- Gorbalenya, A. E. & Koonin, E. V. Helicases: amino acid sequence comparisons and structure–function relationships. Curr. Opin. Struct. Biol. 3, 419–429 (1993).
Article CAS Google Scholar
- Linder, P. et al. Birth of the D-E-A-D box. Nature 337, 121–122 (1989). This scientific correspondence highlighted the relationship among different proteins that are involved in RNA metabolism.
Article CAS PubMed Google Scholar
- Tanner, N. K., Cordin, O., Banroques, J., Doère, M. & Linder, P. The Q Motif. A newly identified motif in DEAD box helicases may regulate ATP binding and hydrolysis. Mol. Cell 11, 127–138 (2003). The discovery of the Q-motif highlights the differences between RNA helicase families and the possibility that these proteins might be regulated differently.
Article CAS PubMed Google Scholar
- Tanner, N. K. The newly identified Q motif of DEAD box helicases is involved in adenine recognition. Cell Cycle 2, 18–19 (2003).
Article CAS PubMed Google Scholar
- Boeckmann, B. et al. The SWISS-PROT protein knowledgebase and its supplement TrEMBL in 2003. Nucleic Acids Res. 31, 365–370 (2003).
Article CAS PubMed PubMed Central Google Scholar
- de la Cruz, J., Kressler, D. & Linder, P. Unwinding RNA in Saccharomyces cerevisiae: DEAD-box proteins and related families. Trends Biochem. Sci. 24, 192–198 (1999).
Article CAS PubMed Google Scholar
- Kim, S. -H., Smith, J., Claude, A. & Lin, R. -J. The purified yeast pre-mRNA splicing factor PRP2 is an RNA-dependent NTPase. EMBO J. 11, 2319–2326 (1992).
Article CAS PubMed PubMed Central Google Scholar
- Lee, C. -G. & Hurwitz, J. A new RNA helicase isolated from HeLa cells that catalytically translocates in the 3′ to 5′ direction. J. Biol. Chem. 267, 4398–4407 (1992).
Article CAS PubMed Google Scholar
- Subramanya, H. S., Bird, L. E., Brannigan, J. A. & Wigley, D. B. Crystal structure of a DExx box DNA helicase. Nature 384, 379–383 (1996). First report on the 3D structure of a DNA helicase, which later turned out to be similar to the structure of RNA helicases.
Article CAS PubMed Google Scholar
- Korolev, S., Hsieh, J., Gauss, G. H., Lohman, T. M. & Waksman, G. Major domain swiveling revealed by the crystal structures of complexes of E. coli Rep helicase bound to single-stranded DNA and ADP. Cell 90, 635–647 (1997).
Article CAS PubMed Google Scholar
- Yao, N. et al. Structure of the hepatitis C virus RNA helicase domain. Nature Struct. Biol. 4, 463–467 (1997). First report on the 3D structure of a RNA helicase — in this case from the DExH family.
Article CAS PubMed Google Scholar
- Kim, J. L. et al. Hepatitis C virus NS3 RNA helicase domain with a bound oligonucleotide: the crystal structure provides insights into the mode of unwinding. Structure 6, 89–100 (1998).
Article CAS PubMed Google Scholar
- Cho, H. -S. et al. Crystal structure of RNA helicase from genotype 1b hepatitis C virus: a feasible mechanism of unwinding duplex RNA. J. Biol. Chem. 273, 15045–15052 (1998).
Article CAS PubMed Google Scholar
- Benz, J., Trachsel, H. & Baumann, U. Crystal structure of ATPase domain of translation initiation factor eIF4A from Saccharomyces cerevisiae the prototype of the DEAD box protein family. Structure Fold Des. 7, 671–679 (1999).
Article CAS PubMed Google Scholar
- Caruthers, J. M., Johnson, E. R. & McKay, D. B. Crystal structure of yeast initiation factor 4A, a DEAD-box RNA helicase. Proc. Natl Acad. Sci. USA 97, 3080–3085 (2000).
Article Google Scholar
- Story, R. M., Li, H. & Abelson, J. N. Crystal structure of a DEAD box protein from the hyperthermophile Methanococcus jannaschii. Proc. Natl Acad. Sci. USA 98, 1465–1470 (2001).
Article CAS PubMed PubMed Central Google Scholar
- Carmel, A. B. & Matthews, B. W. Crystal structure of the BstDEAD N-terminal domain: a novel DEAD protein from Bacillus stearothermophilus. RNA 10, 66–74 (2004).
Article CAS PubMed PubMed Central Google Scholar
- Caruthers, J. M. & McKay, D. B. Helicase structure and mechanism. Curr. Opin. Struct. Biol. 12, 123–133 (2002).
Article CAS PubMed Google Scholar
- Singleton, M. R. & Wigley, D. B. Modularity and specialization in superfamily 1 and 2 helicases. J. Bacteriol. 184, 1819–1826 (2002).
Article CAS PubMed PubMed Central Google Scholar
- Tanner, N. K. & Linder, P. DExD/H box RNA helicases: from generic motors to specific dissociation functions. Mol. Cell 8, 251–262 (2001).
Article CAS PubMed Google Scholar
- Yan, X., Mouillet, J. F., Ou, Q. & Sadovsky, Y. A novel domain within the DEAD-box protein DP103 is essential for transcriptional repression and helicase activity. Mol. Cell. Biol. 23, 414–423 (2003).
Article CAS PubMed PubMed Central Google Scholar
- Rajendran, R. R. et al. Regulation of nuclear receptor transcriptional activity by a novel DEAD box RNA helicase (DP97). J. Biol. Chem. 278, 4628–4638 (2003).
Article CAS PubMed Google Scholar
- Rossow, K. L. & Janknecht, R. Synergism between p68 RNA helicase and the transcriptional coactivators CBP and p300. Oncogene 22, 151–156 (2003).
Article CAS PubMed Google Scholar
- Kistler, A. L. & Guthrie, C. Deletion of MUD2, the yeast homolog of U2AF65, can bypass the requirement for Sub2, an essential spliceosomal ATPase. Genes Dev. 15, 42–49 (2001).
Article CAS PubMed PubMed Central Google Scholar
- Chen, J. Y. -F. et al. Specific alterations of U1-C protein or U1 small nuclear RNA can eliminate the requirement of Prp28p, an essential DEAD box splicing factor. Mol. Cell 7, 227–232 (2001). This paper, together with reference 24, reported for the first time genetic evidence for an RNPase activity of DEAD-box proteins.
Article CAS PubMed Google Scholar
- Jankowsky, E., Gross, C. H., Shumann, S. & Pyle, A. M. Active disruption of an RNA–protein interaction by a DExH/D RNA helicase. Science 291, 121–125 (2001). This publication reported for the first time biochemical evidence for an RNPase activity of a DExH-box protein.
Article CAS PubMed Google Scholar
- Lafontaine, D. L. J. & Tollervey, D. Birth of the snoRNPs: the evolution of the modification-guide snoRNAs. Trends Biochem. Sci. 23, 383–388 (1998).
Article CAS PubMed Google Scholar
- Kiss, T. Small nucleolar RNAs: an abundant group of noncoding RNAs with diverse cellular functions. Cell 109, 145–148 (2002).
Article CAS PubMed Google Scholar
- Charollais, J., Pflieger, D., Vinh, J., Dreyfus, M. & Iost, I. The DEAD-box RNA helicase SrmB is involved in the assembly of 50S ribosomal subunits in Escherichia coli. Mol. Microbiol. 48, 1253–1265 (2003).
Article CAS PubMed Google Scholar
- Tseng, S. S. -I. et al. Dbp5p, a cytosolic RNA helicase, is required for poly(A)+ RNA export. EMBO J. 17, 2651–2662 (1998).
Article CAS PubMed PubMed Central Google Scholar
- Schmitt, C. et al. Dbp5, a DEAD-box protein required for mRNA export, is recruited to the cytoplasmic fibrils of nuclear pore complex via a conserved interaction with CAN/Nup159p. EMBO J. 18, 4332–4347 (1999).
Article CAS PubMed PubMed Central Google Scholar
- Snay-Hodge, C. A., Colot, H. V., Goldstein, A. L. & Cole, C. N. Dbp5p/Rat8p is a yeast nuclear pore-associated DEAD-box protein essential for RNA export. EMBO J. 17, 2663–2676 (1998).
Article CAS PubMed PubMed Central Google Scholar
- Zhao, J., Jin, S. B., Bjorkroth, B., Wieslander, L. & Daneholt, B. The mRNA export factor Dbp5 is associated with Balbiani ring mRNP from gene to cytoplasm. EMBO J. 21, 1177–1187 (2002).
Article CAS PubMed PubMed Central Google Scholar
- Estruch, F. & Cole, C. N. An early function during transcription for the yeast mRNA export factor Dbp5p/Rat8p suggested by its genetic and physical interactions with transcription factor IIH components. Mol. Biol. Cell. 14, 1664–1676 (2003).
Article CAS PubMed PubMed Central Google Scholar
- Rogers, G. W., Jr., Komar, A. A. & Merrick, W. C. eIF4A: the godfather of the DEAD box helicases. Prog. Nucleic Acid Res. Mol. Biol. 72, 307–331 (2002).
Article CAS PubMed Google Scholar
- Svitkin, Y. V., Ovchinnikov, L. P., Dreyfuss, G. & Sonenberg, N. General RNA binding proteins render translation cap dependent. EMBO J. 15, 7147–7155 (1996).
Article CAS PubMed PubMed Central Google Scholar
- de la Cruz, J., Iost, I., Kressler, D. & Linder, P. The p20 and Ded1 proteins have antagonistic roles in eIF4E-dependent translation in Saccharomyces cerevisiae. Proc. Natl Acad. Sci. USA 94, 5201–5206 (1997).
Article CAS PubMed PubMed Central Google Scholar
- Chuang, R. -Y., Weaver, P. L., Liu, Z. & Chang, T. -H. Requirement of the DEAD-box protein Ded1p for messenger RNA translation. Science 275, 1468–1471 (1997).
Article CAS PubMed Google Scholar
- Noueiry, A. O., Chen, J. & Ahlquist, P. A mutant allele of essential, general translation initiation factor DED1 selectively inhibits translation of a viral mRNA. Proc. Natl Acad. Sci. USA 97, 12985–12990 (2000).
Article CAS PubMed PubMed Central Google Scholar
- Grallert, B. et al. A fission yeast general translation factor reveals links between protein synthesis and cell cycle controls. J. Cell Science 113, 1447–1458 (2000).
Article CAS PubMed Google Scholar
- Svitkin, Y. V. et al. The requirement for eukaryotic initiation factor 4A (elF4A) in translation is in direct proportion to the degree of mRNA 5′ secondary structure. RNA 7, 382–394 (2001).
Article CAS PubMed PubMed Central Google Scholar
- Markussen, F. H., Michon, A. M., Breitwieser, W. & Ephrussi, A. Translational control of oskar generates short OSK, the isoform that induces pole plasma assembly. Development 121, 3723–3732 (1995).
Article CAS PubMed Google Scholar
- Liang, L., Diehl-Jones, W. & Lasko, P. Localization of vasa protein to the Drosophila pole plasm is independent of its RNA-binding and helicase activities. Development 120, 1201–1211 (1994).
Article CAS PubMed Google Scholar
- Séraphin, B., Simon, M., Boulet, A. & Faye, G. Mitochondrial splicing requires a protein from a novel helicase family. Nature 337, 84–87 (1989).
Article PubMed Google Scholar
- Schmidt, U., Lehmann, K. & Stahl, U. A novel mitochondrial DEAD box protein (Mrh4) required for maintenance of mtDNA in Saccharomyces cerevisiae. FEM Yeast Res. 2, 267–276 (2002).
CAS Google Scholar
- Mohr, S., Stryker, J. M. & Lambowitz, A. M. A DEAD-box protein functions as an ATP-dependent RNA chaperone in group I intron splicing. Cell 109, 769–779 (2002). CYT-19 functions as an ATP-dependent RNA chaperone to destabilize non-native RNA structures that constitute kinetic traps in the CYT-18-assisted RNA-folding pathway and thereby promotes group I intron splicing in vivo and in vitro.
Article CAS PubMed Google Scholar
- Valgardsdottir, R., Brede, G., Eide, L. G., Frengen, E. & Prydz, H. Cloning and characterization of MDDX28, a putative dead-box helicase with mitochondrial and nuclear localization. J. Biol. Chem. 276, 32056–32063 (2001).
Article CAS PubMed Google Scholar
- Missel, A., Souza, A. E., Nörskau, G. & Göhringer, H. U. Disruption of a gene encoding a novel mitochondrial DEAD-box protein in Trypanosoma brucei affects edited mRNAs. Mol. Cell. Biol. 17, 4895–4903 (1997).
Article CAS PubMed PubMed Central Google Scholar
- Py, B., Higgins, C. F., Krisch, H. M. & Carpousis, A. J. A DEAD-box RNA helicase in the Escherichia coli RNA degradosome. Nature 381, 169–172 (1996).
Article CAS PubMed Google Scholar
- Coburn, G. A., Miao, X., Briant, D. J. & Mackie, G. A. Reconstitution of a minimal RNA degradosome demonstrates functional coordination between a 3′ exonuclease and a DEAD-box RNA helicase. Genes Dev. 13, 2594–2603 (1999).
Article CAS PubMed PubMed Central Google Scholar
- Anderson, J. S. J. & Parker, R. P. The 3′ to 5′ degradation of yeast mRNAs is a general mechanism for mRNA turnover that requires the SKI2 DEVH box protein and 3′ to 5′ exonucleases of the exosome complex. EMBO J. 17, 1497–1506 (1998).
Article CAS PubMed PubMed Central Google Scholar
- de la Cruz, J., Kressler, D., Tollervey, D. & Linder, P. Dob1p (Mtr4p) is a putative ATP-dependent RNA helicase required for the 3′ end formation of 5.8S rRNA i Saccharomyces cerevisiae. EMBO J. 17, 1128–1140 (1998).
Article CAS PubMed PubMed Central Google Scholar
- Coller, J. M., Tucker, M., Sheth, U., Valencia-Sanchez, M. A. & Parker, R. The DEAD box helicase, Dhh1p, functions in mRNA decapping and interacts with both the decapping and deadenylase complexes. RNA 7, 1717–1727 (2001).
Article CAS PubMed PubMed Central Google Scholar
- Ladomery, M., Wade, E. & Sommerville, J. Xp54, the Xenopus homologue of human RNA helicase p54, is an integral component of stored mRNP particles in oocytes. Nucl. Acids Res. 25, 965–973 (1997).
Article CAS PubMed PubMed Central Google Scholar
- Smillie, D. A. & Sommerville, J. RNA helicase p54 (DDX6) is a shuttling protein involved in nuclear assembly of stored mRNP particles. J. Cell Sci. 115, 395–407 (2002).
Article CAS PubMed Google Scholar
- Minshall, N., Thom, G. & Standart, N. A conserved role of a DEAD box helicase in mRNA masking. RNA 7, 1728–1742 (2001).
Article CAS PubMed PubMed Central Google Scholar
- Akao, Y. et al. The rck/p54 candidate proto-oncogene product is a 54-kilodalton D-E-A-D box protein differentially expressed in human and mouse tissues. Cancer Res. 55, 3444–3449 (1995).
CAS PubMed Google Scholar
- Tseng-Rogenski, S. S. et al. Functional conservation of Dhh1p, a cytoplasmic DExD/H-box protein present in large complexes. Nucl. Acids Res. 31, 4995–5002 (2003).
Article CAS PubMed PubMed Central Google Scholar
- Maniatis, T. & Reed, R. An extensive network of coupling among gene expression machines. Nature 416, 499–506 (2002).
Article CAS PubMed Google Scholar
- Luo, M. -J. et al. Pre-mRNA splicing and mRNA export linked by direct interactions between UAP56 and Aly. Nature 413, 644–647 (2001).
Article CAS PubMed Google Scholar
- Jensen, T. H., Boulay, J., Rosbash, M. & Libri, D. The DECD-box putative ATPase Sub2p is an early mRNA export factor. Curr. Biol. 11, 1711–1715 (2001).
Article CAS PubMed Google Scholar
- Strässer, K. & Hurt, E. The splicing factor Sub2p interacts directly with the transport factor Yra1p and is required for nuclear mRNA export. Nature 413, 648–652 (2001).
Article PubMed Google Scholar
- Charroux, B. et al. Gemin3: A novel DEAD box protein that interacts with SMN, the spinal muscular atrophy gene product, and is a component of gems. J. Cell Biol. 147, 1181–1194 (1999).
Article CAS PubMed PubMed Central Google Scholar
- Kressler, D., de la Cruz, J., Rojo, M. & Linder, P. Fal1p is an essential DEAD-box protein involved in 40S-ribosomal-subunit biogenesis in Saccharomyces cerevisiae. Mol. Cell. Biol. 17, 7283–7294 (1997).
Article CAS PubMed PubMed Central Google Scholar
- Linder, P., Gasteiger, E. & Bairoch, A. A comprehensive web resource on RNA helicases from the baker's yeast Saccharomyces cerevisiae. Yeast 16, 507–509 (2000).
Article CAS PubMed Google Scholar
- Iost, I., Dreyfus, M. & Linder, P. Ded1p, a DEAD-box protein required for translation initation in Saccharomyces cerevisiae, is an RNA helicase. J. Biol. Chem. 274, 17677–17683 (1999).
Article CAS PubMed Google Scholar
- Hirling, H., Scheffner, M., Restle, T. & Stahl, H. RNA helicase activity associated with the human p68 protein. Nature 339, 562–564 (1989).
Article CAS PubMed Google Scholar
- Yu, E. & Owttrim, G. W. Characterization of the cold stress-induced cyanobacterial DEAD-box protein CrhC as an RNA helicase. Nucl. Acids Res. 28, 3926–3934 (2000).
Article CAS PubMed PubMed Central Google Scholar
- Nicol, S. M. & Fuller-Pace, F. V. The 'DEAD box' protein DbpA interacts specifically with the peptidyltransferase center in 23S rRNA. Proc. Natl Acad. Sci. USA 92, 11681–11685 (1995).
Article CAS PubMed PubMed Central Google Scholar
- Tsu, C. A., Kossen, K. & Uhlenbeck, O. C. The Escherichia coli DEAD protein DbpA recognizes a small RNA hairpin in 23S rRNA. RNA 7, 702–709 (2001).
Article CAS PubMed PubMed Central Google Scholar
- Kossen, K., Karginov, F. V. & Uhlenbeck, O. C. The carboxy-terminal domain of the DExDH protein YxiN is sufficient to confer specificity for 23S rRNA. J. Mol. Biol. 324, 625–636 (2002). Shows that the transfer of a carboxy-terminal flanking sequences from a substrate-specific RNA helicase to a nonspecific RNA helicase allows transfer of specificity.
Article CAS PubMed Google Scholar
- O'Day, C. -L., Dalbadie-McFarland, G. & Abelson, J. The Saccharomyces cerevisiae Prp5 protein has RNA-dependent ATPase activity with specificity for U2 small nuclear RNA. J. Biol. Chem. 271, 33261–33267 (1996).
Article CAS PubMed Google Scholar
- Silverman, E., Edwalds-Gilbert, G. & Lin, R. J. DExD/H-box proteins and their partners: helping RNA helicases unwind. Gene 312, 1–16 (2003).
Article CAS PubMed Google Scholar
- Ray, B. K. et al. ATP-dependent unwinding of messenger RNA structure by eukaryotic initiation factors. J. Biol. Chem. 260, 7651–7658 (1985).
Article CAS PubMed Google Scholar
- Rozen, F. et al. directional RNA helicase activity of eucaryotic translation initiation factors 4A and 4F. Mol. Cell. Biol. 10, 1134–1144 (1990).
CAS PubMed PubMed Central Google Scholar
- Peck, M. L. & Herschlag, D. Adenosine 5′-_O_-(3-thio)triphosphate (ATPγS) is a substrate for the nucleotide hydrolysis and RNA unwinding activities of eukaryotic translation initiation factor eIF4A. RNA 9, 1180–1187 (2003).
Article CAS PubMed PubMed Central Google Scholar
- Lorsch, J. R. & Herschlag, D. The DEAD box protein eIF4A. 1. A minimal kinetic and thermodynamic framework reveals coupled binding of RNA and nucleotide. Biochemistry 37, 2180–2193 (1998).
Article CAS PubMed Google Scholar
- Lorsch, J. R. & Herschlag, D. The DEAD box protein eIF4A. 2. A cycle of nucleotide and RNA-dependent conformational changes. Biochemistry 37, 2194–2206 (1998).
Article CAS PubMed Google Scholar
- Landeka, I., Filipic-Rocak, S., Zinic, B. & Weygand-Durasevic, I. Characterization of yeast seryl-tRNA synthetase active site mutants with improved discrimination against substrate analogues. Biochim. Biophys. Acta 1480, 160–170 (2000).
Article CAS PubMed Google Scholar
- Preugschat, F., Averett, D. R., Clarke, B. E. & Porter, D. J. A steady-state and pre-steady-state kinetic analysis of the NTPase activity associated with the hepatitis C virus NS3 helicase domain. J. Biol. Chem. 271, 24449–24457 (1996).
Article CAS PubMed Google Scholar
- Fuller-Pace, F. V., Nicol, S. M., Reid, A. D. & Lane, D. P. DbpA: a DEAD box protein specifically activated by 23S rRNA. EMBO J. 12, 3619–3626 (1993). This report describes a specific and strong stimulation of the ATPase activity of DbpA in the presence of a specific RNA, the 23S rRNA.
Article CAS PubMed PubMed Central Google Scholar
- Diges, C. M. & Uhlenbeck, O. C. Escherichia coli DbpA is an RNA helicase that requires hairpin 92 of 23S rRNA. EMBO J. 20, 5503–5512 (2001).
Article CAS PubMed PubMed Central Google Scholar
- Rogers, G. W. J., Richter, N. J. & Merrick, W. C. Biochemical and kinetic characterization of the RNA helicase activity of eukaryotic initiation factor 4A. J. Biol. Chem. 274, 12236–12244 (1999).
Article CAS PubMed Google Scholar
- Villa, T., Pleiss, J. A. & Guthrie, C. Spliceosomal snRNAs: Mg(2+)-dependent chemistry at the catalytic core? Cell 109, 149–152 (2002).
Article CAS PubMed Google Scholar
- Soultanas, P. & Wigley, D. B. Unwinding the 'Gordian knot' of helicase action. Trends Biochem. Sci. 26, 47–54 (2001).
Article CAS PubMed Google Scholar
- Huang, Y. & Liu, Z. R. The ATPase, RNA unwinding, and RNA binding activities of recombinant p68 RNA helicase. J. Biol. Chem. 277, 12810–12815 (2002).
Article CAS PubMed Google Scholar
- Chen, Y. Z., Zhuang, W. & Prohofsky, E. W. Energy flow considerations and thermal fluctuational opening of DNA base pairs at a replicating fork: unwinding consistent with observed replication rates. J. Biomol. Struct. Dyn. 10, 415–427 (1992).
Article CAS PubMed Google Scholar
- Du, M. X. et al. Comparative characterization of two DEAD-box RNA helicases in superfamily II: human translation-initiation factor 4A and hepatitis C virus non-structural protein 3 (NS3) helicase. Biochem. J. 363, 147–155 (2002).
Article CAS PubMed PubMed Central Google Scholar
- Jankowsky, E., Gross, C. H., Shumann, S. & Pyle, A. M. The DexH protein NPH-II is a processive and directional molecular motor for unwinding RNA. Nature 403, 447–451 (2000).
Article CAS PubMed Google Scholar
- Fatica, A. & Tollervey, D. Insights into the structure and function of a guide RNP. Nature Struct. Biol. 10, 237–239 (2003).
Article CAS PubMed Google Scholar
- Chamot, D. & Owttrim, G. W. Regulation of cold shock-induced RNA helicase gene expression in the Cyanobacterium anabaena sp. strain PCC 7120. J. Bacteriol. 182, 1251–1256 (2000).
Article CAS PubMed PubMed Central Google Scholar
- Lim, J., Thomas, T. & Cavicchioli, R. Low temperature regulated DEAD-box RNA helicase from the Antarctic archaeon, Methanococcoides burtonii. J. Mol. Biol. 297, 553–567 (2000).
Article CAS PubMed Google Scholar
- Walker, J. E., Saraste, M., Runswick, M. J. & Gay, N. J. Distantly related sequences in the α- and β- subunits of ATP synthase, myosin, kinases and other ATP-requiring enzymes and a common nucleotide binding fold. EMBO J. 1, 945–951 (1982).
Article CAS PubMed PubMed Central Google Scholar
- Fry, D. C., Kuby, S. A. & Mildvan, A. S. ATP-binding site of adenylate kinase: mechanistic implications of its homology with _ras_-encoded p21, F1-ATPase, and other nucleotide-binding proteins. Proc. Natl Acad. Sci. USA 83, 907–911 (1986).
Article CAS PubMed PubMed Central Google Scholar
- Pause, A. & Sonenberg, N. Mutational analysis of a DEAD box RNA helicase: the mammalian translation initiation factor eIF-4A. EMBO J. 11, 2643–2654 (1992).
Article CAS PubMed PubMed Central Google Scholar
- Schwer, B. & Meszaros, T. RNA helicase dynamics in pre-mRNA splicing. EMBO J. 19, 6582–6591 (2000).
Article CAS PubMed PubMed Central Google Scholar
- Laggerbauer, B., Lauber, J. & Luhrmann, R. Identification of an RNA-dependent ATPase activity in mammalian U5 snRNPs. Nucl. Acids Res. 24, 868–875 (1996).
Article CAS PubMed PubMed Central Google Scholar
- Boudet, N., Aubourg, S., Toffano-Nioche, C., Kreis, M. & Lecharny, A. Evolution of intron/exon structure of DEAD helicase family genes in Arabidopsis, Caenorhabditis, and Drosophila. Genome Res. 11, 2101–214 (2001).
Article CAS PubMed PubMed Central Google Scholar
- Abdelhaleem, M., Maltais, L. & Wain, H. The human DDX and DHX gene families of putative RNA helicases. Genomics 81, 618–622 (2003).
Article CAS PubMed Google Scholar