Modulation of signalling by Sprouty: a developing story (original) (raw)

References

  1. Freeman, M. Feedback control of intercellular signalling in development. Nature 408, 313–319 (2000).
    Article CAS Google Scholar
  2. Hacohen, N., Kramer, S., Sutherland, D., Hiromi, Y. & Krasnow, M. A. sprouty encodes a novel antagonist of FGF signaling that patterns apical branching of the Drosophila airways. Cell 92, 253–263 (1998). Reported the identification of Spry as a new molecule that functions as an FGF antagonist.
    Article CAS Google Scholar
  3. Minowada, G. et al. Vertebrate Sprouty genes are induced by FGF signaling and can cause chondrodysplasia when overexpressed. Development 126, 4465–4475 (1999).
    CAS Google Scholar
  4. de Maximy, A. A. et al. Cloning and expression pattern of a mouse homologue of Drosophila sprouty in the mouse embryo. Mech. Dev. 81, 213–216 (1999).
    Article CAS Google Scholar
  5. Chambers, D., Medhurst, A. D., Walsh, F. S., Price, J. & Mason, I. Differential display of genes expressed at the midbrain–hindbrain junction identifies sprouty2: an FGF8-inducible member of a family of intracellular FGF antagonists. Mol. Cell. Neurosci. 15, 22–35 (2000).
    Article CAS Google Scholar
  6. Nutt, S. L., Dingwell, K. S., Holt, C. E. & Amaya, E. Xenopus Sprouty2 inhibits FGF-mediated gastrulation movements but does not affect mesoderm induction and patterning. Genes Dev. 15, 1152–1166 (2001). Showed that in X. laevis , Spry interferes with FGF signalling without influencing Ras signalling to ERK/MAPK.
    Article CAS Google Scholar
  7. Wakioka, T. et al. Spred is a Sprouty-related suppressor of Ras signalling. Nature 412, 647–651 (2001).
    Article CAS Google Scholar
  8. Warburton, D. et al. The molecular basis of lung morphogenesis. Mech. Dev. 92, 55–81 (2000).
    Article CAS Google Scholar
  9. Sutherland, D., Samakovlis, C. & Krasnow, M. A. branchless encodes a Drosophila FGF homolog that controls tracheal cell migration and the pattern of branching. Cell 87, 1091–1101 (1996).
    Article CAS Google Scholar
  10. Bellusci, S., Grindley, J., Emoto, H., Itoh, N. & Hogan, B. L. Fibroblast growth factor 10 (FGF10) and branching morphogenesis in the embryonic mouse lung. Development 124, 4867–4878 (1997).
    CAS Google Scholar
  11. Mailleux, A. A. et al. Evidence that SPROUTY2 functions as an inhibitor of mouse embryonic lung growth and morphogenesis. Mech. Dev. 102, 81–94 (2001).
    Article CAS Google Scholar
  12. Zhang, S., Lin, Y., Itaranta, P., Yagi, A. & Vainio, S. Expression of Sprouty genes 1, 2 and 4 during mouse organogenesis. Mech. Dev. 109, 367–370 (2001).
    Article CAS Google Scholar
  13. Warburton, D. et al. Do lung remodeling, repair, and regeneration recapitulate respiratory ontogeny? Am. J. Respir. Crit. Care Med. 164, S59–S62 (2001).
    Article CAS Google Scholar
  14. Chambers, D. & Mason, I. Expression of sprouty2 during early development of the chick embryo is coincident with known sites of FGF signalling. Mech. Dev. 91, 361–364 (2000).
    Article CAS Google Scholar
  15. Casci, T., Vinos, J. & Freeman, M. Sprouty, an intracellular inhibitor of Ras signaling. Cell 96, 655–665 (1999).
    Article CAS Google Scholar
  16. Kramer, S., Okabe, M., Hacohen, N., Krasnow, M. A. & Hiromi, Y. Sprouty: a common antagonist of FGF and EGF signaling pathways in Drosophila. Development 126, 2515–2525 (1999).
    CAS Google Scholar
  17. Reich, A., Sapir, A. & Shilo, B. Sprouty is a general inhibitor of receptor tyrosine kinase signaling. Development 126, 4139–4147 (1999). References 15, 16 and 17 show that SPRY is not only an antagonist of FGF signalling but also a general inhibitor of RTK signalling.
    CAS Google Scholar
  18. Impagnatiello, M. et al. Mammalian Sprouty-1 and-2 are membrane-anchored phosphoprotein inhibitors of growth factor signaling in endothelial cells. J. Cell Biol. 152, 1087–1098 (2001).
    Article CAS Google Scholar
  19. Ozaki, K. et al. ERK pathway positively regulates the expression of Sprouty genes. Biochem. Biophys. Res. Commun. 285, 1084–1088 (2001).
    Article CAS Google Scholar
  20. Sasaki, A., Taketomi, T., Wakioka, T., Kato, R. & Yoshimura, A. Identification of a dominant negative mutant of Sprouty that potentiates fibroblast growth factor- but not epidermal growth factor-induced ERK activation. J. Biol. Chem. 276, 36804–36808 (2001).
    Article CAS Google Scholar
  21. Tefft, J. D. et al. Conserved function of mSpry-2, a murine homolog of Drosophila sprouty, which negatively modulates respiratory organogenesis. Curr. Biol. 9, 219–222 (1999).
    Article CAS Google Scholar
  22. Gross, I. et al. The receptor tyrosine kinase regulator sprouty1 is a target of the tumor suppressor WT1 and important for kidney development. J. Biol. Chem. 278, 41420–41430 (2003).
    Article CAS Google Scholar
  23. Hall, A. B. et al. hSpry2 is targeted to the ubiquitin-dependent proteasome pathway by c-Cbl. Curr. Biol. 13, 308–314 (2003).
    Article CAS Google Scholar
  24. Rubin, C. et al. Sprouty fine-tunes EGF signaling through interlinked positive and negative feedback loops. Curr. Biol. 13, 297–307 (2003). References 23 and 24 show that CBL-mediated SPRY multiubiquitylation targets SPRY for proteasomal degradation.
    Article CAS Google Scholar
  25. Lim, J. et al. Sprouty proteins are targeted to membrane ruffles upon growth factor receptor tyrosine kinase activation. Identification of a novel translocation domain. J. Biol. Chem. 275, 32837–32845 (2000). This reference, together with reference 15, shows that the carboxy-terminal cysteine-rich domain of SPRY proteins mediates their subcellular localization.
    Article CAS Google Scholar
  26. Lim, J. et al. The cysteine-rich sprouty translocation domain targets mitogen-activated protein kinase inhibitory proteins to phosphatidylinositol 4,5-bisphosphate in plasma membranes. Mol. Cell. Biol. 22, 7953–7966 (2002).
    Article CAS Google Scholar
  27. Yigzaw, Y., Cartin, L., Pierre, S., Scholich, K. & Patel, T. B. The C terminus of sprouty is important for modulation of cellular migration and proliferation. J. Biol. Chem. 276, 22742–22747 (2001).
    Article CAS Google Scholar
  28. Hanafusa, H., Torii, S., Yasunaga, T. & Nishida, E. Sprouty1 and Sprouty2 provide a control mechanism for the Ras/MAPK signalling pathway. Nature Cell Biol. 4, 850–858 (2002). Describes a molecular mechanism by which SPRY might antagonize RTK signalling.
    Article CAS Google Scholar
  29. Gross, I., Bassit, B., Benezra, M. & Licht, J. D. Mammalian sprouty proteins inhibit cell growth and differentiation by preventing ras activation. J. Biol. Chem. 276, 46460–46468 (2001).
    Article CAS Google Scholar
  30. Yusoff, P. et al. Sprouty2 inhibits the Ras/MAP kinase pathway by inhibiting the activation of Raf. J. Biol. Chem. 277, 3195–3201 (2002).
    Article CAS Google Scholar
  31. Sasaki, A. et al. Mammalian Sprouty4 suppresses Ras-independent ERK activation by binding to Raf1. Nature Cell Biol. 5, 427–432 (2003).
    Article CAS Google Scholar
  32. Fong, C. W. et al. Tyrosine phosphorylation of Sprouty2 enhances its interaction with c-Cbl and is crucial for its function. J. Biol. Chem. 278, 33456–33464 (2003).
    Article CAS Google Scholar
  33. Tefft, D. et al. mSprouty2 inhibits FGF10-activated MAP kinase by differentially binding to upstream target proteins. Am. J. Physiol. Lung Cell. Mol. Physiol. 283, L700–L706 (2002).
    Article CAS Google Scholar
  34. Egan, J. E., Hall, A. B., Yatsula, B. A. & Bar-Sagi, D. The bimodal regulation of epidermal growth factor signaling by human Sprouty proteins. Proc. Natl Acad. Sci. USA 99, 6041–6046 (2002).
    Article CAS Google Scholar
  35. Wong, E. S. et al. Sprouty2 attenuates epidermal growth factor receptor ubiquitylation and endocytosis, and consequently enhances Ras/ERK signalling. EMBO J. 21, 4796–4808 (2002). References 34 and 35 show that mammalian SPRY proteins potentiate EGF-receptor signalling by intercepting CBL-mediated receptor ubiquitylation and downregulation.
    Article CAS Google Scholar
  36. Thien, C. B. & Langdon, W. Y. Cbl: many adaptations to regulate protein tyrosine kinases. Nature Rev. Mol. Cell Biol. 2, 294–307 (2001).
    Article CAS Google Scholar
  37. Wong, E. S., Lim, J., Low, B. C., Chen, Q. & Guy, G. R. Evidence for direct interaction between Sprouty and Cbl. J. Biol. Chem. 276, 5866–5875 (2001). Documents the interaction of SPRY with the E3 ubiquitin ligase CBL.
    Article CAS Google Scholar
  38. Balmanno, K. & Cook, S. J. Sustained MAP kinase activation is required for the expression of cyclin D1, p21Cip1 and a subset of AP-1 proteins in CCL39 cells. Oncogene 18, 3085–3097 (1999).
    Article CAS Google Scholar
  39. Weber, J. D., Raben, D. M., Phillips, P. J. & Baldassare, J. J. Sustained activation of extracellular-signal-regulated kinase 1 (ERK1) is required for the continued expression of cyclin D1 in G1 phase. Biochem. J. 326, 61–68 (1997).
    Article CAS Google Scholar
  40. Welsh, C. F. et al. Timing of cyclin D1 expression within G1 phase is controlled by Rho. Nature Cell Biol. 3, 950–957 (2001).
    Article CAS Google Scholar
  41. Marshall, C. J. Specificity of receptor tyrosine kinase signaling: transient versus sustained extracellular signal-regulated kinase activation. Cell 80, 179–185 (1995).
    Article CAS Google Scholar
  42. Wiley, H. S. & Burke, P. M. Regulation of receptor tyrosine kinase signaling by endocytic trafficking. Traffic 2, 12–18 (2001).
    Article CAS Google Scholar
  43. Levkowitz, G. et al. c-Cbl/Sli-1 regulates endocytic sorting and ubiquitination of the epidermal growth factor receptor. Genes Dev. 12, 3663–3674 (1998).
    Article CAS Google Scholar
  44. Wong, A. et al. FRS2α attenuates FGF receptor signaling by Grb2-mediated recruitment of the ubiquitin ligase Cbl. Proc. Natl Acad. Sci. USA 99, 6684–6689 (2002).
    Article CAS Google Scholar
  45. Miyake, S., Lupher, M. L. Jr., Druker, B. & Band, H. The tyrosine kinase regulator Cbl enhances the ubiquitination and degradation of the platelet-derived growth factor receptor α. Proc. Natl Acad. Sci. USA 95, 7927–7932 (1998).
    Article CAS Google Scholar
  46. Lee, P. S. et al. The Cbl protooncoprotein stimulates CSF-1 receptor multiubiquitination and endocytosis, and attenuates macrophage proliferation. EMBO J. 18, 3616–3628 (1999).
    Article CAS Google Scholar
  47. Burke, D., Wilkes, D., Blundell, T. L. & Malcolm, S. Fibroblast growth factor receptors: lessons from the genes. Trends Biochem. Sci. 23, 59–62 (1998).
    Article CAS Google Scholar
  48. Berridge, M. J. Inositol trisphosphate and calcium signalling. Nature 361, 315–325 (1993).
    Article CAS Google Scholar
  49. Metzger, R. J. & Krasnow, M. A. Genetic control of branching morphogenesis. Science 284, 1635–1639 (1999).
    Article CAS Google Scholar
  50. Glazer, L. & Shilo, B. Z. The Drosophila FGF-R homolog is expressed in the embryonic tracheal system and appears to be required for directed tracheal cell extension. Genes Dev. 5, 697–705 (1991).
    Article CAS Google Scholar
  51. Klambt, C., Glazer, L. & Shilo, B. Z. breathless, a Drosophila FGF receptor homolog, is essential for migration of tracheal and specific midline glial cells. Genes Dev. 6, 1668–1678 (1992).
    Article CAS Google Scholar
  52. Lee, T., Hacohen, N., Krasnow, M. & Montell, D. J. Regulated Breathless receptor tyrosine kinase activity required to pattern cell migration and branching in the Drosophila tracheal system. Genes Dev. 10, 2912–2921 (1996).
    Article CAS Google Scholar
  53. Reichman-Fried, M., Dickson, B., Hafen, E. & Shilo, B. Z. Elucidation of the role of breathless, a Drosophila FGF receptor homolog, in tracheal cell migration. Genes Dev. 8, 428–439 (1994).
    Article CAS Google Scholar
  54. Perl, A. K., Hokuto, I., Impagnatiello, M. A., Christofori, G. & Whitsett, J. A. Temporal effects of Sprouty on lung morphogenesis. Dev. Biol. 258, 154–168 (2003).
    Article CAS Google Scholar
  55. Flamme, I., Frolich, T. & Risau, W. Molecular mechanisms of vasculogenesis and embryonic angiogenesis. J. Cell. Physiol. 173, 206–210 (1997).
    Article CAS Google Scholar
  56. Hanahan, D. Signaling vascular morphogenesis and maintenance. Science 277, 48–50 (1997).
    Article CAS Google Scholar
  57. Lee, S. H., Schloss, D. J., Jarvis, L., Krasnow, M. A. & Swain, J. L. Inhibition of angiogenesis by a mouse sprouty protein. J. Biol. Chem. 276, 4128–4133 (2001).
    Article CAS Google Scholar
  58. Bell, S. E. et al. Differential gene expression during capillary morphogenesis in 3D collagen matrices: regulated expression of genes involved in basement membrane matrix assembly, cell cycle progression, cellular differentiation and G-protein signaling. J. Cell Sci. 114, 2755–2773 (2001).
    CAS Google Scholar
  59. Yigzaw, Y., Poppleton, H. M., Sreejayan, N., Hassid, A. & Patel, T. B. Protein-tyrosine phosphatase-1B (PTP1B) mediates the anti-migratory actions of Sprouty. J. Biol. Chem. 278, 284–288 (2003).
    Article CAS Google Scholar
  60. DeMille, M. M., Kimmel, B. E. & Rubin, G. M. A Drosophila gene regulated by rough and glass shows similarity to ena and VASP. Gene 183, 103–108 (1996).
    Article CAS Google Scholar
  61. Raman, M. & Cobb, M. H. MAP kinase modules: many roads home. Curr. Biol. 13, R886–R888 (2003).
    Article CAS Google Scholar
  62. Schlessinger, J. & Bar-Sagi, D. Activation of Ras and other signaling pathways by receptor tyrosine kinases. Cold Spring Harb. Symp. Quant. Biol. 59, 173–179 (1994).
    Article CAS Google Scholar

Download references