Modulation of signalling by Sprouty: a developing story (original) (raw)
References
Freeman, M. Feedback control of intercellular signalling in development. Nature408, 313–319 (2000). ArticleCAS Google Scholar
Hacohen, N., Kramer, S., Sutherland, D., Hiromi, Y. & Krasnow, M. A. sprouty encodes a novel antagonist of FGF signaling that patterns apical branching of the Drosophila airways. Cell92, 253–263 (1998). Reported the identification of Spry as a new molecule that functions as an FGF antagonist. ArticleCAS Google Scholar
Minowada, G. et al. Vertebrate Sprouty genes are induced by FGF signaling and can cause chondrodysplasia when overexpressed. Development126, 4465–4475 (1999). CAS Google Scholar
de Maximy, A. A. et al. Cloning and expression pattern of a mouse homologue of Drosophila sprouty in the mouse embryo. Mech. Dev.81, 213–216 (1999). ArticleCAS Google Scholar
Chambers, D., Medhurst, A. D., Walsh, F. S., Price, J. & Mason, I. Differential display of genes expressed at the midbrain–hindbrain junction identifies sprouty2: an FGF8-inducible member of a family of intracellular FGF antagonists. Mol. Cell. Neurosci.15, 22–35 (2000). ArticleCAS Google Scholar
Nutt, S. L., Dingwell, K. S., Holt, C. E. & Amaya, E. Xenopus Sprouty2 inhibits FGF-mediated gastrulation movements but does not affect mesoderm induction and patterning. Genes Dev.15, 1152–1166 (2001). Showed that inX. laevis, Spry interferes with FGF signalling without influencing Ras signalling to ERK/MAPK. ArticleCAS Google Scholar
Wakioka, T. et al. Spred is a Sprouty-related suppressor of Ras signalling. Nature412, 647–651 (2001). ArticleCAS Google Scholar
Warburton, D. et al. The molecular basis of lung morphogenesis. Mech. Dev.92, 55–81 (2000). ArticleCAS Google Scholar
Sutherland, D., Samakovlis, C. & Krasnow, M. A. branchless encodes a Drosophila FGF homolog that controls tracheal cell migration and the pattern of branching. Cell87, 1091–1101 (1996). ArticleCAS Google Scholar
Bellusci, S., Grindley, J., Emoto, H., Itoh, N. & Hogan, B. L. Fibroblast growth factor 10 (FGF10) and branching morphogenesis in the embryonic mouse lung. Development124, 4867–4878 (1997). CAS Google Scholar
Mailleux, A. A. et al. Evidence that SPROUTY2 functions as an inhibitor of mouse embryonic lung growth and morphogenesis. Mech. Dev.102, 81–94 (2001). ArticleCAS Google Scholar
Zhang, S., Lin, Y., Itaranta, P., Yagi, A. & Vainio, S. Expression of Sprouty genes 1, 2 and 4 during mouse organogenesis. Mech. Dev.109, 367–370 (2001). ArticleCAS Google Scholar
Warburton, D. et al. Do lung remodeling, repair, and regeneration recapitulate respiratory ontogeny? Am. J. Respir. Crit. Care Med.164, S59–S62 (2001). ArticleCAS Google Scholar
Chambers, D. & Mason, I. Expression of sprouty2 during early development of the chick embryo is coincident with known sites of FGF signalling. Mech. Dev.91, 361–364 (2000). ArticleCAS Google Scholar
Casci, T., Vinos, J. & Freeman, M. Sprouty, an intracellular inhibitor of Ras signaling. Cell96, 655–665 (1999). ArticleCAS Google Scholar
Kramer, S., Okabe, M., Hacohen, N., Krasnow, M. A. & Hiromi, Y. Sprouty: a common antagonist of FGF and EGF signaling pathways in Drosophila. Development126, 2515–2525 (1999). CAS Google Scholar
Reich, A., Sapir, A. & Shilo, B. Sprouty is a general inhibitor of receptor tyrosine kinase signaling. Development126, 4139–4147 (1999). References 15, 16 and 17 show that SPRY is not only an antagonist of FGF signalling but also a general inhibitor of RTK signalling. CAS Google Scholar
Impagnatiello, M. et al. Mammalian Sprouty-1 and-2 are membrane-anchored phosphoprotein inhibitors of growth factor signaling in endothelial cells. J. Cell Biol.152, 1087–1098 (2001). ArticleCAS Google Scholar
Ozaki, K. et al. ERK pathway positively regulates the expression of Sprouty genes. Biochem. Biophys. Res. Commun.285, 1084–1088 (2001). ArticleCAS Google Scholar
Sasaki, A., Taketomi, T., Wakioka, T., Kato, R. & Yoshimura, A. Identification of a dominant negative mutant of Sprouty that potentiates fibroblast growth factor- but not epidermal growth factor-induced ERK activation. J. Biol. Chem.276, 36804–36808 (2001). ArticleCAS Google Scholar
Tefft, J. D. et al. Conserved function of mSpry-2, a murine homolog of Drosophila sprouty, which negatively modulates respiratory organogenesis. Curr. Biol.9, 219–222 (1999). ArticleCAS Google Scholar
Gross, I. et al. The receptor tyrosine kinase regulator sprouty1 is a target of the tumor suppressor WT1 and important for kidney development. J. Biol. Chem.278, 41420–41430 (2003). ArticleCAS Google Scholar
Hall, A. B. et al. hSpry2 is targeted to the ubiquitin-dependent proteasome pathway by c-Cbl. Curr. Biol.13, 308–314 (2003). ArticleCAS Google Scholar
Rubin, C. et al. Sprouty fine-tunes EGF signaling through interlinked positive and negative feedback loops. Curr. Biol.13, 297–307 (2003). References 23 and 24 show that CBL-mediated SPRY multiubiquitylation targets SPRY for proteasomal degradation. ArticleCAS Google Scholar
Lim, J. et al. Sprouty proteins are targeted to membrane ruffles upon growth factor receptor tyrosine kinase activation. Identification of a novel translocation domain. J. Biol. Chem.275, 32837–32845 (2000). This reference, together with reference 15, shows that the carboxy-terminal cysteine-rich domain of SPRY proteins mediates their subcellular localization. ArticleCAS Google Scholar
Lim, J. et al. The cysteine-rich sprouty translocation domain targets mitogen-activated protein kinase inhibitory proteins to phosphatidylinositol 4,5-bisphosphate in plasma membranes. Mol. Cell. Biol.22, 7953–7966 (2002). ArticleCAS Google Scholar
Yigzaw, Y., Cartin, L., Pierre, S., Scholich, K. & Patel, T. B. The C terminus of sprouty is important for modulation of cellular migration and proliferation. J. Biol. Chem.276, 22742–22747 (2001). ArticleCAS Google Scholar
Hanafusa, H., Torii, S., Yasunaga, T. & Nishida, E. Sprouty1 and Sprouty2 provide a control mechanism for the Ras/MAPK signalling pathway. Nature Cell Biol.4, 850–858 (2002). Describes a molecular mechanism by which SPRY might antagonize RTK signalling. ArticleCAS Google Scholar
Gross, I., Bassit, B., Benezra, M. & Licht, J. D. Mammalian sprouty proteins inhibit cell growth and differentiation by preventing ras activation. J. Biol. Chem.276, 46460–46468 (2001). ArticleCAS Google Scholar
Yusoff, P. et al. Sprouty2 inhibits the Ras/MAP kinase pathway by inhibiting the activation of Raf. J. Biol. Chem.277, 3195–3201 (2002). ArticleCAS Google Scholar
Sasaki, A. et al. Mammalian Sprouty4 suppresses Ras-independent ERK activation by binding to Raf1. Nature Cell Biol.5, 427–432 (2003). ArticleCAS Google Scholar
Fong, C. W. et al. Tyrosine phosphorylation of Sprouty2 enhances its interaction with c-Cbl and is crucial for its function. J. Biol. Chem.278, 33456–33464 (2003). ArticleCAS Google Scholar
Tefft, D. et al. mSprouty2 inhibits FGF10-activated MAP kinase by differentially binding to upstream target proteins. Am. J. Physiol. Lung Cell. Mol. Physiol.283, L700–L706 (2002). ArticleCAS Google Scholar
Egan, J. E., Hall, A. B., Yatsula, B. A. & Bar-Sagi, D. The bimodal regulation of epidermal growth factor signaling by human Sprouty proteins. Proc. Natl Acad. Sci. USA99, 6041–6046 (2002). ArticleCAS Google Scholar
Wong, E. S. et al. Sprouty2 attenuates epidermal growth factor receptor ubiquitylation and endocytosis, and consequently enhances Ras/ERK signalling. EMBO J.21, 4796–4808 (2002). References 34 and 35 show that mammalian SPRY proteins potentiate EGF-receptor signalling by intercepting CBL-mediated receptor ubiquitylation and downregulation. ArticleCAS Google Scholar
Thien, C. B. & Langdon, W. Y. Cbl: many adaptations to regulate protein tyrosine kinases. Nature Rev. Mol. Cell Biol.2, 294–307 (2001). ArticleCAS Google Scholar
Wong, E. S., Lim, J., Low, B. C., Chen, Q. & Guy, G. R. Evidence for direct interaction between Sprouty and Cbl. J. Biol. Chem.276, 5866–5875 (2001). Documents the interaction of SPRY with the E3 ubiquitin ligase CBL. ArticleCAS Google Scholar
Balmanno, K. & Cook, S. J. Sustained MAP kinase activation is required for the expression of cyclin D1, p21Cip1 and a subset of AP-1 proteins in CCL39 cells. Oncogene18, 3085–3097 (1999). ArticleCAS Google Scholar
Weber, J. D., Raben, D. M., Phillips, P. J. & Baldassare, J. J. Sustained activation of extracellular-signal-regulated kinase 1 (ERK1) is required for the continued expression of cyclin D1 in G1 phase. Biochem. J.326, 61–68 (1997). ArticleCAS Google Scholar
Welsh, C. F. et al. Timing of cyclin D1 expression within G1 phase is controlled by Rho. Nature Cell Biol.3, 950–957 (2001). ArticleCAS Google Scholar
Marshall, C. J. Specificity of receptor tyrosine kinase signaling: transient versus sustained extracellular signal-regulated kinase activation. Cell80, 179–185 (1995). ArticleCAS Google Scholar
Wiley, H. S. & Burke, P. M. Regulation of receptor tyrosine kinase signaling by endocytic trafficking. Traffic2, 12–18 (2001). ArticleCAS Google Scholar
Levkowitz, G. et al. c-Cbl/Sli-1 regulates endocytic sorting and ubiquitination of the epidermal growth factor receptor. Genes Dev.12, 3663–3674 (1998). ArticleCAS Google Scholar
Wong, A. et al. FRS2α attenuates FGF receptor signaling by Grb2-mediated recruitment of the ubiquitin ligase Cbl. Proc. Natl Acad. Sci. USA99, 6684–6689 (2002). ArticleCAS Google Scholar
Miyake, S., Lupher, M. L. Jr., Druker, B. & Band, H. The tyrosine kinase regulator Cbl enhances the ubiquitination and degradation of the platelet-derived growth factor receptor α. Proc. Natl Acad. Sci. USA95, 7927–7932 (1998). ArticleCAS Google Scholar
Lee, P. S. et al. The Cbl protooncoprotein stimulates CSF-1 receptor multiubiquitination and endocytosis, and attenuates macrophage proliferation. EMBO J.18, 3616–3628 (1999). ArticleCAS Google Scholar
Burke, D., Wilkes, D., Blundell, T. L. & Malcolm, S. Fibroblast growth factor receptors: lessons from the genes. Trends Biochem. Sci.23, 59–62 (1998). ArticleCAS Google Scholar
Berridge, M. J. Inositol trisphosphate and calcium signalling. Nature361, 315–325 (1993). ArticleCAS Google Scholar
Metzger, R. J. & Krasnow, M. A. Genetic control of branching morphogenesis. Science284, 1635–1639 (1999). ArticleCAS Google Scholar
Glazer, L. & Shilo, B. Z. The Drosophila FGF-R homolog is expressed in the embryonic tracheal system and appears to be required for directed tracheal cell extension. Genes Dev.5, 697–705 (1991). ArticleCAS Google Scholar
Klambt, C., Glazer, L. & Shilo, B. Z. breathless, a Drosophila FGF receptor homolog, is essential for migration of tracheal and specific midline glial cells. Genes Dev.6, 1668–1678 (1992). ArticleCAS Google Scholar
Lee, T., Hacohen, N., Krasnow, M. & Montell, D. J. Regulated Breathless receptor tyrosine kinase activity required to pattern cell migration and branching in the Drosophila tracheal system. Genes Dev.10, 2912–2921 (1996). ArticleCAS Google Scholar
Reichman-Fried, M., Dickson, B., Hafen, E. & Shilo, B. Z. Elucidation of the role of breathless, a Drosophila FGF receptor homolog, in tracheal cell migration. Genes Dev.8, 428–439 (1994). ArticleCAS Google Scholar
Perl, A. K., Hokuto, I., Impagnatiello, M. A., Christofori, G. & Whitsett, J. A. Temporal effects of Sprouty on lung morphogenesis. Dev. Biol.258, 154–168 (2003). ArticleCAS Google Scholar
Flamme, I., Frolich, T. & Risau, W. Molecular mechanisms of vasculogenesis and embryonic angiogenesis. J. Cell. Physiol.173, 206–210 (1997). ArticleCAS Google Scholar
Hanahan, D. Signaling vascular morphogenesis and maintenance. Science277, 48–50 (1997). ArticleCAS Google Scholar
Lee, S. H., Schloss, D. J., Jarvis, L., Krasnow, M. A. & Swain, J. L. Inhibition of angiogenesis by a mouse sprouty protein. J. Biol. Chem.276, 4128–4133 (2001). ArticleCAS Google Scholar
Bell, S. E. et al. Differential gene expression during capillary morphogenesis in 3D collagen matrices: regulated expression of genes involved in basement membrane matrix assembly, cell cycle progression, cellular differentiation and G-protein signaling. J. Cell Sci.114, 2755–2773 (2001). CAS Google Scholar
Yigzaw, Y., Poppleton, H. M., Sreejayan, N., Hassid, A. & Patel, T. B. Protein-tyrosine phosphatase-1B (PTP1B) mediates the anti-migratory actions of Sprouty. J. Biol. Chem.278, 284–288 (2003). ArticleCAS Google Scholar
DeMille, M. M., Kimmel, B. E. & Rubin, G. M. A Drosophila gene regulated by rough and glass shows similarity to ena and VASP. Gene183, 103–108 (1996). ArticleCAS Google Scholar
Raman, M. & Cobb, M. H. MAP kinase modules: many roads home. Curr. Biol.13, R886–R888 (2003). ArticleCAS Google Scholar
Schlessinger, J. & Bar-Sagi, D. Activation of Ras and other signaling pathways by receptor tyrosine kinases. Cold Spring Harb. Symp. Quant. Biol.59, 173–179 (1994). ArticleCAS Google Scholar