The first demonstration of haematopoietic-cell differentiation from hES cells. ArticleCASPubMedPubMed Central Google Scholar
Ilstad, S. T. & Sachs, D. H. Reconstitution with syngeneic plus allogeneic or xenogeneic bone marrow leads to specific acceptance of allografts or xenografts. Nature307, 168–170 (1984). Article Google Scholar
Ildstad, S. T., Wren, S., Bluestone, J. A., Barbieri, S. A. & Sachs, D. H. Characterisation of mixed allogeneic chimeras. Immunocompetence, in vitro reactivity and genetic specificity of tolerance. J. Exp. Med.162, 231–244 (1985). ArticleCASPubMed Google Scholar
Tomita, Y., Sachs, D. H. & Sykes, M. Myelosuppressive conditioning is required to achieve engraftment of pluripotent stem cells contained in moderate doses of syngeneic bone marrow. Blood83, 939–948 (1994). CASPubMed Google Scholar
Nikolic, B., Zhao, G., Swenson, K. & Sykes, M. A novel application of cyclosporin A in nonmyeloablative pretransplant host conditioning for allogeneic BMT. Blood96, 1166–1172 (2000). CASPubMed Google Scholar
Wekerle, T. et al. Allogeneic bone-marrow transplantation with costimulatory blockade induces macrochimerism and tolerance without cytoreductive host treatment. Nature Med.6, 464–469 (2000). ArticleCASPubMed Google Scholar
Durham, M. M. et al. Administration of anti-CD40 ligand and donor bone marrow leads to hemopoietic chimerism and donor-specific tolerance without cytoreductive conditioning. J. Immunol.165, 1–4 (2000). ArticleCASPubMed Google Scholar
Fandrich, F. et al. Preimplantation-stage stem cells induce long-term allogeneic graft acceptance without supplementary host conditioning. Nature Med.8, 171–178 (2002).Injection of pre-implantation-stage rat ES cells into the portal vein of allogeneic recipients leads to haematopoietic chimerism and long-term acceptance of an allogeneic cardiac allograft. ArticleCASPubMed Google Scholar
Khan, A., Tomita, Y. & Sykes, M. Thymic dependence of loss of tolerance in mixed allogeneic bone-marrow chimeras after depletion of donor antigen. Peripheral mechanisms do not contribute to maintenance of tolerance. Transplantation62, 380–387 (1996). ArticleCASPubMed Google Scholar
Tomita, Y., Khan, A. & Sykes, M. Role of intrathymic clonal deletion and peripheral anergy in transplant tolerance induced by bone-marrow transplantation in mice conditioned with a non-myeloablative regimen. J. Immunol.153, 1087–1098 (1994). CASPubMed Google Scholar
Manilay, J. O., Pearson, D. A., Sergio, J. J., Swenson, K. G. & Sykes, M. Intrathymic deletion of alloreactive T cells in mixed bone-marrow chimeras prepared with a nonmyeloablative conditioning regimen. Transplantation66, 96–102 (1998). ArticleCASPubMed Google Scholar
Wekerle, T. et al. Extrathymic T-cell deletion and allogeneic stem-cell engraftment induced with costimulatory blockade is followed by central T-cell tolerance. J. Exp. Med.187, 2037–2044 (1998). ArticleCASPubMedPubMed Central Google Scholar
Kyba, M., Perlingeiro, R. C. & Daley, G. Q. HoxB4 confers definitive lymphoid–myeloid engraftment potential on embryonic stem cell and yolk sac hematopoietic progenitors. Cell109, 29–37 (2002).The first demonstration of the derivation from mouse ES cells of haematopoietic stem cells with potential for multi-lineage long-term engraftment. ArticleCASPubMed Google Scholar
Reubinoff, B. E., Pera, M. F., Fong, C. Y., Trounson, A. & Bongso, A. Embryonic stem-cell lines from human blastocysts: somatic differentiation in vitro. Nature Biotechnol.18, 399–404 (2000). ArticleCAS Google Scholar
Badcock, G., Pigott, C., Goepel, J. & Andrews, P. W. The human embryonal carcinoma marker antigen TRA-1-60 is a sialylated keratan sulfate proteoglycan. Cancer Res.59, 4715–4719 (1999). CASPubMed Google Scholar
Gould, D. S. & Auchincloss, H. Direct and indirect recognition: the role of MHC antigens in graft rejection. Immunol. Today20, 77–82 (1999). ArticleCASPubMed Google Scholar
Pietra, B. A., Wiseman, A., Bolwerk, A., Rizeq, M. & Gill, R. G. CD4 T-cell-mediated cardiac allograft rejection requires donor but not host MHC class II. J. Clin. Invest.106, 1003–1010 (2000). ArticleCASPubMedPubMed Central Google Scholar
Frasca, L. et al. Interferon-γ-treated renal tubular epithelial cells induce allospecific tolerance. Kidney Int.53, 679–689 (1998). ArticleCASPubMed Google Scholar
Vella, J. P. et al. Cellular and humoral mechanisms of vascularised allograft rejection induced by indirect recognition of donor MHC allopeptides. Transplantation67, 1523–1532 (1999). ArticleCASPubMed Google Scholar
Lee, R. S., Grusby, M. J., Glimcher, L. H., Winn, H. J. & Auchincloss, H. Indirect recognition by helper cells can induce donor-specific cytotoxic T lymphocytes in vivo. J. Exp. Med.179, 865–872 (1994). ArticleCASPubMed Google Scholar
Steele, D. J. et al. Two levels of help for B-cell alloantibody production. J. Exp. Med.183, 699–703 (1996). ArticleCASPubMed Google Scholar