Iron–sulphur cluster biogenesis and mitochondrial iron homeostasis (original) (raw)
Beinert, H., Holm, R. H. & Munck, E. Iron–sulfur clusters: nature's modular, multipurpose structures. Science277, 653–659 (1997). ArticleCAS Google Scholar
Rees, D. C. Great metalloclusters in enzymology. Annu. Rev. Biochem.71, 221–246 (2002). ArticleCAS Google Scholar
Beinert, H. Iron–sulfur proteins: ancient structures, still full of surprises. J. Biol. Inorg. Chem.5, 2–15 (2000). ArticleCAS Google Scholar
Schultz, B. E. & Chan, S. I. Structures and proton-pumping strategies of mitochondrial respiratory enzymes. Annu. Rev. Biophys. Biomol. Struct.30, 23–65 (2001). ArticleCAS Google Scholar
Wollman, F. A., Minai, L. & Nechushtai, R. The biogenesis and assembly of photosynthetic proteins in thylakoid membranes. Biochim. Biophys. Acta1411, 21–85 (1999). ArticleCAS Google Scholar
Frey, P. A. & Magnusson, O. T. _S_-adenosylmethionine: a wolf in sheep's clothing, or a rich man's adenosylcobalamin? Chem. Rev.103, 2129–2148 (2003). ArticleCAS Google Scholar
Aspinwall, R. et al. Cloning and characterization of a functional human homolog of Escherichia coli endonuclease III. Proc. Natl Acad. Sci. USA94, 109–114 (1997). ArticleCAS Google Scholar
McGoldrick, J. P. et al. Characterization of a mammalian homolog of the Escherichia coli MutY mismatch repair protein. Mol. Cell. Biol.15, 989–996 (1995). ArticleCAS Google Scholar
Kiley, P. J. & Beinert, H. The role of Fe–S proteins in sensing and regulation in bacteria. Curr. Opin. Microbiol.6, 181–185 (2003). ArticleCAS Google Scholar
Bouton, C. & Drapier, J. C. Iron regulatory proteins as NO signal transducers. Sci. STKE182, pe17 (2003). Google Scholar
Rouault, T. & Klausner, R. Regulation of iron metabolism in eukaryotes. Curr. Top. Cell Regul.35, 1–19 (1997). ArticleCAS Google Scholar
Meyron-Holtz, E. G., Ghosh, M. C. & Rouault, T. A. Mammalian tissue oxygen levels modulate iron-regulatory protein activities in vivo. Science306, 2087–2090 (2004). ArticleCAS Google Scholar
Meyron-Holtz, E. G. et al. Genetic ablations of iron regulatory proteins 1 and 2 reveal why iron regulatory protein 2 dominates iron homeostasis. EMBO J.23, 386–395 (2004). ArticleCAS Google Scholar
Pantopoulos, K. Iron metabolism and the IRE/IRP regulatory system: an update. Ann. NY Acad. Sci.1012, 1–13 (2004). ArticleCAS Google Scholar
Frazzon, J. & Dean, D. R. Formation of iron–sulfur clusters in bacteria: an emerging field in bioinorganic chemistry. Curr. Opin. Chem. Biol.7, 166–173 (2003). ArticleCAS Google Scholar
Gerber, J. & Lill, R. Biogenesis of iron–sulfur proteins in eukaryotes: components, mechanism and pathology. Mitochondrion2, 71–86 (2002). ArticleCAS Google Scholar
Seidler, A., Jaschkowitz, K. & Wollenberg, M. Incorporation of iron–sulphur clusters in membrane-bound proteins. Biochem. Soc. Trans.29, 418–421 (2001). ArticleCAS Google Scholar
Leon, S. et al. The AtNFS2 gene from Arabidopsis thaliana encodes a NifS-like plastidial cysteine desulphurase. Biochem. J.366, 557–564 (2002). ArticleCAS Google Scholar
Agar, J. N. et al. IscU as a scaffold for iron–sulfur cluster biosynthesis: sequential assembly of [2Fe–2S] and [4Fe–4S] clusters in IscU. Biochemistry39, 7856–7862 (2000). ArticleCAS Google Scholar
Muhlenhoff, U. et al. Components involved in assembly and dislocation of iron–sulfur clusters on the scaffold protein Isu1p. EMBO J.22, 4815–4825 (2003). Article Google Scholar
Nishio, K. & Nakai, M. Transfer of iron–sulfur cluster from NifU to apoferredoxin. J. Biol. Chem.275, 22615–22618 (2000). ArticleCAS Google Scholar
Yabe, T. et al. The Arabidopsis chloroplastic NifU-like protein CnfU, which can act as an iron–sulfur cluster scaffold protein, is required for biogenesis of ferredoxin and photosystem I. Plant Cell16, 993–1007 (2004). ArticleCAS Google Scholar
Land, T. & Rouault, T. A. Targeting of a human iron–sulfur cluster assembly enzyme, nifs, to different subcellular compartments is regulated through alternative AUG utilization. Mol. Cell2, 807–815 (1998). ArticleCAS Google Scholar
Tong, W. H. & Rouault, T. Distinct iron–sulfur cluster assembly complexes exist in the cytosol and mitochondria of human cells. EMBO J.19, 5692–5700 (2000). ArticleCAS Google Scholar
Tong, W. H. et al. Subcellular compartmentalization of human Nfu, an iron–sulfur cluster scaffold protein, and its ability to assemble a [4Fe–4S] cluster. Proc. Natl Acad. Sci. USA100, 9762–9767 (2003). ArticleCAS Google Scholar
Kispal, G. et al. The mitochondrial proteins Atm1p and Nfs1p are essential for biogenesis of cytosolic Fe/S proteins. EMBO J.18, 3981–3989 (1999). ArticleCAS Google Scholar
Li, J. et al. Yeast mitochondrial protein, Nfs1p, coordinately regulates iron–sulfur cluster proteins, cellular iron uptake, and iron distribution. J. Biol. Chem.274, 33025–33034 (1999). ArticleCAS Google Scholar
Strain, J. et al. Suppressors of superoxide dismutase (SOD1) deficiency in S. cerevisiae. J. Biol. Chem.273, 31138–31144 (1998). ArticleCAS Google Scholar
Knight, S. A. et al. Mt-Hsp70 homolog, Ssc2p, required for maturation of yeast frataxin and mitochondrial iron homeostasis. J. Biol. Chem.273, 18389–18393 (1998). ArticleCAS Google Scholar
Garland, S. A. et al. Saccharomyces cerevisiae ISU1 and ISU2: members of a well-conserved gene family for iron–sulfur cluster assembly. J. Mol. Biol.294, 897–907 (1999). ArticleCAS Google Scholar
Schilke, B. et al. Evidence for a conserved system for iron metabolism in the mitochondria of Saccharomyces cerevisiae. Proc. Natl Acad. Sci. USA96, 10206–10211 (1999). ArticleCAS Google Scholar
Chen, O. S. et al. Transcription of the yeast iron regulon responds not directly to iron but rather to iron–sulfur cluster biosynthesis. J. Biol. Chem.279, 29513–29518 (2004). ArticleCAS Google Scholar
Rutherford, J. C. et al. Activation of the iron regulon by the yeast Aft1/Aft2 transcription factors depends on mitochondrial, but not cytosolic iron–sulfur protein biogenesis. J. Biol. Chem. 13 Jan 2005 (doi:10.1074/jbc.M413731200).
Puccio, H. & Koenig, M. Recent advances in the molecular pathogenesis of Friedreich ataxia. Hum. Mol. Genet.9, 887–892 (2000). ArticleCAS Google Scholar
Pandolfo, M. Friedreich ataxia. Semin. Pediatr. Neurol.10, 163–172 (2003). Article Google Scholar
Campuzano, V. et al. Friedreich's ataxia: autosomal recessive disease caused by an intronic GAA triplet repeat expansion. Science271, 1423–1427 (1996). ArticleCAS Google Scholar
Rotig, A. et al. Aconitase and mitochondrial iron–sulphur protein deficiency in Friedreich ataxia. Nature Genet.17, 215–217 (1997). ArticleCAS Google Scholar
Babcock, M. et al. Regulation of mitochondrial iron accumulation by Yfh1p, a putative homolog of frataxin. Science276, 1709–1712 (1997). ArticleCAS Google Scholar
Gerber, J., Muhlenhoff, U. & Lill, R. An interaction between frataxin and Isu1/Nfs1 that is crucial for Fe/S cluster synthesis on Isu1. EMBO Rep.4, 906–911 (2003). ArticleCAS Google Scholar
Ramazzotti, A., Vanmansart, V. & Foury, F. Mitochondrial functional interactions between frataxin and Isu1p, the iron–sulfur cluster scaffold protein, in Saccharomyces cerevisiae. FEBS Lett.557, 215–220 (2004). ArticleCAS Google Scholar
Bulteau, A. L. et al. Frataxin acts as an iron chaperone protein to modulate mitochondrial aconitase activity. Science305, 242–245 (2004). ArticleCAS Google Scholar
Seznec, H. et al. Idebenone delays the onset of cardiac functional alteration without correction of Fe–S enzymes deficit in a mouse model for Friedreich ataxia. Hum. Mol. Genet.13, 1017–1024 (2004). ArticleCAS Google Scholar
Puccio, H. et al. Mouse models for Friedreich ataxia exhibit cardiomyopathy, sensory nerve defect and Fe–S enzyme deficiency followed by intramitochondrial iron deposits. Nature Genet.27, 181–186 (2001). ArticleCAS Google Scholar
Cavadini, P. et al. Assembly and iron-binding properties of human frataxin, the protein deficient in Friedreich ataxia. Hum. Mol. Genet.11, 217–227 (2002). ArticleCAS Google Scholar
Gakh, O. et al. Physical evidence that yeast frataxin is an iron storage protein. Biochemistry41, 6798–6804 (2002). ArticleCAS Google Scholar
Radisky, D. C., Babcock, M. C. & Kaplan, J. The yeast frataxin homologue mediates mitochondrial iron efflux. Evidence for a mitochondrial iron cycle. J. Biol. Chem.274, 4497–4499 (1999). ArticleCAS Google Scholar
Aloria, K. et al. Iron-induced oligomerization of yeast frataxin homologue Yfh1 is dispensable in vivo. EMBO Rep.5, 1096–1101 (2004). ArticleCAS Google Scholar
Hentze, M. W., Muckenthaler, M. U. & Andrews, N. C. Balancing acts: molecular control of mammalian iron metabolism. Cell117, 285–297 (2004). ArticleCAS Google Scholar
Foury, F. & Talibi, D. Mitochondrial control of iron homeostasis. A genome wide analysis of gene expression in a yeast frataxin-deficient strain. J. Biol. Chem.276, 7762–7768 (2001). ArticleCAS Google Scholar
Lill, R. & Kispal, G. Maturation of cellular Fe–S proteins: an essential function of mitochondria. Trends Biochem. Sci.25, 352–356 (2000). ArticleCAS Google Scholar
Gerber, J. et al. The yeast scaffold proteins Isu1p and Isu2p are required inside mitochondria for maturation of cytosolic Fe/S proteins. Mol. Cell. Biol.24, 4848–4857 (2004). ArticleCAS Google Scholar
Alcindor, T. & Bridges, K. R. Sideroblastic anaemias. Br. J. Haematol.116, 733–743 (2002). Article Google Scholar
Djaldetti, M. et al. Ultrastructural features of bone marrow cells from patients with acquired sideroblastic anemia. Microsc. Res. Tech.63, 155–158 (2004). Article Google Scholar
Balk, J. et al. The hydrogenase-like Nar1p is essential for maturation of cytosolic and nuclear iron–sulphur proteins. EMBO J.23, 2105–2115 (2004). ArticleCAS Google Scholar
Chloupkova, M., LeBard, L. S. & Koeller, D. M. MDL1 is a high copy suppressor of ATM1: evidence for a role in resistance to oxidative stress. J. Mol. Biol.331, 155–165 (2003). ArticleCAS Google Scholar
Li, L. & Kaplan, J. A mitochondrial–vacuolar signaling pathway in yeast that affects iron and copper metabolism. J. Biol. Chem.279, 33653–33661 (2004). ArticleCAS Google Scholar
Butow, R. A. & Avadhani, N. G. Mitochondrial signaling: the retrograde response. Mol. Cell14, 1–15 (2004). ArticleCAS Google Scholar
Zhao, Q. et al. A mitochondrial specific stress response in mammalian cells. EMBO J.21, 4411–4419 (2002). ArticleCAS Google Scholar
Lesuisse, E. et al. Role of YHM1, encoding a mitochondrial carrier protein, in iron distribution of yeast. Biochem. J.378, 599–607 (2004). ArticleCAS Google Scholar
Van Ho, A., Ward, D. M. & Kaplan, J. Transition metal transport in yeast. Annu. Rev. Microbiol.56, 237–261 (2002). ArticleCAS Google Scholar
Tovar, J. et al. Mitochondrial remnant organelles of Giardia function in iron–sulphur protein maturation. Nature426, 172–176 (2003). ArticleCAS Google Scholar
Roy, A. et al. A novel eukaryotic factor for cytosolic Fe–S cluster assembly. EMBO J.22, 4826–4835 (2003). ArticleCAS Google Scholar
Nakai, Y., Nakai, M., Hayashi, H. & Kagamiyama, H. Nuclear localization of yeast Nfs1p is required for cell survival. J. Biol. Chem.276, 8314–8320 (2001). ArticleCAS Google Scholar
Nakai, Y. et al. Yeast Nfs1p is involved in thio-modification of both mitochondrial and cytoplasmic tRNAs. J. Biol. Chem.279, 12363–12368 (2004). ArticleCAS Google Scholar
Sutak, R. et al. Mitochondrial-type assembly of FeS centers in the hydrogenosomes of the amitochondriate eukaryote Trichomonas vaginalis. Proc. Natl Acad. Sci. USA101, 10368–10373 (2004). ArticleCAS Google Scholar
Huynen, M. A. et al. The phylogenetic distribution of frataxin indicates a role in iron–sulfur cluster protein assembly. Hum. Mol. Genet.10, 2463–2468 (2001). ArticleCAS Google Scholar
Lareau, L. F. et al. The evolving roles of alternative splicing. Curr. Opin. Struct. Biol.14, 273–282 (2004). ArticleCAS Google Scholar
Morris, D. R. & Geballe, A. P. Upstream open reading frames as regulators of mRNA translation. Mol. Cell. Biol.20, 8635–8642 (2000). ArticleCAS Google Scholar
Rees, D. C. & Howard, J. B. The interface between the biological and inorganic worlds: iron–sulfur metalloclusters. Science300, 929–931 (2003). ArticleCAS Google Scholar
Foury, F. & Roganti, T. Deletion of the mitochondrial carrier genes MRS3 and MRS4 suppresses mitochondrial iron accumulation in a yeast frataxin-deficient strain. J. Biol. Chem.277, 24475–24483 (2002). ArticleCAS Google Scholar