α-catenin: at the junction of intercellular adhesion and actin dynamics (original) (raw)
Huber, O. Structure and function of desmosomal proteins and their role in development and disease. Cell Mol. Life Sci.60, 1872–1890 (2003). CASPubMed Google Scholar
Ishii, K. Greater diversity of desmosomal cadherins. J. Invest. Dermatol.120, IX–X (2003). CASPubMed Google Scholar
Garrod, D. R., Merritt, A. J. & Nie, Z. Desmosomal cadherins. Curr. Opin. Cell Biol.14, 537–545 (2002). CASPubMed Google Scholar
Perez-Moreno, M., Jamora, C. & Fuchs, E. Sticky business: orchestrating cellular signals at adherens junctions. Cell112, 535–548 (2003). CASPubMed Google Scholar
Tepass, U. Adherens junctions: new insight into assembly, modulation and function. Bioessays24, 690–695 (2002). CASPubMed Google Scholar
Yagi, T. & Takeichi, M. Cadherin superfamily genes: functions, genomic organization, and neurologic diversity. Genes Dev.14, 1169–1180 (2000). CASPubMed Google Scholar
Giles, R. H., van Es, J. H. & Clevers, H. Caught up in a Wnt storm: Wnt signaling in cancer. Biochim. Biophys. Acta1653, 1–24 (2003). CASPubMed Google Scholar
Lustig, B. & Behrens, J. The Wnt signaling pathway and its role in tumor development. J. Cancer Res. Clin. Oncol.129, 199–221 (2003). CASPubMed Google Scholar
Kikuchi, A. Tumor formation by genetic mutations in the components of the Wnt signaling pathway. Cancer Sci.94, 225–229 (2003). CASPubMed Google Scholar
Shimoyama, Y. et al. Cadherin dysfunction in a human cancer cell line: possible involvement of loss of α-catenin expression in reduced cell–cell adhesiveness. Cancer Res.52, 5770–5774 (1992). CASPubMed Google Scholar
Ewing, C. M. et al. Chromosome-5 suppresses tumorigenicity of PC3 prostate-cancer cells: correlation with reexpression of α-catenin and restoration of E-cadherin function. Cancer Res.55, 4813–4817 (1995). CASPubMed Google Scholar
Morton, R. A., Ewing, C. M., Nagafuchi, A., Tsukita, S. & Isaacs, W. B. Reduction of E-cadherin levels and deletion of the α-catenin gene in human prostate cancer cells. Cancer Res.53, 3585–3590 (1993). CASPubMed Google Scholar
Kadowaki, T. et al. E-cadherin and α-catenin expression in human esophageal cancer. Cancer Res.54, 291–296 (1994). CASPubMed Google Scholar
Bullions, L. C., Notterman, D. A., Chung, L. S. & Levine, A. J. Expression of wild-type α-catenin protein in cells with a mutant α-catenin gene restores both growth regulation and tumor suppressor activities. Mol. Cell. Biol.17, 4501–4508 (1997). CASPubMedPubMed Central Google Scholar
Moll, R., Mitze, M., Frixen, U. H. & Birchmeier, W. Differential loss of E-cadherin expression in infiltrating ductal and lobular breast carcinomas. Am. J. Pathol.143, 1731–1742 (1993). CASPubMedPubMed Central Google Scholar
Rimm, D. L., Sinard, J. H. & Morrow, J. S. Reduced α-catenin and E-cadherin expression in breast cancer. Lab. Invest.72, 506–512 (1995). CASPubMed Google Scholar
Shimazui, T., Giroldi, L. A., Bringuier, P. P., Oosterwijk, E. & Schalken, J. A. Complex cadherin expression in renal cell carcinoma. Cancer Res.56, 3234–3237 (1996). CASPubMed Google Scholar
Vasioukhin, V., Bauer, C., Degenstein, L., Wise, B. & Fuchs, E. Hyperproliferation and defects in epithelial polarity upon conditional ablation of α-catenin in skin. Cell104, 605–617 (2001). Conditional ablation of αE-catenin in developing skin causes defects in hair-follicle development and epidermal morphogenesis. Adherens-junction formation, intercellular adhesion and epithelial polarity are all affected. Although differentiation occurs, the epidermis shows hyperproliferation, suprabasal mitoses and multinucleate cells. CASPubMed Google Scholar
Tinkle, C. L., Lechler, T., Pasolli, H. A. & Fuchs, E. Conditional targeting of E-cadherin in skin: insights into hyperproliferative and degenerative responses. Proc. Natl Acad. Sci. USA13, 552–557 (2004). Google Scholar
Drubin, D. G. & Nelson, W. J. Origins of cell polarity. Cell84, 335–344 (1996). CASPubMed Google Scholar
Gumbiner, B. M. Cell adhesion: the molecular basis of tissue architecture and morphogenesis. Cell84, 345–357 (1996). CASPubMed Google Scholar
Orsulic, S. & Peifer, M. An in vivo structure–function study of Armadillo, the β-catenin homologue, reveals both separate and overlapping regions of the protein required for cell adhesion and for Wingless signaling. J. Cell Biol.134, 1283–1300 (1996). CASPubMed Google Scholar
Simske, J. S. et al. The cell junction protein VAB-9 regulates adhesion and epidermal morphology in C. elegans. Nature Cell Biol.5, 619–625 (2003). CASPubMed Google Scholar
Nagafuchi, A., Takeichi, M. & Tsukita, S. The 102 kd cadherin-associated protein: similarity to vinculin and posttranscriptional regulation of expression. Cell65, 849–857 (1991). CASPubMed Google Scholar
Hirano, S., Kimoto, N., Shimoyama, Y., Hirohashi, S. & Takeichi, M. Identification of a neural α-catenin as a key regulator of cadherin function and multicellular organization. Cell70, 293–301 (1992). CASPubMed Google Scholar
Claverie, J. M. et al. Characterization and chromosomal assignment of a human cDNA encoding a protein related to the murine 102-kDa cadherin-associated protein (α-catenin). Genomics15, 13–20 (1993). CASPubMed Google Scholar
Janssens, B. et al. αT-catenin: a novel tissue-specific β-catenin-binding protein mediating strong cell–cell adhesion. J. Cell Sci.114, 3177–3188 (2001). CASPubMed Google Scholar
Zhang, J. S. et al. Identification and chromosomal localization of CTNNAL1, a novel protein homologous to α-catenin. Genomics54, 149–154 (1998). CASPubMed Google Scholar
Park, B. et al. Association of Lbc Rho guanine nucleotide exchange factor with α-catenin-related protein, α-catulin/CTNNAL1, supports serum response factor activation. J. Biol. Chem.277, 45361–45370 (2002). CASPubMed Google Scholar
Burridge, K. & Fath, K. Focal contacts: transmembrane links between the extracellular matrix and the cytoskeleton. Bioessays10, 104–108 (1989). CASPubMed Google Scholar
Ozawa, M., Baribault, H. & Kemler, R. The cytoplasmic domain of the cell adhesion molecule uvomorulin associates with three independent proteins structurally related in different species. EMBO J.8, 1711–1717 (1989). CASPubMedPubMed Central Google Scholar
Nagafuchi, A. & Takeichi, M. Transmembrane control of cadherin-mediated cell adhesion: a 94 kDa protein functionally associated with a specific region of the cytoplasmic domain of E-cadherin. Cell Regul.1, 37–44 (1989). CASPubMedPubMed Central Google Scholar
Guenet, J. L., Simon-Chazottes, D., Ringwald, M. & Kemler, R. The genes coding for α and β catenin (Catna1 and Catnb) and plakoglobin (Jup) map to mouse chromosomes 18, 9, and 11, respectively. Mamm. Genome6, 363–366 (1995). CASPubMed Google Scholar
Herrenknecht, K. et al. The uvomorulin-anchorage protein α-catenin is a vinculin homologue. Proc. Natl Acad. Sci. USA88, 9156–9160 (1991). CASPubMedPubMed Central Google Scholar
Oda, T. et al. Cloning of the human α-catenin cDNA and its aberrant mRNA in a human cancer cell line. Biochem. Biophys. Res. Commun.193, 897–904 (1993). CASPubMed Google Scholar
Furukawa, Y. et al. Structure, expression and chromosome assignment of the human catenin (cadherin-associated protein) α1 gene CTNNA1. Cytogenet. Cell Genet.65, 74–78 (1994). CASPubMed Google Scholar
Adams, C. L. & Nelson, W. J. Cytomechanics of cadherin-mediated cell–cell adhesion. Curr. Opin. Cell Biol.10, 572–577 (1998). CASPubMed Google Scholar
Yonemura, S., Itoh, M., Nagafuchi, A. & Tsukita, S. Cell-to-cell adherens junction formation and actin filament organization: similarities and differences between non-polarized fibroblasts and polarized epithelial cells. J. Cell Sci.108, 127–142 (1995). CASPubMed Google Scholar
Vasioukhin, V., Bauer, C., Yin, M. & Fuchs, E. Directed actin polymerization is the driving force for epithelial cell–cell adhesion. Cell100, 209–219 (2000). During the formation of cadherin-mediated intercellular adhesions, Ca2+stimulates filopodia, which penetrate and embed into neighbouring cells. E-cadherin complexes cluster at the filopodia tips and generate a two-rowed zipper of embedded puncta. Apposing cell surfaces are clamped by desmosomes, whereas vinculin, zyxin, VASP and MENA are recruited to adhesion zippers by a mechanism that requires α-catenin. CASPubMed Google Scholar
Watabe, M., Nagafuchi, A., Tsukita, S. & Takeichi, M. Induction of polarized cell–cell association and retardation of growth by activation of the E-cadherin catenin adhesion system in a dispersed carcinoma line. J. Cell Biol.127, 247–256 (1994). CASPubMed Google Scholar
Torres, M. et al. An α-E-catenin gene trap mutation defines its function in preimplantation development. Proc. Natl Acad. Sci. USA94, 901–906 (1997). CASPubMedPubMed Central Google Scholar
Larue, L., Ohsugi, M., Hirchenhain, J. & Kemler, R. E-cadherin null mutant embryos fail to form a trophectoderm epithelium. Proc. Natl Acad. Sci. USA91, 8263–8267 (1994). CASPubMedPubMed Central Google Scholar
Uchida, N., Honjo, Y., Johnson, K. R., Wheelock, M. J. & Takeichi, M. The catenin/cadherin adhesion system is localized in synaptic junctions bordering transmitter release zones. J. Cell Biol.135, 767–779 (1996). CASPubMed Google Scholar
Fannon, A. M. & Colman, D. R. A model for central synaptic junctional complex formation based on the differential adhesive specificities of the cadherins. Neuron17, 423–434 (1996). ArticleCASPubMed Google Scholar
Suzuki, S. C., Inoue, T., Kimura, Y., Tanaka, T. & Takeichi, M. Neuronal circuits are subdivided by differential expression of type-II classic cadherins in postnatal mouse brains. Mol. Cell. Neurosci.9, 433–447 (1997). CASPubMed Google Scholar
Colman, D. R. Neurites, synapses, and cadherins reconciled. Mol. Cell. Neurosci.10, 1–6 (1997). CASPubMed Google Scholar
Serafini, T. An old friend in a new home: cadherins at the synapse. Trends Neurosci.20, 322–323 (1997). CASPubMed Google Scholar
Park, C., Falls, W., Finger, J. H., Longo-Guess, C. M. & Ackerman, S. L. Deletion in Catna2, encoding αN-catenin, causes cerebellar and hippocampal lamination defects and impaired startle modulation. Nature Genet.31, 279–284 (2002). Shows that mice that are homozygous for the cerebellar deficient folia (cdf) mutation are ataxic, and have cerebellar hypoplasia and abnormal lobulation of the cerebellum. The deletion on chromosome 6 includes part ofCatna2, which encodes the αN-catenin protein that links the classic cadherins to the neuronal cytoskeleton. CASPubMed Google Scholar
Janssens, B. et al. Assessment of the CTNNA3 gene encoding human αT-catenin regarding its involvement in dilated cardiomyopathy. Hum. Genet.112, 227–236 (2003). CASPubMed Google Scholar
Rudiger, M. Vinculin and α-catenin: shared and unique functions in adherens junctions. Bioessays20, 733–740 (1998). CASPubMed Google Scholar
Izard, T. et al. Vinculin activation by talin through helical bundle conversion. Nature427, 171–175 (2004). CASPubMed Google Scholar
Johnson, R. P. & Craig, S. W. F-actin binding site masked by the intramolecular association of vinculin head and tail domains. Nature373, 261–264 (1995). CASPubMed Google Scholar
Menkel, A. R. et al. Characterization of an F-actin-binding domain in the cytoskeletal protein vinculin. J. Cell Biol.126, 1231–1240 (1994). CASPubMed Google Scholar
McGregor, A., Blanchard, A. D., Rowe, A. J. & Critchley, D. R. Identification of the vinculin-binding site in the cytoskeletal protein α-actinin. Biochem. J.301, 225–233 (1994). CASPubMedPubMed Central Google Scholar
Kroemker, M., Rudiger, A. H., Jockusch, B. M. & Rudiger, M. Intramolecular interactions in vinculin control α-actinin binding to the vinculin head. FEBS Lett.355, 259–262 (1994). CASPubMed Google Scholar
Rimm, D. L., Koslov, E. R., Kebriaei, P., Cianci, C. D. & Morrow, J. S. α1(E)-catenin is an actin-binding and-bundling protein mediating the attachment of F-actin to the membrane adhesion complex. Proc. Natl Acad. Sci. USA92, 8813–8817 (1995). Shows αE-catenin to be a new actin-binding and -bundling protein, and supports a model in which αE-catenin is responsible for organizing and tethering actin filaments at the zones of E-cadherin-mediated cell–cell contact. CASPubMedPubMed Central Google Scholar
Hazan, R. B., Kang, L., Roe, S., Borgen, P. I. & Rimm, D. L. Vinculin is associated with the E-cadherin adhesion complex. J. Biol. Chem.272, 32448–32453 (1997). CASPubMed Google Scholar
Huttelmaier, S., Bubeck, P., Rudiger, M. & Jockusch, B. M. Characterization of two F-actin-binding and oligomerization sites in the cell-contact protein vinculin. Eur. J. Biochem.247, 1136–1142 (1997). CASPubMed Google Scholar
Tempel, M., Goldmann, W. H., Isenberg, G. & Sackmann, E. Interaction of the 47-kDa talin fragment and the 32-kDa vinculin fragment with acidic phospholipids: a computer analysis. Biophys. J.69, 228–241 (1995). CASPubMedPubMed Central Google Scholar
Weiss, E. E., Kroemker, M., Rudiger, A. H., Jockusch, B. M. & Rudiger, M. Vinculin is part of the cadherin–catenin junctional complex: complex formation between α-catenin and vinculin. J. Cell Biol.141, 755–764 (1998). CASPubMedPubMed Central Google Scholar
Molony, L. & Burridge, K. Molecular shape and self-association of vinculin and metavinculin. J. Cell. Biochem.29, 31–36 (1985). CASPubMed Google Scholar
Koslov, E. R., Maupin, P., Pradhan, D., Morrow, J. S. & Rimm, D. L. α-catenin can form asymmetric homodimeric complexes and/or heterodimeric complexes with β-catenin. J. Biol. Chem.272, 27301–27306 (1997). Reports that α-catenin exists as a homodimer in solution, whereas β-catenin exists as a monomer. When both are present, they form α–β-catenin heterodimers. The site of α-catenin dimerization localizes to the β-catenin-binding site. CASPubMed Google Scholar
Craig, S. W. & Johnson, R. P. Assembly of focal adhesions: progress, paradigms, and portents. Curr. Opin. Cell Biol.8, 74–85 (1996). CASPubMed Google Scholar
Jockusch, B. M. et al. The molecular architecture of focal adhesions. Annu. Rev. Cell Dev. Biol.11, 379–416 (1995). CASPubMed Google Scholar
Winkler, J., Lunsdorf, H. & Jockusch, B. M. The ultrastructure of chicken gizzard vinculin as visualized by high-resolution electron microscopy. J. Struct. Biol.116, 270–277 (1996). CASPubMed Google Scholar
Imamura, Y., Itoh, M., Maeno, Y., Tsukita, S. & Nagafuchi, A. Functional domains of α-catenin required for the strong state of cadherin-based cell adhesion. J. Cell Biol.144, 1311–1322 (1999). CASPubMedPubMed Central Google Scholar
Yang, J., Dokurno, P., Tonks, N. K. & Barford, D. Crystal structure of the M-fragment of α-catenin: implications for modulation of cell adhesion. EMBO J.20, 3645–3656 (2001). Describes the crystal structure of a region of αE-catenin termed the M-fragment. The region of αE-catenin previously defined as an adhesion M-domain corresponds to the carboxy-terminal four-helix bundle of the M-fragment and these domains exist as dimers in the crystal lattice, which might explain the biological activity of αE-catenin in promoting cell–cell adhesion by inducing lateral dimerization of the associated cadherin molecule. CASPubMedPubMed Central Google Scholar
Yap, A. S., Brieher, W. M., Pruschy, M. & Gumbiner, B. M. Lateral clustering of the adhesive ectodomain: a fundamental determinant of cadherin function. Curr. Biol.7, 308–315 (1997). CASPubMed Google Scholar
Yap, A. S., Niessen, C. M. & Gumbiner, B. M. The juxtamembrane region of the cadherin cytoplasmic tail supports lateral clustering, adhesive strengthening, and interaction with p120ctn. J. Cell Biol.141, 779–789 (1998). CASPubMedPubMed Central Google Scholar
Aberle, H. et al. Assembly of the cadherin–catenin complex in vitro with recombinant proteins. J. Cell Sci.107, 3655–3663 (1994). CASPubMed Google Scholar
Pokutta, S. & Weis, W. I. Structure of the dimerization and β-catenin-binding region of α-catenin. Mol. Cell5, 533–543 (2000). CASPubMed Google Scholar
Huber, O., Krohn, M. & Kemler, R. A specific domain in α-catenin mediates binding to β-catenin or plakoglobin. J. Cell Sci.110, 1759–1765 (1997). CASPubMed Google Scholar
Nieset, J. E. et al. Characterization of the interactions of α-catenin with α-actinin and β-catenin/plakoglobin. J. Cell Sci.110, 1013–1022 (1997). CASPubMed Google Scholar
Obama, H. & Ozawa, M. Identification of the domain of α-catenin involved in its association with β-catenin and plakoglobin (γ-catenin). J. Biol. Chem.272, 11017–11020 (1997). CASPubMed Google Scholar
Ozawa, M., Ringwald, M. & Kemler, R. Uvomorulin–catenin complex formation is regulated by a specific domain in the cytoplasmic region of the cell adhesion molecule. Proc. Natl Acad. Sci. USA87, 4246–4250 (1990). CASPubMedPubMed Central Google Scholar
Provost, E. & Rimm, D. L. Controversies at the cytoplasmic face of the cadherin-based adhesion complex. Curr. Opin. Cell Biol.11, 567–572 (1999). CASPubMed Google Scholar
Watabe-Uchida, M. et al. α-catenin–vinculin interaction functions to organize the apical junctional complex in epithelial cells. J. Cell Biol.142, 847–857 (1998). CASPubMedPubMed Central Google Scholar
Pokutta, S., Drees, F., Takai, Y., Nelson, W. J. & Weis, W. I. Biochemical and structural definition of the l-afadin- and actin-binding sites of α-catenin. J. Biol. Chem.277, 18868–18874 (2002). CASPubMed Google Scholar
Ikeda, W. et al. Afadin: a key molecule essential for structural organization of cell–cell junctions of polarized epithelia during embryogenesis. J. Cell Biol.146, 1117–1132 (1999). CASPubMedPubMed Central Google Scholar
Kobielak, A., Pasolli, H. A. & Fuchs, E. Mammalian formin-1 participates in adherens junctions and polymerization of linear actin cables. Nature Cell Biol.6, 21–30 (2004). CASPubMed Google Scholar
Wallar, B. J. & Alberts, A. S. The formins: active scaffolds that remodel the cytoskeleton. Trends Cell Biol.13, 435–446 (2003). CASPubMed Google Scholar
Li, F. & Higgs, H. N. The mouse formin mDia1 is a potent actin nucleation factor regulated by autoinhibition. Curr. Biol.13, 1335–1340 (2003). CASPubMed Google Scholar
Higashida, C. et al. Actin polymerization-driven molecular movement of mDia1 in living cells. Science303, 2007–2010 (2004). CASPubMed Google Scholar
Vaezi, A., Bauer, C., Vasioukhin, V. & Fuchs, E. Actin cable dynamics and Rho/Rock orchestrate a polarized cytoskeletal architecture in the early steps of assembling a stratified epithelium. Dev. Cell3, 367–381 (2002). Reports that during the formation of an epidermal sheet, a polarized network of nascent intercellular junctions and radial actin cables assemble in the apical plane of the monolayer. This polarized cytoskeleton is dependent on α-catenin, Rho and ROCK, and its regulation might be important for wound healing and/or stratification, in which coordinated tissue movements are involved. CASPubMed Google Scholar
Kussel-Andermann, P. et al. Vezatin, a novel transmembrane protein, bridges myosin VIIA to the cadherin–catenins complex. EMBO J.19, 6020–6029 (2000). CASPubMedPubMed Central Google Scholar
Pradhan, D., Lombardo, C. R., Roe, S., Rimm, D. L. & Morrow, J. S. α-catenin binds directly to spectrin and facilitates spectrin-membrane assembly in vivo. J. Biol. Chem.276, 4175–4181 (2001). CASPubMed Google Scholar
Ehrlich, J. S., Hansen, M. D. & Nelson, W. J. Spatio-temporal regulation of Rac1 localization and lamellipodia dynamics during epithelial cell–cell adhesion. Dev. Cell3, 259–270 (2002). CASPubMedPubMed Central Google Scholar
Harden, N. Signaling pathways directing the movement and fusion of epithelial sheets: lessons from dorsal closure in Drosophila. Differentiation70, 181–203 (2002). CASPubMed Google Scholar
Mullins, R. D. How WASP-family proteins and the Arp2/3 complex convert intracellular signals into cytoskeletal structures. Curr. Opin. Cell Biol.12, 91–96 (2000). CASPubMed Google Scholar
Adams, C. L., Chen, Y. T., Smith, S. J. & Nelson, W. J. Mechanisms of epithelial cell–cell adhesion and cell compaction revealed by high-resolution tracking of E-cadherin-green fluorescent protein. J. Cell Biol.142, 1105–1119 (1998). CASPubMedPubMed Central Google Scholar
Evangelista, M., Zigmond, S. & Boone, C. Formins: signaling effectors for assembly and polarization of actin filaments. J. Cell Sci.116, 2603–2611 (2003). CASPubMed Google Scholar
Hinck, L., Nathke, I. S., Papkoff, J. & Nelson, W. J. Dynamics of cadherin/catenin complex formation: novel protein interactions and pathways of complex assembly. J. Cell Biol.125, 1327–1340 (1994). CASPubMed Google Scholar
Oda, H., Tsukita, S. & Takeichi, M. Dynamic behavior of the cadherin-based cell–cell adhesion system during Drosophila gastrulation. Dev. Biol.203, 435–450 (1998). CASPubMed Google Scholar
Daniel, J. M. & Reynolds, A. B. Tyrosine phosphorylation and cadherin/catenin function. Bioessays19, 883–891 (1997). CASPubMed Google Scholar
Hoschuetzky, H., Aberle, H. & Kemler, R. β-catenin mediates the interaction of the cadherin–catenin complex with epidermal growth factor receptor. J. Cell Biol.127, 1375–1380 (1994). CASPubMed Google Scholar
Ozawa, M. & Kemler, R. Altered cell adhesion activity by pervanadate due to the dissociation of α-catenin from the E-cadherin–catenin complex. J. Biol. Chem.273, 6166–6170 (1998). CASPubMed Google Scholar
Braga, V. M. Cell–cell adhesion and signalling. Curr. Opin. Cell Biol.14, 546–556 (2002). CASPubMed Google Scholar
Fukata, M. et al. Cdc42 and Rac1 regulate the interaction of IQGAP1 with β-catenin. J. Biol. Chem.274, 26044–26050 (1999). CASPubMed Google Scholar
Kozyraki, R. et al. Expression of cadherins and α-catenin in primary epithelial tumors of the liver. Gastroenterology110, 1137–1149 (1996). CASPubMed Google Scholar
Ochiai, A. et al. Frequent loss of α-catenin expression in scirrhous carcinomas with scattered cell growth. Jpn. J. Cancer Res.85, 266–273 (1994). CASPubMedPubMed Central Google Scholar
Shiozaki, H. et al. Immunohistochemical detection of α-catenin expression in human cancers. Am. J. Pathol.144, 667–674 (1994). CASPubMedPubMed Central Google Scholar
Matsui, S. et al. Immunohistochemical evaluation of α-catenin expression in human gastric cancer. Virchows Arch.424, 375–381 (1994). CASPubMed Google Scholar
Schipper, J. H. et al. E-cadherin expression in squamous cell carcinomas of head and neck: inverse correlation with tumor dedifferentiation and lymph node metastasis. Cancer Res.51, 6328–6337 (1991). CASPubMed Google Scholar
Vermeulen, S. J. et al. Transition from the noninvasive to the invasive phenotype and loss of α-catenin in human colon cancer cells. Cancer Res.55, 4722–4728 (1995). CASPubMed Google Scholar
Gottardi, C. J., Wong, E. & Gumbiner, B. M. E-cadherin suppresses cellular transformation by inhibiting β-catenin signaling in an adhesion-independent manner. J. Cell Biol.153, 1049–1060 (2001). CASPubMedPubMed Central Google Scholar
Daniel, J. M. & Reynolds, A. B. The catenin p120ctn interacts with Kaiso, a novel BTB/POZ domain zinc finger transcription factor. Mol. Cell. Biol.19, 3614–3623 (1999). CASPubMedPubMed Central Google Scholar
Marie, H. et al. The LIM protein Ajuba is recruited to cadherin-dependent cell junctions through an association with α-catenin. J. Biol. Chem.278, 1220–1228 (2003). CASPubMed Google Scholar
Kanungo, J., Pratt, S. J., Marie, H. & Longmore, G. D. Ajuba, a cytosolic LIM protein, shuttles into the nucleus and affects embryonal cell proliferation and fate decisions. Mol. Biol. Cell11, 3299–3313 (2000). CASPubMedPubMed Central Google Scholar
Zeller, R., Jackson-Grusby, L. & Leder, P. The limb deformity gene is required for apical ectodermal ridge differentiation and anteroposterior limb pattern formation. Genes Dev.3, 1481–1492 (1989). CASPubMed Google Scholar
Zuniga, A., Haramis, A. P., McMahon, A. P. & Zeller, R. Signal relay by BMP antagonism controls the SHH/FGF4 feedback loop in vertebrate limb buds. Nature401, 598–602 (1999). CASPubMed Google Scholar
Khokha, M. K., Hsu, D., Brunet, L. J., Dionne, M. S. & Harland, R. M. Gremlin is the BMP antagonist required for maintenance of Shh and Fgf signals during limb patterning. Nature Genet.34, 303–307 (2003). CASPubMed Google Scholar
Xu, W., Baribault, H., Adamson, E. D. Vinculin knockout results in heart and brain defects during embryonic development. Development125, 327–337 (1998). CASPubMed Google Scholar
Bakolitsa, C., de Pereda, J. M., Bagshaw, C. R., Critchley, D. R., Liddington, R. C. Crystal structure of the vinculin tail suggests a pathway for activation. Cell99, 603–613 (1999). CASPubMed Google Scholar