Tetraspanin functions and associated microdomains (original) (raw)
Tarrant, J. M., Robb, L., van Spriel, A. B. & Wright, M. D. Tetraspanins: molecular organisers of the leukocyte surface. Trends Immunol.24, 610–617 (2003). ArticleCASPubMed Google Scholar
Hemler, M. E. Tetraspanin proteins mediate cellular penetration, invasion and fusion events, and define a novel type of membrane microdomain. Ann. Rev. Cell Dev. Biol.19, 397–422 (2003). ArticleCAS Google Scholar
Levy, S., Todd, S. C. & Maecker, H. T. CD81 (TAPA-1): a molecule involved in signal transduction and cell adhesion in the immune system. Annu. Rev. Immunol.16, 89–109 (1998). ArticleCASPubMed Google Scholar
Maecker, H. T., Todd, S. C. & Levy, S. The tetraspanin superfamily: molecular facilitators. FASEB J.11, 428–442 (1997). ArticleCASPubMed Google Scholar
Todres, E., Nardi, J. B. & Robertson, H. M. The tetraspanin superfamily in insects. Insect Mol. Biol.9, 581–590 (2000). ArticleCASPubMed Google Scholar
Kitadokoro, K. et al. CD81 extracellular domain 3D structure: insight into the tetraspanin superfamily structural motifs. EMBO J.20, 12–18 (2001). Provides the first detailed structural information for a tetraspanin. ArticleCASPubMedPubMed Central Google Scholar
Seigneuret, M., Delaguillaumie, A., Lagaudriere-Gesbert, C. & Conjeaud, H. Structure of the tetraspanin main extracellular domain. A partially conserved fold with a structurally variable domain insertion. J. Biol. Chem.276, 40055–40064 (2001). ArticleCASPubMed Google Scholar
Berditchevski, F. Complexes of tetraspanins with integrins: more than meets the eye. J. Cell Sci.114, 4143–4151 (2001). CASPubMed Google Scholar
Zemni, R. et al. A new gene involved in X-linked mental retardation identified by analysis of an X;2 balanced translocation. Nature Genet.24, 167–170 (2000). ArticleCASPubMed Google Scholar
Kohl, S. et al. The role of the peripherin/RDS gene in retinal dystrophies. Acta Anat. (Basel)162, 75–84 (1998). ArticleCAS Google Scholar
Karamatic Crew, V. et al. CD151, the first member of the tetraspanin (TM4) superfamily detected on erythrocytes, is essential for the correct assembly of human basement membranes in kidney and skin. Blood104, 2217–2223 (2004). Human genetic information shows functions for CD151, and validates the importance of CD151–integrin complexes. ArticlePubMedCAS Google Scholar
Yánez-Mó, M . et al. Regulation of endothelial cell motility by complexes of tetraspan molecules CD81/TAPA-1 and CD151/PETA-3 with α3β1 integrin localized at endothelial lateral junctions. J. Cell Biol.141, 791–804 (1998). ArticlePubMedPubMed Central Google Scholar
Yauch, R. L., Berditchevski, F., Harler, M. B., Reichner, J. & Hemler, M. E. Highly stoichiometric, stable and specific association of integrin α3β1 with CD151 provides a major link to phosphatidylinositol 4-kinase and may regulate cell migration. Mol. Biol. Cell9, 2751–2765 (1998). ArticleCASPubMedPubMed Central Google Scholar
Sincock, P. M. et al. PETA-3/CD151, a member of the transmembrane 4 superfamily, is localised to the plasma membrane and endocytic system of endothelial cells, associates with multiple integrins and modulates cell function. J. Cell Sci.112, 833–844 (1999). CASPubMed Google Scholar
Kazarov, A. R., Yang, X., Stipp, C. S., Sehgal, B. & Hemler, M. E. An extracellular site on tetraspanin CD151 determines α3 and α6 integrin-dependent cellular morphology. J Cell. Biol.158, 1299–1309 (2002). ArticleCASPubMedPubMed Central Google Scholar
Sterk, L. M. et al. Association of the tetraspanin CD151 with the laminin-binding integrins α3β1, α6β1, α6β4 and α7β1 in cells in culture and in vivo. J. Cell Sci.115, 1161–1173 (2002). CASPubMed Google Scholar
Sterk, L. M. et al. The tetraspan molecule CD151, a novel constituent of hemidesmosomes, associates with the integrin alphaα6β4 and may regulate the spatial organization of hemidesmosomes. J. Cell Biol.149, 969–982 (2000). ArticleCASPubMedPubMed Central Google Scholar
Ruzzi, L. et al. A homozygous mutation in the integrin α6 gene in junctional epidermolysis bullosa with pyloric atresia. J. Clin. Invest.99, 2826–2831 (1997). ArticleCASPubMedPubMed Central Google Scholar
Gil, S. G., Brown, T. A., Ryan, M. C. & Carter, W. G. Junctional epidermolysis bullosis: defects in expression of epiligrin/nicein/kalinin and integrin β4 that inhibit hemidesmosome formation. J. Invest. Derm.103, 31S–38S (1994). ArticleCASPubMed Google Scholar
Kreidberg, J. A. et al. α3β1 integrin has a crucial role in kidney and lung organogenesis. Development122, 3537–3547 (1996). CASPubMed Google Scholar
Dipersio, C. M., Hodivala-Dilke, K. M., Jaenisch, R. & Kreidberg, J. A. α3β1 integrin is required for normal development of the epidermal basement membrane. J. Cell Biol.137, 729–742 (1997). ArticleCASPubMedPubMed Central Google Scholar
Kagan, A., Feld, S., Chemke, J. & Bar-Khayim, Y. Occurrence of hereditary nephritis, pretibial epidermolysis bullosa and βthalassemia minor in two siblings with end-stage renal disease. Nephron49, 331–332 (1988). ArticleCASPubMed Google Scholar
Connell, G. et al. Photoreceptor peripherin is the normal product of the gene responsible for retinal degeneration in the rds mouse. Proc. Natl Acad. Sci. USA88, 723–726 (1991). ArticleCASPubMedPubMed Central Google Scholar
Clarke, G. et al. Rom-1 is required for rod photoreceptor viability and the regulation of disk morphogenesis. Nature Genet.25, 67–73 (2000). ArticleCASPubMed Google Scholar
Lau, L. M. et al. The tetraspanin superfamily member, CD151 regulates outside-in integrin αIIbβ3 signalling and platelet function. Blood104, 2368–2375 (2004). ArticleCASPubMed Google Scholar
Lammerding, J., Kazarov, A. R., Huang, H., Lee, R. T. & Hemler, M. E. Tetraspanin CD151 regulates alpha6beta1 integrin adhesion strengthening. Proc. Natl Acad. Sci. USA100, 7616–7621 (2003). ArticleCASPubMedPubMed Central Google Scholar
Fitter, S., Sincock, P. M., Jolliffe, C. N. & Ashman, L. K. Transmembrane 4 superfamily protein CD151 (PETA-3) associates with β1 and αIIbβ3 integrins in haemopoietic cell lines and modulates cell-cell adhesion. Biochem. J.338, 61–70 (1999). CASPubMedPubMed Central Google Scholar
Miyazaki, T., Muller, U. & Campbell, K. S. Normal development but differentially altered proliferative responses of lymphocytes in mice lacking CD81. EMBO J.16, 4217–4225 (1997). ArticleCASPubMedPubMed Central Google Scholar
van Spriel, A. B. et al. A regulatory role for CD37 in T cell proliferation. J. Immunol.172, 2953–2961 (2004). ArticleCASPubMed Google Scholar
Tarrant, J. M. et al. The absence of Tssc6, a member of the tetraspanin superfamily, does not affect lymphoid development but enhances in vitro T-cell proliferative responses. Mol. Cell. Biol.22, 5006–5018 (2002). ArticleCASPubMedPubMed Central Google Scholar
Maecker, H. T. & Levy, S. Normal lymphocyte development but delayed humoral immune response in CD81-null mice. J. Exp. Med.185, 1505–1510 (1997). ArticleCASPubMedPubMed Central Google Scholar
Knobeloch, K. P. et al. Targeted inactivation of the tetraspanin CD37 impairs T-cell-dependent B-cell response under suboptimal costimulatory conditions. Mol. Cell. Biol.20, 5363–5369 (2000). ArticleCASPubMedPubMed Central Google Scholar
Wright, M. D., Moseley, G. W. & van Spriel, A. B. Tetraspanin microdomains in immune cell signalling and malignant disease. Tissue Antigens64, 533–542 (2004). ArticleCASPubMed Google Scholar
Levy, S. & Shoham, T. The tetraspanin web modulates immune-signalling complexes. Nature Rev. Immunol.5, 136–148 (2005). ArticleCAS Google Scholar
Kaji, K. et al. The gamete fusion process is defective in eggs of Cd9-deficient mice. Nature Genet.24, 279–282 (2000). ArticleCASPubMed Google Scholar
Le Naour, F., Rubinstein, E., Jasmin, C., Prenant, M. & Boucheix, C. Severely reduced female fertility in CD9-deficient mice. Science287, 319–321 (2000). ArticleCASPubMed Google Scholar
Miyado, K. et al. Requirement of CD9 on the egg plasma membrane for fertilization. Science287, 321–324 (2000). Papers 39–41 provide the first evidence for a protein on oocyte plasma membranes being needed for fertilization. ArticleCASPubMed Google Scholar
Deng, J. et al. Allergen-induced airway hyperreactivity is diminished in CD81-deficient mice. J. Immunol.165, 5054–5061 (2000). ArticleCASPubMed Google Scholar
Takeda, Y. et al. Tetraspanins CD9 and CD81 function to prevent the fusion of mononuclear phagocytes. J. Cell Biol.161, 945–956 (2003). Definitive genetic evidence shows that tetraspanins can sometimes inhibit cell fusion, in contrast to other papers emphasizing the promotion of cell fusion. ArticleCASPubMedPubMed Central Google Scholar
Ishibashi, T. et al. Tetraspanin protein CD9 is a novel paranodal component regulating paranodal junctional formation. J. Neurosci.24, 96–102 (2004). ArticleCASPubMedPubMed Central Google Scholar
Cha, J. H., Brooke, J. S., Ivey, K. N. & Eidels, L. Cell surface monkey CD9 antigen is a coreceptor that increases diphtheria toxin sensitivity and diphtheria toxin receptor affinity. J. Biol. Chem.275, 6901–6907 (2000). ArticleCASPubMed Google Scholar
Moribe, H. et al. Tetraspanin protein (TSP-15) is required for epidermal integrity in Caenorhabditis elegans. J. Cell Sci.117, 5209–5220 (2004).Provides the first definitive evidence that aC. eleganstetraspanin is functionally important. ArticleCASPubMed Google Scholar
Kopczynski, C. C., Davis, G. W. & Goodman, C. S. A neural tetraspanin, encoded by late bloomer, that facilitates synapse formation. Science271, 1867–1870 (1996). ArticleCASPubMed Google Scholar
Fradkin, L. G., Kamphorst, J. T., DiAntonio, A., Goodman, C. S. & Noordermeer, J. N. Genomewide analysis of the Drosophila tetraspanins reveals a subset with similar function in the formation of the embryonic synapse. Proc. Natl Acad. Sci. USA99, 13663–13668 (2002). ArticleCASPubMedPubMed Central Google Scholar
Xu, H. et al. A lysosomal tetraspanin associated with retinal degeneration identified via a genome-wide screen. EMBO J.23, 811–822 (2004). The power of genetic screening inDrosophila melanogasteris applied in the discovery of novel tetraspanin function. ArticleCASPubMedPubMed Central Google Scholar
Sinenko, S. A. et al. Yantar, a conserved arginine-rich protein is involved in Drosophila hemocyte development. Dev. Biol.273, 48–62 (2004). ArticleCASPubMed Google Scholar
Sinenko, S. A. & Mathey-Prevot, B. Increased expression of Drosophila tetraspanin, Tsp68C, suppresses the abnormal proliferation of ytr-deficient and Ras/Raf-activated hemocytes. Oncogene23, 9120–9128 (2004). A gain-of-functionDrosophila melanogastermutant providesin vivoevidence in support of tetraspanin control of haemocyte proliferation. ArticleCASPubMed Google Scholar
Clergeot, P. H. et al. PLS1, a gene encoding a tetraspanin-like protein, is required for penetration of rice leaf by the fungal pathogen Magnaporthe grisea. Proc. Natl Acad. Sci. USA98, 6963–6968 (2001). This paper, involving tetraspanin-dependent fungal penetration into rice leaves, could have relevance to tetraspanin-dependent invasion by mammalian tumour cells. ArticleCASPubMedPubMed Central Google Scholar
Gourgues, M., Brunet-Simon, A., Lebrun, M. H. & Levis, C. The tetraspanin BcPls1 is required for appressorium-mediated penetration of Botrytis cinerea into host plant leaves. Mol. Microbiol.51, 619–629 (2004). ArticleCASPubMed Google Scholar
Gourgues, M. et al. A new class of tetraspanins in fungi. Biochem. Biophys. Res. Commun.297, 1197–1204 (2002). ArticleCASPubMed Google Scholar
Hemler, M. E., Mannion, B. A. & Berditchevski, F. Association of TM4SF proteins with integrins: relevance to cancer. Biochim. Biophys. Acta1287, 67–71 (1996). PubMed Google Scholar
Zhang, X. A. et al. Function of the tetraspanin CD151-α6β1 integrin complex during cellular morphogenesis. Mol. Biol. Cell13, 1–11 (2002). ArticlePubMedPubMed CentralCAS Google Scholar
Feigelson, S. W., Grabovsky, V., Shamri, R., Levy, S. & Alon, R. The CD81 tetraspanin facilitates instantaneous leukocyte VLA-4 adhesion strengthening to vascular cell adhesion molecule 1 (VCAM-1) under shear flow. J. Biol. Chem.278, 51203–51212 (2003). ArticleCASPubMed Google Scholar
Mannion, B. A., Berditchevski, F., Kraeft, S.-K., Chen, L. B. & Hemler, M. E. TM4SF proteins CD81 (TAPA-1), CD82, CD63 and CD53 specifically associate with α4β1 integrin. J. Immunol.157, 2039–2047 (1996). CASPubMed Google Scholar
Serru, V. et al. Selective tetraspan-integrin complexes (CD81/α4β1, CD151/α3β1, CD151/α6β1) under conditions disrupting tetraspan interactions. Biochem. J.340, 103–111 (1999). CASPubMedPubMed Central Google Scholar
Berditchevski, F. & Odintsova, E. Characterization of integrin-tetraspanin adhesion complexes: role of tetraspanins in integrin signaling. J. Cell Biol.146, 477–492 (1999). ArticleCASPubMedPubMed Central Google Scholar
Delaguillaumie, A. et al. Tetraspanin CD82 controls the association of cholesterol-dependent microdomains with the actin cytoskeleton in T lymphocytes: relevance to co-stimulation. J. Cell Sci.117, 5269–5282 (2004). ArticleCASPubMed Google Scholar
Zhang, X. A., Bontrager, A. L. & Hemler, M. E. TM4SF proteins associate with activated PKC and Link PKC to specific β1 integrins. J. Biol. Chem.276, 25005–25013 (2001). ArticleCASPubMed Google Scholar
Keenan, C. & Kelleher, D. Protein kinase C and the cytoskeleton. Cell Signal.10, 225–232 (1998). ArticleCASPubMed Google Scholar
Hung, A. Y. & Sheng, M. PDZ domains: structural modules for protein complex assembly. J. Biol. Chem.277, 5699–5702 (2002). ArticleCASPubMed Google Scholar
Stipp, C. S., Kolesnikova, T. V. & Hemler, M. E. EWI-2 is a major CD9 and CD81 partner, and member of a novel Ig protein subfamily. J. Biol. Chem.276, 40545–40554 (2001). ArticleCASPubMed Google Scholar
Stipp, C. S., Kolesnikova, T. V. & Hemler, M. E. EWI-2 regulates α3β1 integrin-dependent cell functions on laminin-5. J. Cell Biol.163, 1167–1177 (2003). ArticleCASPubMedPubMed Central Google Scholar
Kolesnikova, T. V. et al. EWI-2 modulates lymphocyte integrin α4β1 functions. Blood103, 3013–3019 (2004). ArticleCASPubMed Google Scholar
He, B. et al. Tetraspanin CD82 attenuates cellular morphogenesis through down-regulating integrin α6-mediated cell adhesion. J. Biol. Chem. (2004).
Barreiro, O. et al. Endothelial tetraspanin microdomains regulate leukocyte firm adhesion during extravasation. Blood105, 2852–2862 (2004). ArticlePubMedCAS Google Scholar
Oren, R., Takahashi, S., Doss, C., Levy, R. & Levy, S. TAPA-1, the target of an antiproliferative antibody, defines a new family of transmembrane proteins. Mol. Cell. Biol.10, 4007–4015 (1990). ArticleCASPubMedPubMed Central Google Scholar
Inui, S. et al. Possible role of coexpression of CD9 with membrane-anchored heparin-binding EGF-like growth factor and amphiregulin in cultured human keratinocyte growth. J. Cell. Physiol.171, 291–298 (1997). ArticleCASPubMed Google Scholar
Murayama, Y. et al. CD9-mediated activation of the p46 Shc isoform leads to apoptosis in cancer cells. J. Cell Sci.117, 3379–3388 (2004). ArticleCASPubMed Google Scholar
Carloni, V., Mazzocca, A. & Ravichandran, K. S. Tetraspanin CD81 is linked to ERK/MAPKinase signaling by Shc in liver tumor cells. Oncogene23, 1566–1574 (2004). ArticleCASPubMed Google Scholar
Berditchevski, F., Tolias, K. F., Wong, K., Carpenter, C. L. & Hemler, M. E. A novel link between integrins, TM4SF proteins (CD63, CD81) and phosphatidylinositol 4-kinase. J. Biol. Chem.272, 2595–2598 (1997). ArticleCASPubMed Google Scholar
Yauch, R. L. & Hemler, M. E. Specific interactions among transmembrane 4 superfamily (TM4SF) proteins and phosphatidylinositol 4-kinase. Biochem. J.351, 629–637 (2000). ArticleCASPubMedPubMed Central Google Scholar
Kolch, W. et al. Protein kinase Cα activates RAF-1 by direct phosphorylation. Nature364, 249–252 (1993). ArticleCASPubMed Google Scholar
Cai, H. et al. Role of diacylglycerol-regulated protein kinase C isotypes in growth factor activation of the Raf-1 protein kinase. Mol. Cell. Biol.17, 732–741 (1997). ArticleCASPubMedPubMed Central Google Scholar
Tachibana, I. & Hemler, M. E. Role of transmembrane-4 superfamily (TM4SF) proteins CD9 and CD81 in muscle cell fusion and myotube maintenance. J. Cell Biol.146, 893–904 (1999). ArticleCASPubMedPubMed Central Google Scholar
Ono, M., Handa, K., Withers, D. A. & Hakomori, S. Motility inhibition and apoptosis are induced by metastasis-suppressing gene product CD82 and its analogue CD9, with concurrent glycosylation. Cancer Res.59, 2335–2339 (1999). CASPubMed Google Scholar
Gu, J., Sumida, Y., Sanzen, N. & Sekiguchi, K. Laminin-10/11 and fibronectin differentially regulate integrin-dependent Rho and Rac activation via p130(Cas)-CrkII-DOCK180 pathway. J. Biol. Chem.276, 27090–27097 (2001). ArticleCASPubMed Google Scholar
Shigeta, M. et al. CD151 regulates epithelial cell-cell adhesion through PKC- and Cdc42-dependent actin cytoskeletal reorganization. J. Cell Biol.163, 165–176 (2003). ArticleCASPubMedPubMed Central Google Scholar
Sawada, S., Yoshimoto, M., Odintsova, E., Hotchin, N. A. & Berditchevski, F. The tetraspanin CD151 functions as a negative regulator in the adhesion-dependent activation of Ras. J. Biol. Chem.278, 26323–26326 (2003). ArticleCASPubMed Google Scholar
Dong, J.-T. et al. KAI 1, a metastasis suppressor gene for prostate cancer on human chromosome 11p11.2. Science268, 884–886 (1995). ArticleCASPubMed Google Scholar
Gu, J. et al. Shc and FAK differentially regulate cell motility and directionality modulated by PTEN. J. Cell Biol.146, 389–403 (1999). ArticleCASPubMedPubMed Central Google Scholar
Klemke, R. L. et al. CAS/Crk coupling serves as a 'molecular switch' for induction of cell migration. J. Cell Biol.140, 961–972 (1998). ArticleCASPubMedPubMed Central Google Scholar
Zhang, X. A., He, B., Zhou, B. & Liu, L. Requirement of the p130CAS-Crk coupling for metastasis suppressor KAI1/CD82-mediated inhibition of cell migration. J. Biol. Chem.278, 27319–27328 (2003). ArticleCASPubMed Google Scholar
Zhang, X. A., Lane, W. S., Charrin, S., Rubinstein, E. & Liu, L. EWI2/PGRL associates with the metastasis suppressor KAI1/CD82 and inhibits the migration of prostate cancer cells. Cancer Res.63, 2665–2674 (2003). CASPubMed Google Scholar
Odintsova, E., Sugiura, T. & Berditchevski, F. Attenuation of EGF receptor signaling by a metastasis suppressor, the tetraspanin CD82/KAI-1. Curr. Biol.10, 1009–1012 (2000). ArticleCASPubMed Google Scholar
Odintsova, E., Voortman, J., Gilbert, E. & Berditchevski, F. Tetraspanin CD82 regulates compartmentalisation and ligand-induced dimerization of EGFR. J. Cell Sci.116, 4557–4566 (2003). ArticleCASPubMed Google Scholar
Kovalenko, O. V., Yang, X., Kolesnikova, T. V. & Hemler, M. E. Evidence for specific tetraspanin homodimers: inhibition of palmitoylation makes cysteine residues available for cross-linking. Biochem. J.377, 407–417 (2004). ArticleCASPubMedPubMed Central Google Scholar
Oostergetel, G. T., Keegstra, W. & Brisson, A. Structure of the major membrane protein complex from urinary bladder epithelial cells by cryo-electron crystallography. J. Mol. Biol.314, 245–252 (2001). ArticleCASPubMed Google Scholar
Yang, X. et al. Palmitoylation of tetraspanin proteins: modulation of CD151 lateral interactions, subcellular distribution, and integrin-dependent cell morphology. Mol. Biol. Cell13, 767–781 (2002). ArticleCASPubMedPubMed Central Google Scholar
Berditchevski, F., Odintsova, E., Sawada, S. & Gilbert, E. Expression of the palmitoylation-deficient CD151 weakens the association of α3β1 integrin with the tetraspanin-enriched microdomains and affects integrin-dependent signalling. J. Biol. Chem.277, 36991–37000 (2002). ArticleCASPubMed Google Scholar
Zhou, B., Liu, L., Reddivari, M. & Zhang, X. A. The palmitoylation of metastasis suppressor KAI1/CD82 is important for its motility- and invasiveness-inhibitory activity. Cancer Res.64, 7455–7463 (2004). ArticleCASPubMed Google Scholar
Clark, K. L. et al. CD81 associates with 14–3-3 in a redox-regulated palmitoylation-dependent manner. J. Biol. Chem.279, 19401–19406 (2004). ArticleCASPubMed Google Scholar
Charrin, S. et al. Differential stability of tetraspanin/tetraspanin interactions: role of palmitoylation. FEBS Lett.516, 139–144 (2002). ArticleCASPubMed Google Scholar
Smotrys, J. E. & Linder, M. E. Palmitoylation of intracellular signaling proteins: regulation and function. Annu. Rev. Biochem.73, 559–587 (2004). ArticleCASPubMed Google Scholar
Shogomori, H. et al. Palmitoylation and intracellular-domain interactions both contribute to raft targeting of linker for activation of T cells (LAT). J. Biol. Chem.280,18931–18942(2005). ArticleCASPubMed Google Scholar
Charrin, S. et al. A physical and functional link between cholesterol and tetraspanins. Eur. J. Immunol.33, 2479–2489 (2003). ArticleCASPubMed Google Scholar
Miura, Y. et al. Reversion of the Jun-induced oncogenic phenotype by enhanced synthesis of sialosyllactosylceramide (GM3 ganglioside). Proc. Natl Acad. Sci. USA101, 16204–16209 (2004). ArticleCASPubMedPubMed Central Google Scholar
Cherukuri, A. et al. The tetraspanin CD81 is necessary for partitioning of coligated CD19/CD21-B cell antigen receptor complexes into signaling-active lipid rafts. J. Immunol.172, 370–380 (2004). ArticleCASPubMed Google Scholar
Cherukuri, A. et al. B cell signaling is regulated by induced palmitoylation of CD81. J. Biol. Chem.279, 31973–31982 (2004). ArticleCASPubMed Google Scholar
Claas, C., Stipp, C. S. & Hemler, M. E. Evaluation of prototype TM4SF protein complexes and their relation to lipid rafts. J. Biol. Chem.276, 7974–7984 (2001). ArticleCASPubMed Google Scholar
Brown, D. A. & London, E. Functions of lipid rafts in biological membranes. Annu. Rev. Cell Dev. Biol.14, 111–136 (1998). ArticleCASPubMed Google Scholar
Kropshofer, H. et al. Tetraspan microdomains distinct from lipid rafts enrich select peptide-MHC class II complexes. Nature Immunol.3, 61–68 (2002). Provides evidence for a clear functional difference between tetraspanin-enriched microdomains (TEMs) and lipid rafts. ArticleCAS Google Scholar
Escola, J. M. et al. Selective enrichment of tetraspan proteins on the internal vesicles of multivesicular endosomes and on exosomes secreted by human B- lymphocytes. J. Biol. Chem.273, 20121–20127 (1998). ArticleCASPubMed Google Scholar
Foster, L. J., De Hoog, C. L. & Mann, M. Unbiased quantitative proteomics of lipid rafts reveals high specificity for signaling factors. Proc. Natl Acad. Sci. USA100, 5813–5818 (2003). ArticleCASPubMedPubMed Central Google Scholar
Stipp, C. S., Kolesnikova, T. V. & Hemler, M. E. Functional domains in tetraspanin proteins. Trends Biochem. Sci.28, 106–112 (2003). ArticleCASPubMed Google Scholar
Higashiyama, S. et al. The membrane protein CD9/DRAP27 potentiates the juxtacrine growth factor activity of the membrane-anchored heparin-binding EGF-like growth factor. J. Cell Biol.128, 929–938 (1995). ArticleCASPubMed Google Scholar
Shi, W., Fan, H., Shum, L. & Derynck, R. The tetraspanin CD9 associates with transmembrane TGFα and regulates TGFαinduced EGF receptor activation and cell proliferation. J. Cell Biol.148, 591–602 (2000). ArticleCASPubMedPubMed Central Google Scholar
Dryja, T. P., Hahn, L. B., Kajiwara, K. & Berson, E. L. Dominant and digenic mutations in the peripherin/RDS and ROM1 genes in retinitis pigmentosa. Invest. Ophthalmol. Vis. Sci.38, 1972–1982 (1997). CASPubMed Google Scholar
Kajiwara, K., Berson, E. L. & Dryja, T. P. Digenic retinitis pigmentosa due to mutations at the unlinked peripherin/RDS and ROM1 loci. Science264, 1604–1608 (1994). ArticleCASPubMed Google Scholar
Tsitsikov, E. N., Gutierrez-Ramos, J. C. & Geha, R. S. Impaired CD19 expression and signaling, enhanced antibody response to type II T independent antigen and reduction of B-1 cells in CD81-deficient mice. Proc. Natl Acad. Sci. USA94, 10844–10849 (1997). ArticleCASPubMedPubMed Central Google Scholar
Geisert, E. E. et al. Increased brain size and glial cell number in CD81-null mice. J. Comp. Neurol.453, 22–32 (2002). ArticlePubMed Google Scholar
Silvie, O. et al. Hepatocyte CD81 is required for Plasmodium falciparum and Plasmodium yoelii sporozoite infectivity. Nature Med.9, 93–96 (2003). ArticleCASPubMed Google Scholar