Jacob, F., Brenner, S. & Cuzin, F. On the regulation of DNA replication in bacteria. Cold Spring Harb. Symp. Quant. Biol.28, 329–348 (1964). Google Scholar
Chakraborty, T., Yoshinaga, K., Lother, H. & Messer, W. Purification of the E. coli dnaA gene product. EMBO J.1, 1545–1549 (1982). CASPubMedPubMed Central Google Scholar
Bell, S. P. & Stillman, B. ATP-dependent recognition of eukaryotic origins of DNA replication by a multiprotein complex. Nature357, 128–134 (1992). CAS Google Scholar
Timmis, K., Cabello, F. & Cohen, S. N. Cloning, isolation, and characterization of replication regions of complex plasmid genomes. Proc. Natl Acad. Sci. USA72, 2242–2246 (1975). CAS Google Scholar
Yasuda, S. & Hirota, Y. Cloning and mapping of the replication origin of Escherichia coli. Proc. Natl Acad. Sci. USA74, 5458–5462 (1977). CAS Google Scholar
Fujita, M. Q., Yoshikawa, H. & Ogasawara, N. Structure of the dnaA region of Pseudomonas putida: conservation among three bacteria, Bacillus subtilis, Escherichia coli and P. putida. Mol. Gen. Genet.215, 381–387 (1989). CAS Google Scholar
Taylor, J. H. Rates of chain growth and units of replication in DNA of mammalian chromosomes. J. Mol. Biol.31, 579–594 (1968). CAS Google Scholar
Huberman, J. A. & Riggs, A. D. On the mechanism of DNA replication in mammalian chromosomes. J. Mol. Biol.32, 327–341 (1968). CAS Google Scholar
Stambrook, P. J. & Flickinger, R. A. Changes in chromosomal DNA replication patterns in developing frog embryos. J. Exp. Zool.174, 101–113 (1970). CAS Google Scholar
Callan, H. G. Replication of DNA in the chromosomes of eukaryotes. Proc. R. Soc. Lond. B181, 19–41 (1972). CAS Google Scholar
Blumenthal, A. B., Kriegstein, H. J. & Hogness, D. S. The units of DNA replication in Drosophila melanogaster chromosomes. Cold Spring Harb. Symp. Quant. Biol.38, 205–223 (1974). CAS Google Scholar
Taylor, J. H. Increase in DNA replication sites in cells held at the beginning of S phase. Chromosoma62, 291–300 (1977). CAS Google Scholar
Hand, R. Eucaryotic DNA: organization of the genome for replication. Cell15, 317–325 (1978). CAS Google Scholar
Mueller, G. C. & Kajiwara, K. Early- and late-replicating deoxyribonucleic acid complexes in HeLa nuclei. Biochim. Biophys. Acta114, 108–115 (1966). CAS Google Scholar
Balazs, I., Brown, E. H. & Schildkraut, C. L. The temporal order of replication of some DNA cistrons. Cold Spring Harb. Symp. Quant. Biol.38, 239–245 (1973). Google Scholar
Struhl, K., Stinchcomb, D. T., Scherer, S. & Davis, R. W. High-frequency transformation of yeast: autonomous replication of hybrid DNA molecules. Proc. Natl Acad. Sci. USA76, 1035–1039 (1979). CAS Google Scholar
Huberman, J. A., Spotila, L. D., Nawotka, K. A., El-Assouli, S. M. & Davis, L. R. The in vivo replication origin of the yeast 2 microns plasmid. Cell51, 473–481 (1987). CAS Google Scholar
Brewer, B. J. & Fangman, W. L. The localization of replication origins on ARS plasmids in S. cerevisiae. Cell51, 463–471 (1987). CAS Google Scholar
Huberman, J. A., Zhu, J., Davis, L. R. & Newlon, C. S. Close association of a DNA replication origin and an ARS element on chromosome III of the yeast Saccharomyces cerevisiae. Nucleic Acids Res.16, 6373–6384 (1988). CASPubMedPubMed Central Google Scholar
Celniker, S. E., Sweder, K., Srienc, F., Bailey, J. E. & Campbell, J. L. Deletion mutations affecting autonomously replicating sequence ARS1 of Saccharomyces cerevisiae. Mol. Cell. Biol.4, 2455–2466 (1984). CASPubMedPubMed Central Google Scholar
Marahrens, Y. & Stillman, B. A yeast chromosomal origin of DNA replication defined by multiple functional elements. Science255, 817–823 (1992). CAS Google Scholar
Harland, R. M. & Laskey, R. A. Regulated replication of DNA microinjected into eggs of Xenopus laevis. Cell21, 761–771 (1980). CAS Google Scholar
Mechali, M. & Kearsey, S. Lack of specific sequence requirement for DNA replication in Xenopus eggs compared with high sequence specificity in yeast. Cell38, 55–64 (1984). CAS Google Scholar
Heintz, N. H. & Hamlin, J. L. An amplified chromosomal sequence that includes the gene for dihydrofolate reductase initiates replication within specific restriction fragments. Proc. Natl Acad. Sci. USA79, 4083–4087 (1982). CAS Google Scholar
Gilbert, D. & Cohen, S. N. Autonomous replication in mouse cells: a correction. Cell56, 143–144 (1989). CAS Google Scholar
Masukata, H., Satoh, H., Obuse, C. & Okazaki, T. Autonomous replication of human chromosomal DNA fragments in human cells. Mol. Biol. Cell4, 1121–1132 (1993). CASPubMedPubMed Central Google Scholar
Krysan, P. J. & Calos, M. P. Replication initiates at multiple locations on an autonomously replicating plasmid in human cells. Mol. Cell. Biol.11, 1464–1472 (1991). CASPubMedPubMed Central Google Scholar
Burhans, W. C., Vassilev, L. T., Caddle, M. S., Heintz, N. H. & DePamphilis, M. L. Identification of an origin of bidirectional DNA replication in mammalian chromosomes. Cell62, 955–965 (1990). CAS Google Scholar
Vaughn, J. P., Dijkwel, P. A. & Hamlin, J. L. Replication initiates in a broad zone in the amplified CHO dihydrofolate reductase domain. Cell61, 1075–1087 (1990). CAS Google Scholar
Kobayashi, T., Rein, T. & DePamphilis, M. Identification of primary initiation sites for DNA replication in the hamster DHFR gene initiation zone. Mol. Cell. Biol.18, 3266–3277 (1998). CASPubMedPubMed Central Google Scholar
Dijkwel, P. A., Wang, S. & Hamlin, J. L. Initiation sites are distributed at frequent intervals in the Chinese hamster dihydrofolate reductase origin of replication but are used with very different efficiencies. Mol. Cell. Biol.22, 3053–3065 (2002). CASPubMedPubMed Central Google Scholar
Hyrien, O. & Mechali, M. Plasmid replication in Xenopus eggs and egg extracts: a 2D gel electrophoretic analysis. Nucleic Acids Res.20, 1463–1469 (1992). CASPubMedPubMed Central Google Scholar
Mahbubani, H. M., Paull, T., Elder, J. K. & Blow, J. J. DNA replication initiates at multiple sites on plasmid DNA in Xenopus egg extracts. Nucleic Acids Res.20, 1457–1462 (1992). CASPubMedPubMed Central Google Scholar
Gilbert, D. M., Miyazawa, H. & DePamphilis, M. L. Site-specific initiation of DNA replication in Xenopus egg extract requires nuclear structure. Mol. Cell. Biol.15, 2942–2954 (1995). CASPubMedPubMed Central Google Scholar
Hyrien, O., Maric, C. & Mechali, M. Transition in specification of embryonic metazoan DNA replication origins. Science270, 994–997 (1995). CAS Google Scholar
Sasaki, T., Sawado, T., Yamaguchi, M. & Shinomiya, T. Specification of regions of DNA replication initiation during embryogenesis in the 65-kilobase _DNApol_α-dE2F locus of Drosophila melanogaster. Mol. Cell. Biol.19, 547–555 (1999). CASPubMedPubMed Central Google Scholar
Vashee, S. et al. Sequence-independent DNA binding and replication initiation by the human origin recognition complex. Genes Dev.17, 1894–1908 (2003). CASPubMedPubMed Central Google Scholar
Wu, J. -R. & Gilbert, D. M. A distinct G1 step required to specify the Chinese hamster DHFR replication origin. Science271, 1270–1272 (1996). CAS Google Scholar
Danis, E. et al. Specification of a DNA replication origin by a transcription complex. Nature Cell Biol.6, 721–730 (2004). CAS Google Scholar
Kitsberg, D., Selig, S., Keshet, J. & Cedar, H. Replication structure of the human β-globin gene domain. Nature368, 588–590 (1993). Google Scholar
Aladjem, M. et al. Participation of the human β-globin locus control region in initiation of DNA replication. Science270, 815–819 (1995). CAS Google Scholar
Kalejta, R. F. et al. Distal sequences, but not ori-β/OBR-1, are essential for initiation of DNA replication in the Chinese hamster DHFR origin. Mol. Cell2, 797–806 (1998). CAS Google Scholar
Mesner, L. D., Li, X., Dijkwel, P. A. & Hamlin, J. L. The dihydrofolate reductase origin of replication does not contain any nonredundant genetic elements required for origin activity. Mol. Cell. Biol.23, 804–814 (2003). CASPubMedPubMed Central Google Scholar
Handeli, S., Klar, A., Meuth, M. & Cedar, H. Mapping replication units in animal cells. Cell57, 909–920 (1989). CAS Google Scholar
Aladjem, M. I., Rodewald, L. W., Kolman, J. L. & Wahl, G. M. Genetic dissection of a mammalian replicator in the human β-globin locus. Science281, 1005–1009 (1998). CAS Google Scholar
Wang, L. et al. The human β-globin replication initiation region consists of two modular independent replicators. Mol. Cell. Biol.24, 3373–3386 (2004). CASPubMedPubMed Central Google Scholar
Liu, G., Malott, M. & Leffak, M. Multiple functional elements comprise a mammalian chromosomal replicator. Mol. Cell. Biol.23, 1832–1842 (2003). CASPubMedPubMed Central Google Scholar
Altman, A. L. & Fanning, E. Defined sequence modules and an architectural element cooperate to promote initiation at an ectopic mammalian chromosomal replication origin. Mol. Cell. Biol.24, 4138–4150 (2004). CASPubMedPubMed Central Google Scholar
Gavin, K., Hidaka, M. & Stillman, B. Conserved initiator proteins in eukaryotes. Science270, 1667–1671 (1995). CAS Google Scholar
Lee, D. G. & Bell, S. P. Architecture of the yeast origin recognition complex bound to origins of DNA replication. Mol. Cell. Biol.17, 7159–7168 (1997). CASPubMedPubMed Central Google Scholar
Chuang, R. Y. & Kelly, T. J. The fission yeast homologue of Orc4p binds to replication origin DNA via multiple AT-hooks. Proc. Natl Acad. Sci. USA96, 2656–2661 (1999). CAS Google Scholar
Remus, D., Beall, E. L. & Botchan, M. R. DNA topology, not DNA sequence, is a critical determinant for Drosophila ORC–DNA binding. EMBO J.23, 897–907 (2004). CASPubMedPubMed Central Google Scholar
Aparicio, O. M., Weinstein, D. M. & Bell, S. P. Components and dynamics of DNA replication complexes in S. cerevisiae: redistribution of MCM proteins and Cdc45p during S phase. Cell91, 59–69 (1997). CAS Google Scholar
Ogawa, Y., Takahashi, T. & Masukata, H. Association of fission yeast Orp1 and Mcm6 proteins with chromosomal replication origins. Mol. Cell. Biol.19, 7228–7236 (1999). CASPubMedPubMed Central Google Scholar
Bielinsky, A. K. et al. Origin recognition complex binding to a metazoan replication origin. Curr. Biol.11, 1427–1431 (2001). CAS Google Scholar
Austin, R. J., Orr-Weaver, T. L. & Bell, S. P. Drosophila ORC specifically binds to ACE3, an origin of DNA replication control element. Genes Dev.13, 2639–2649 (1999). CASPubMedPubMed Central Google Scholar
Abdurashidova, G. et al. Localization of proteins bound to a replication origin of human DNA along the cell cycle. EMBO J.22, 4294–4303 (2003). CASPubMedPubMed Central Google Scholar
Wyrick, J. J. et al. Chromosomal landscape of nucleosome-dependent gene expression and silencing in yeast. Nature402, 418–421 (1999). CASPubMed Google Scholar
Breier, A. M., Chatterji, S. & Cozzarelli, N. R. Prediction of Saccharomyces cerevisiae replication origins. Genome Biol.5, R22 (2004). PubMedPubMed Central Google Scholar
Keller, C., Ladenburger, E. M., Kremer, M. & Knippers, R. The origin recognition complex marks a replication origin in the human TOP1 gene promoter. J. Biol. Chem.277, 31430–31440 (2002). CAS Google Scholar
Schepers, A. et al. Human origin recognition complex binds to the region of the latent origin of DNA replication of Epstein–Barr virus. EMBO J.20, 4588–4602 (2001). CASPubMedPubMed Central Google Scholar
Royzman, I., Austin, R. J., Bosco, G., Bell, S. P. & Orr-Weaver, T. L. ORC localization in Drosophila follicle cells and the effects of mutations in dE2F and dDP. Genes Dev.13, 827–840 (1999). CASPubMedPubMed Central Google Scholar
Bosco, G., Du, W. & Orr-Weaver, T. L. DNA replication control through interaction of E2F-RB and the origin recognition complex. Nature Cell Biol.3, 289–295 (2001). CAS Google Scholar
Beall, E. L., Bell, M., Georlette, D. & Botchan, M. R. Dm-myb mutant lethality in Drosophila is dependent upon mip130: positive and negative regulation of DNA replication. Genes Dev.18, 1667–1680 (2004). CASPubMedPubMed Central Google Scholar
Aggarwal, B. D. & Calvi, B. R. Chromatin regulates origin activity in Drosophila follicle cells. Nature430, 372–376 (2004). CAS Google Scholar
Saha, S., Shan, Y., Mesner, L. D. & Hamlin, J. L. The promoter of the Chinese hamster ovary dihydrofolate reductase gene regulates the activity of the local origin and helps define its boundaries. Genes Dev.18, 397–410 (2004). CASPubMedPubMed Central Google Scholar
Muller, M., Lucchini, R. & Sogo, J. M. Replication of yeast rDNA initiates downstream of transcriptionally active genes. Mol. Cell5, 767–777 (2000). CAS Google Scholar
Maric, C., Benard, M. & Pierron, G. Developmentally regulated usage of Physarum DNA replication origins. EMBO Rep.4, 474–478 (2003). CASPubMedPubMed Central Google Scholar
Haase, S. B., Heinzel, S. S. & Calos, M. P. Transcription inhibits the replication of autonomously replicating plasmids in human cells. Mol. Cell. Biol.14, 2516–2524 (1994). CASPubMedPubMed Central Google Scholar
Harvey, K. J. & Newport, J. CpG methylation of DNA restricts prereplication complex assembly in Xenopus egg extracts. Mol. Cell. Biol.23, 6769–6779 (2003). CASPubMedPubMed Central Google Scholar
Rein, T., Kobayashi, T., Malott, M., Leffak, M. & DePamphilis, M. L. DNA methylation at mammalian replication origins. J. Biol. Chem.274, 25792–25800 (1999). CAS Google Scholar
Delgado, S., Gomez, M., Bird, A. & Antequera, F. Initiation of DNA replication at CpG islands in mammalian chromosomes. EMBO J.17, 2426–2435 (1998). CASPubMedPubMed Central Google Scholar
Simpson, R. T. Nucleosome positioning can affect the function of a _cis_-acting DNA element in vivo. Nature343, 387–389 (1990). CAS Google Scholar
Lipford, J. R. & Bell, S. P. Nucleosomes positioned by ORC facilitate the initiation of DNA replication. Mol. Cell7, 21–30 (2001). CAS Google Scholar
Pasero, P., Bensimon, A. & Schwob, E. Single-molecule analysis reveals clustering and epigenetic regulation of replication origins at the yeast rDNA locus. Genes Dev.16, 2479–2484 (2002). CASPubMedPubMed Central Google Scholar
Prioleau, M. N., Gendron, M. C. & Hyrien, O. Replication of the chicken β-globin locus: early-firing origins at the 5′ HS4 insulator and the ρ- and βA-globin genes show opposite epigenetic modifications. Mol. Cell. Biol.23, 3536–3549 (2003). CASPubMedPubMed Central Google Scholar
Lunyak, V. V., Ezrokhi, M., Smith, H. S. & Gerbi, S. A. Developmental changes in the Sciara II/9A initiation zone for DNA replication. Mol. Cell. Biol.22, 8426–8437 (2002). CASPubMedPubMed Central Google Scholar
Zhou, J. et al. The origin of a developmentally regulated Igh replicon is located near the border of regulatory domains for Igh replication and expression. Proc. Natl Acad. Sci. USA99, 13693–13698 (2002). CAS Google Scholar
Anglana, M., Apiou, F., Bensimon, A. & Debatisse, M. Dynamics of DNA replication in mammalian somatic cells: nucleotide pool modulates origin choice and interorigin spacing. Cell114, 385–394 (2003). CAS Google Scholar
Norio, P. & Schildkraut, C. L. Plasticity of DNA replication initiation in Epstein–Barr virus episomes. PLoS Biol.2, E152 (2004). PubMedPubMed Central Google Scholar
Tsurimoto, T., Melendy, T. & Stillman, B. Sequential initiation of lagging and leading strand synthesis by two different polymerase complexes at the SV40 DNA replication origin. Nature346, 534–539 (1990). CASPubMed Google Scholar
Weinberg, D. H. et al. Reconstitution of simian virus 40 DNA replication with purified proteins. Proc. Natl Acad. Sci. USA87, 8692–8696 (1990). CAS Google Scholar
Bergsma, D. J., Olive, D. M., Hartzell, S. W. & Subramanian, K. N. Territorial limits and functional anatomy of the simian virus 40 replication origin. Proc. Natl Acad. Sci. USA79, 381–385 (1982). CAS Google Scholar
Dhar, S. K. et al. Replication from oriP of Epstein–Barr virus requires human ORC and is inhibited by geminin. Cell106, 287–296 (2001). CAS Google Scholar
Norio, P., Schildkraut, C. L. & Yates, J. L. Initiation of DNA replication within oriP is dispensable for stable replication of the latent Epstein–Barr virus chromosome after infection of established cell lines. J. Virol.74, 8563–8574 (2000). CASPubMedPubMed Central Google Scholar
Santocanale, C. & Diffley, J. ORC- and Cdc6-dependent complexes at active and inactive chromosomal replication origins in Saccharomyces cerevisiae. EMBO J.15, 6671–6679 (1996). CASPubMedPubMed Central Google Scholar
Palacios DeBeer, M. A., Müller, U. & Fox, C. A. Differential DNA affinity specifies roles for the origin recognition complex in budding yeast heterochromatin. Genes Dev.17, 1817–1822 (2003). PubMedPubMed Central Google Scholar
Santocanale, C., Sharma, K. & Diffley, J. F. Activation of dormant origins of DNA replication in budding yeast. Genes Dev.13, 2360–2364 (1999). CASPubMedPubMed Central Google Scholar
Vujcic, M., Miller, C. A. & Kowalski, D. Activation of silent replication origins at autonomously replicating sequence elements near the HML locus in budding yeast. Mol. Cell. Biol.19, 6098–6109 (1999). CASPubMedPubMed Central Google Scholar
Walter, J. & Newport, J. W. Regulation of replicon size in Xenopus egg extracts. Science275, 993–995 (1997). CASPubMed Google Scholar
Beall, E. L. et al. Role for a Drosophila Myb-containing protein complex in site-specific DNA replication. Nature420, 833–837 (2002). CAS Google Scholar
Ehrenhofer-Murray, A., Gossen, M., Pak, D., Botchan, M. & Rine, J. Separation of origin recognition complex functions by cross-species complementation. Science270, 1671–1674 (1995). CAS Google Scholar
Abdurashidova, G. et al. Start sites of bidirectional DNA synthesis at the human lamin B2 origin. Science287, 2023–2026 (2000). CAS Google Scholar
Schaarschmidt, D., Baltin, J., Stehle, I. M., Lipps, H. J. & Knippers, R. An episomal mammalian replicon: sequence-independent binding of the origin recognition complex. EMBO J.23, 191–201 (2004). CAS Google Scholar