Sphingosine-1-phosphate: an enigmatic signalling lipid (original) (raw)
Thudichum, J. L. W. A Treatise on the Chemical Constitution of Brain. 149 (Bailliere, Tindall and Cox, London, 1884). Google Scholar
Stoffel, W. & Assmann, G. Metabolism of sphingoid bases, XV. Enzymatic degradation of 4t-sphingenine 1-phosphate (sphingosine-1-phosphate) to 2t-hexadecen-1-al and ethanolamine phosphate. Hoppe-Seyler's Z. Physiol. Chem.351, 1041–1049 (1970). ArticleCAS Google Scholar
Zhang, H. et al. Sphingosine-1-phosphate, a novel lipid, involved in cellular proliferation. J. Cell Biol.114, 155–167 (1991). ArticleCASPubMed Google Scholar
Olivera, A. & Spiegel, S. Sphingosine-1-phosphate as a second messenger in cell proliferation induced by PDGF and FCS mitogens. Nature365, 557–560 (1993). This was a pioneering study that showed that S1P was a signalling molecule. ArticleCASPubMed Google Scholar
Cuvillier, O. et al. Suppression of ceramide-mediated programmed cell death by sphingosine-1-phosphate. Nature381, 800–803 (1996). This was the first evidence that S1P can suppress apoptosis and proposed the concept of the sphingolipid rheostat. ArticleCASPubMed Google Scholar
Liu, H., Chakravarty, D., Maceyka, M., Milstien, S. & Spiegel, S. Sphingosine kinases: a novel family of lipid kinases. Prog. Nucleic Acid Res. Mol. Biol.71, 493–511 (2002). ArticleCASPubMed Google Scholar
Hait, N. C., Fujita, K., Lester, R. L. & Dickson, R. C. Lcb4p sphingoid base kinase localizes to the Golgi and late endosomes. FEBS Lett.532, 97–102 (2002). ArticleCASPubMed Google Scholar
Funato, K., Lombardi, R., Vallée, B. & Riezman, H. Lcb4p is a key regulator of ceramide synthesis from exogenous long chain sphingoid base in Saccharomyces cerevisiae. J. Biol. Chem.278, 7325–7334 (2003). ArticleCASPubMed Google Scholar
Pitson, S. M. et al. The nucleotide-binding site of human sphingosine kinase 1. J. Biol. Chem.277, 49545–49553 (2002). ArticleCASPubMed Google Scholar
Saba, J. D., Nara, F., Bielawska, A., Garrett, S. & Hanun, Y. A. The BST1 gene of Saccharomyces cerevisiae is the sphingosine-1-phosphate lyase. J. Biol. Chem.272, 26087–26090 (1997). ArticleCASPubMed Google Scholar
Gottlieb, D., Heideman, W. & Saba, J. D. The DPL1 gene is involved in mediating the response to nutrient deprivation in Saccharomyces cerevisiae. Mol. Cell Biol. Res. Commun.1, 66–71 (1999). ArticleCASPubMed Google Scholar
Li, G., Foote, C., Alexander, S. & Alexander, H. Sphingosine-1-phosphate lyase has a central role in the development of Dictyostelium discoideum. Development128, 3473–3483 (2001). ArticleCASPubMed Google Scholar
Mao, C., Wadleigh, M., Jenkins, G. M., Hannun, Y. A. & Obeid, L. M. Identification and characterization of Saccharomyces cerevisiae dihydrosphingosine-1-phosphate phosphatase. J. Biol. Chem.272, 28690–28694 (1997). ArticleCASPubMed Google Scholar
Mandala, S. M. et al. Sphingoid base 1-phosphate phosphatase: a key regulator of sphingolipid metabolism and stress response. Proc. Natl Acad. Sci. USA95, 150–155 (1998). ArticleCASPubMedPubMed Central Google Scholar
Mao, C., Saba, J. D. & Obeid, L. M. The dihydrosphingosine-1-phosphate phosphatases of Saccharomyces cerevisiae are important regulators of cell proliferation and heat stress responses. Biochem. J.342, 667–675 (1999). ArticleCASPubMedPubMed Central Google Scholar
Mandala, S. M. et al. Molecular cloning and characterization of a lipid phosphohydrolase that degrades sphingosine-1-phosphate and induces cell death. Proc. Natl Acad. Sci. USA97, 7859–7864 (2000). ArticleCASPubMedPubMed Central Google Scholar
Le Stunff, H. et al. Characterization of murine sphingosine-1-phosphate phosphohydrolase. J. Biol. Chem.277, 8920–8927 (2002). ArticleCASPubMed Google Scholar
Ogawa, C., Kihara, A., Gokoh, M. & Igarashi, Y. Identification and characterization of a novel human sphingosine 1-phosphate phosphohydrolase, hSPP2. J. Biol. Chem.278, 1268–1272 (2003). ArticleCASPubMed Google Scholar
Jasinska, R. et al. Lipid phosphate phosphohydrolase-1 degrades exogenous glycerolipid and sphingolipid phosphate esters. Biochem. J.340, 677–686 (1999). ArticleCASPubMedPubMed Central Google Scholar
Le Stunff, H., Galve-Roperh, I., Peterson, C., Milstien, S. & Spiegel, S. Sphingosine-1-phosphate phosphohydrolase in regulation of sphingolipid metabolism and apoptosis. J. Cell Biol.158, 1039–1049 (2002). ArticleCASPubMedPubMed Central Google Scholar
Spiegel, S. & Milstien, S. Sphingosine 1-phosphate, a key cell signaling molecule. J. Biol. Chem.277, 25851–25854 (2002). ArticleCASPubMed Google Scholar
Hannun, Y. A. & Obeid, L. M. The ceramide-centric universe of lipid-mediated cell regulation: stress encounters of the lipid kind. J. Biol. Chem.277, 25487–25850 (2002). ArticleCAS Google Scholar
Olivera, A. et al. Sphingosine kinase expression increases intracellular sphingosine-1-phosphate and promotes cell growth and survival. J. Cell Biol.147, 545–558 (1999). ArticleCASPubMedPubMed Central Google Scholar
Nava, V. E., Hobson, J. P., Murthy, S., Milstien, S. & Spiegel, S. Sphingosine kinase type 1 promotes estrogen-dependent tumorigenesis of breast cancer MCF-7 cells. Exp. Cell Res.281, 115–127 (2002). ArticleCASPubMed Google Scholar
Shu, X., Wu, W., Mosteller, R. D. & Broek, D. Sphingosine kinase mediates vascular endothelial growth factor-induced activation of ras and mitogen-activated protein kinases. Mol. Cell. Biol.22, 7758–7768 (2002). This important study highlights a new mechanism by which SphK1 mediates signalling from VEGF and PKC to Ras. The mechanism seems not to use a Ras-GEF but rather modulates Ras-GAP activity to favour Ras activation. ArticleCASPubMedPubMed Central Google Scholar
Edsall, L. C., Cuvillier, O., Twitty, S., Spiegel, S. & Milstien, S. Sphingosine kinase expression regulates apoptosis and caspase activation in PC12 cells. J. Neurochem.76, 1573–1584 (2001). ArticleCASPubMed Google Scholar
Xia, P. et al. Sphingosine kinase interacts with TRAF2 and dissects tumor necrosis factor-α signaling. J. Biol. Chem.277, 7996–8003 (2002). This paper indicates that there is a role for SphK in the signal transduction by TRAF2 leading to activation of NF-κB and survival. ArticleCASPubMed Google Scholar
Jenkins, G. M. & Hannun, Y. A. Role for de novo sphingoid base biosynthesis in the heat-induced transient cell cycle arrest of Saccharomyces cerevisiae. J. Biol. Chem.276, 8574–8581 (2001). This study uncovered the role of sphingolipids in yeast heat-stress adaptation. ArticleCASPubMed Google Scholar
Kolesnick, R. & Hannun, Y. A. Ceramide and apoptosis. Trends Biochem. Sci.24, 224–225 (1999). ArticleCASPubMed Google Scholar
Kroesen, B. J. et al. Induction of apoptosis through B-cell receptor cross-linking occurs via de novo generated C16-ceramide and involves mitochondria. J. Biol. Chem.276, 13606–13614 (2001). ArticleCASPubMed Google Scholar
Perry, D. K. et al. Serine palmitoyltransferase regulates de novo ceramide generation during etoposide-induced apoptosis. J. Biol. Chem.275, 9078–9084 (2000). ArticleCASPubMed Google Scholar
Bose, R. et al. Ceramide synthase mediates daunorubicin-induced apoptosis: an alternative mechanism for generating death signals. Cell82, 405–414 (1995). ArticleCASPubMed Google Scholar
Marsh, B. J., Mastronarde, D. N., Buttle, K. F., Howell, K. E. & McIntosh, J. R. Organellar relationships in the Golgi region of the pancreatic β-cell line, HIT-T15, visualized by high resolution electron tomography. Proc. Natl Acad. Sci. USA98, 2399–2406 (2001). ArticleCASPubMedPubMed Central Google Scholar
El Bawab, S. et al. Biochemical characterization of the reverse activity of rat brain ceramidase. A CoA-independent and fumonisin B1-insensitive ceramide synthase. J. Biol. Chem.276, 16758–16766 (2001). ArticleCASPubMed Google Scholar
Gillard, B. K., Clement, R. G. & Marcus, D. M. Variations among cell lines in the synthesis of sphingolipids in de novo and recycling pathways. Glycobiology8, 885–890 (1998). ArticleCASPubMed Google Scholar
Zanolari, B. et al. Sphingoid base synthesis requirement for endocytosis in Saccharomyces cerevisiae. EMBO J.19, 2824–2833 (2000). This is the first evidence of a physiological role for sphingoid base synthesis, other than as a precursor for ceramide or phosphorylated sphingoid base synthesis. ArticleCASPubMedPubMed Central Google Scholar
van Echten-Deckert, G. et al. _cis_-4-Methylsphingosine decreases sphingolipid biosynthesis by specifically interfering with serine palmitoyltransferase activity in primary cultured neurons. J. Biol. Chem.272, 15825–15833 (1997). ArticleCASPubMed Google Scholar
Ghosh, T. K., Bian, J. & Gill, D. L. Intracellular calcium release mediated by sphingosine derivatives generated in cells. Science248, 1653–1656 (1990). ArticleCASPubMed Google Scholar
Ghosh, T. K., Bian, J. & Gill, D. L. Sphingosine 1-phosphate generated in the endoplasmic reticulum membrane activates release of stored calcium. J. Biol. Chem.269, 22628–22635 (1994). ArticleCASPubMed Google Scholar
Mattie, M., Brooker, G. & Spiegel, S. Sphingosine-1-phosphate, a putative second messenger, mobilizes calcium from internal stores via an inositol trisphosphate-independent pathway. J. Biol. Chem.269, 3181–3188 (1994). ArticleCASPubMed Google Scholar
Choi, O. H., Kim, J. -H. & Kinet, J. -P. Calcium mobilization via sphingosine kinase in signalling by the FcεRI antigen receptor. Nature380, 634–636 (1996). ArticleCASPubMed Google Scholar
Meyer zu Heringdorf, D. et al. Role of sphingosine kinase in Ca2+ signalling by epidermal growth factor receptor. FEBS Lett.461, 217–222 (1999). ArticleCASPubMed Google Scholar
Melendez, A. J. & Khaw, A. K. Dichotomy of Ca2+ signals triggered by different phospholipid pathways in antigen stimulation of human mast cells. J. Biol. Chem.277, 17255–17262 (2002). ArticleCASPubMed Google Scholar
Mathes, C., Fleig, A. & Penner, R. Calcium release-activated calcium current (ICRAC) is a direct target for sphingosine. J. Biol. Chem.273, 25020–25030 (1998). ArticleCASPubMed Google Scholar
Meyer zu Heringdorf, D. et al. Sphingosine kinase-mediated Ca2+ signalling by G-protein-coupled receptors. EMBO J.17, 2830–2837 (1998). ArticleCASPubMedPubMed Central Google Scholar
van Koppen, C. J., Meyer zu Heringdorf, D., Alemany, R. & Jakobs, K. H. Sphingosine kinase-mediated calcium signaling by muscarinic acetylcholine receptors. Life Sci.68, 2535–2540 (2001). ArticleCASPubMed Google Scholar
Birchwood, C. J., Saba, J. D., Dickson, R. C. & Cunningham, K. W. Calcium influx and signaling in yeast stimulated by intracellular sphingosine 1-phosphate accumulation. J. Biol. Chem.276, 11712–11718 (2001). ArticleCASPubMed Google Scholar
Ng, C. K., Carr, K., McAinsh, M. R., Powell, B. & Hetherington, A. M. Drought-induced guard cell signal transduction involves sphingosine-1-phosphate. Nature410, 596–599 (2001). This provides the first evidence that S1P is involved in the signal-transduction pathway in plants. It links the perception of the amount of drought hormone abscisic acid to reductions in guard-cell turgor. ArticleCASPubMed Google Scholar
Coursol, S. et al. Sphingosine-1-phosphate signalling in Arabidopsis guard cells involves heterotrimeric G proteins. Nature (in the press). This study shows that the heterotrimeric G protein in plants is required for S1P signals that mediate ABA regulation of stomatal function.
Lee, M. J. et al. Sphingosine-1-phosphate as a ligand for the G protein-coupled receptor EDG-1. Science279, 1552–1555 (1998). This study showed conclusively that S1P is a bona fide ligand for an orphan GPCR, now known as EDG1/S1P1. ArticleCASPubMed Google Scholar
Chun, J. et al. International Union of Pharmacology. XXXIV. Lysophospholipid receptor nomenclature. Pharmacol. Rev.54, 265–269 (2002). ArticleCASPubMed Google Scholar
Wang, F. et al. Sphingosine 1-phosphate stimulates cell migration through a Gi-coupled cell surface receptor. Potential involvement in angiogenesis. J. Biol. Chem.274, 35343–35350 (1999). ArticleCASPubMed Google Scholar
Lee, M. J. et al. Vascular endothelial cell adherens junction assembly and morphogenesis induced by sphingosine-1-phosphate. Cell99, 301–312 (1999). ArticleCASPubMed Google Scholar
Liu, Y. et al. Edg-1, the G protein-coupled receptor for sphingosine-1-phosphate, is essential for vascular maturation. J. Clin. Invest.106, 951–961 (2000). An important finding that EDG1/S1P1is required for vascular maturation. ArticleCASPubMedPubMed Central Google Scholar
Garcia, J. G. et al. Sphingosine 1-phosphate promotes endothelial cell barrier integrity by Edg-dependent cytoskeletal rearrangement. J. Clin. Invest.108, 689–701 (2001). ArticleCASPubMedPubMed Central Google Scholar
Kupperman, E., An, S., Osborne, N., Waldron, S. & Stainier, D. Y. A sphingosine-1-phosphate receptor regulates cell migration during vertebrate heart development. Nature406, 192–195 (2000). This work provided a link between EDG5/S1P2and heart development in zebrafish. ArticleCASPubMed Google Scholar
Brinkmann, V. et al. The immune modulator, FTY720, targets sphingosine 1-phosphate receptors. J. Biol. Chem.277, 21453–21457 (2002). ArticleCASPubMed Google Scholar
Mandala, S. et al. Alteration of lymphocyte trafficking by sphingosine-1-phosphate receptor agonists. Science296, 346–349 (2002). References 60 and 61 provide a provocative link between the immunomodulating drug FTY720, S1P receptors and lymphocyte homing. ArticleCASPubMed Google Scholar
Graeler, M., Shankar, G. & Goetzl, E. J. Cutting edge: suppression of T cell chemotaxis by sphingosine 1-phosphate. J. Immunol.169, 4084–4087 (2002). ArticleCASPubMed Google Scholar
Hall, A. G proteins and small GTPases: distant relatives keep in touch. Science280, 2074–2075 (1998). ArticleCASPubMed Google Scholar
Hobson, J. P. et al. Role of the sphingosine-1-phosphate receptor EDG-1 in PDGF-induced cell motility. Science291, 1800–1803 (2001). This paper proposed a new model for cross-communication between tyrosine kinase receptors and the S1P receptors. ArticleCASPubMed Google Scholar
Okamoto, H. et al. Inhibitory regulation of Rac activation, membrane ruffling, and cell migration by the G protein-coupled sphingosine-1-phosphate receptor EDG5 but not EDG1 or EDG3. Mol. Cell. Biol.20, 9247–9261 (2000). ArticleCASPubMedPubMed Central Google Scholar
Hla, T., Lee, M. J., Ancellin, N., Paik, J. H. & Kluk, M. J. Lysophospholipids — receptor revelations. Science294, 1875–1878 (2001). ArticleCASPubMed Google Scholar
English, D., Brindley, D. N., Spiegel, S. & Garcia, J. G. Lipid mediators of angiogenesis and the signalling pathways they initiate. Biochim. Biophys. Acta1582, 228–239 (2002). ArticleCASPubMed Google Scholar
Ishii, I. et al. Marked perinatal lethality and cellular signaling deficits in mice null for the two sphingosine 1-phosphate receptors, S1P2/LPB2/EDG-5 and S1P3/LPB3/EDG-3. J. Biol. Chem.277, 25152–25159 (2002). ArticleCASPubMed Google Scholar
Paik, J. H., Chae, S., Lee, M. J., Thangada, S. & Hla, T. Sphingosine 1-phosphate-induced endothelial cell migration requires the expression of EDG-1 and EDG-3 receptors and Rho-dependent activation of αvβ3- and β1-containing integrins. J. Biol. Chem.276, 11830–11827 (2001). ArticleCASPubMed Google Scholar
Tanimoto, T., Jin, Z. G. & Berk, B. C. Transactivation of vascular endothelial growth factor (VEGF) receptor Flk-1/KDR is involved in sphingosine 1-phosphate-stimulated phosphorylation of Akt and endothelial nitric-oxide synthase (eNOS). J. Biol. Chem.277, 42997–43001 (2002). ArticleCASPubMed Google Scholar
Benaud, C. et al. Sphingosine 1-phosphate, present in serum-derived lipoproteins, activates matriptase. J. Biol. Chem.277, 10539–10546 (2002). ArticleCASPubMed Google Scholar
Endo, A. et al. Sphingosine 1-phosphate induces membrane ruffling and increases motility of human umbilical vein endothelial cells via vascular endothelial growth factor receptor and CrkII. J. Biol. Chem.277, 23747–23754 (2002). ArticleCASPubMed Google Scholar
Igarashi, J. & Michel, T. Sphingosine 1-phosphate and isoform-specific activation of phosphoinositide 3-kinase-β. Evidence for divergence and convergence of receptor-regulated endothelial nitric-oxide synthase signaling pathways. J. Biol. Chem.276, 36281–36288 (2001). ArticleCASPubMed Google Scholar
Lee, M. et al. Akt-mediated phosphorylation of the G protein-coupled receptor EDG-1 is required for endothelial cell chemotaxis. Mol. Cell8, 693–704 (2001). ArticleCASPubMed Google Scholar
Rosenfeldt, H. M. et al. EDG-1 links the PDGF receptor to Src and focal adhesion kinase activation leading to lamellipodia formation and cell migration. FASEB J.15, 2649–2659 (2001). ArticleCASPubMed Google Scholar
Rosenfeldt, H. M., Hobson, J. P., Milstien, S. & Spiegel, S. The sphingosine-1-phosphate receptor EDG-1 is essential for platelet-derived growth factor-induced cell motility. Biochem. Soc. Trans.29, 836–839 (2001). ArticleCASPubMed Google Scholar
Johnson, K. R., Becker, K. P., Facchinetti, M. M., Hannun, Y. A. & Obeid, L. M. PKC-dependent activation of sphingosine kinase 1 and translocation to the plasma membrane. Extracellular release of sphingosine-1-phosphate induced by phorbol 12-myristate 13-acetate (PMA). J. Biol. Chem.277, 35257–35262 (2002). This study provided a clue to mechanisms of activation of SphK1 by translocation to plasma membranes. ArticleCASPubMed Google Scholar
Lacana, E., Maceyka, M., Milstien, S. & Spiegel, S. Cloning and characterization of a protein kinase A anchoring protein (AKAP)-related protein that interacts with and regulates sphingosine kinase 1 activity. J. Biol. Chem.277, 32947–32953 (2002). ArticleCASPubMed Google Scholar
Hayashi, S. et al. Identification and characterization of RPK118, a novel sphingosine kinase-1-binding protein. J. Biol. Chem.277, 33319–33324 (2002). ArticleCASPubMed Google Scholar
Nagiec, M. M., Skrzypek, M., Nagiec, E. E., Lester, R. L. & Dickson, R. C. The LCB4 (YOR171c) and LCB5 (YLR260w) genes of Saccharomyces encode long chain base kinases. J. Biol. Chem.273, 19437–19442 (1998). ArticleCASPubMed Google Scholar
Kohama, T. et al. Molecular cloning and functional characterization of murine sphingosine kinase. J. Biol. Chem.273, 23722–23728 (1998). ArticleCASPubMed Google Scholar
Zhou, J. & Saba, J. D. Identification of the first mammalian sphingosine phosphate lyase gene and its functional expression in yeast. Biochem. Biophys. Res. Commun.242, 502–507 (1998). ArticleCASPubMed Google Scholar
Van Veldhoven, P. P., Gijsbers, S., Mannaerts, G. P., Vermeesch, J. R. & Brys, V. Human sphingosine-1-phosphate lyase: cDNA cloning, functional expression studies and mapping to chromosome 10q22(1). Biochim. Biophys. Acta1487, 128–134 (2000). ArticleCASPubMed Google Scholar
Qie, L., Nagiec, M. M., Baltisberger, J. A., Lester, R. L. & Dickson, R. C. Identification of a Saccharomyces gene, LCB3, necessary for incorporation of exogenous long chain bases into sphingolipids. J. Biol. Chem.272, 16110–16117 (1997). ArticleCASPubMed Google Scholar
Futerman, A. H., Stieger, B., Hubbard, A. L. & Pagano, R. E. Sphingomyelin synthesis in rat liver occurs predominantly at the cis and medial cisternae of the Golgi apparatus. J. Biol. Chem.265, 8650–8657 (1990). ArticleCASPubMed Google Scholar
Merrill, A. H. Jr. De novo sphingolipid biosynthesis: a necessary, but dangerous, pathway. J. Biol. Chem.277, 25843–25846 (2002). ArticleCASPubMed Google Scholar
Michel, C. & van Echten-Deckert, G. Conversion of dihydroceramide to ceramide occurs at the cytosolic face of the endoplasmic reticulum. FEBS Lett.416, 153–155 (1997). ArticleCASPubMed Google Scholar
van Meer, G. & Holthuis, J. C. Sphingolipid transport in eukaryotic cells. Biochim. Biophys. Acta1486, 145–170 (2000). ArticleCASPubMed Google Scholar
Hannun, Y. Functions of ceramide in coordinating cellular responses to stress. Science274, 1855–1859 (1996). ArticleCASPubMed Google Scholar
Brinkmann, V & Lynch, K. R. FTY720: targeting G-protein-coupled receptors for sphingosine 1-phosphate in transplantation and autoimmunity. Curr. Opin. Immunol.14, 569–575 (2002). ArticleCASPubMed Google Scholar