Membrane budding and scission by the ESCRT machinery: it's all in the neck (original) (raw)
Sorkin, A. & von Zastrow, M. Endocytosis and signalling: intertwining molecular networks. Nature Rev. Mol. Cell Biol.10, 609–622 (2009). CAS Google Scholar
Gruenberg, J. & Stenmark, H. The biogenesis of multivesicular endosomes. Nature Rev. Mol. Cell Biol.5, 317–323 (2004). CAS Google Scholar
Russell, M. R. G., Nickerson, D. P. & Odorizzi, G. Molecular mechanisms of late endosome morphology, identity and sorting. Curr. Opin. Cell Biol.18, 422–428 (2006). CASPubMed Google Scholar
Piper, R. C. & Katzmann, D. J. Biogenesis and function of multivesicular bodies. Annu. Rev. Cell Devel. Biol.23, 519–547 (2007). CAS Google Scholar
Peplowska, K., Markgraf, D. F., Ostrowicz, C. W., Bange, G. & Ungermann, C. The CORVET tethering complex interacts with the yeast Rab5 homolog Vps21 and is involved in endo-lysosomal biogenesis. Dev. Cell12, 739–750 (2007). CASPubMed Google Scholar
Pucadyil, T. J. & Schmid, S. L. Conserved functions of membrane active GTPases in coated vesicle formation. Science325, 1217–1220 (2009). CASPubMedPubMed Central Google Scholar
Raymond, C. K., Howald-Stevenson, I., Vater, C. A. & Stevens, T. H. Morphological classification of the yeast vacuolar protein sorting mutants — evidence for a prevacuolar compartment in class-E Vps mutants. Mol. Biol. Cell3, 1389–1402 (1992). CASPubMedPubMed Central Google Scholar
Babst, M., Katzmann, D. J., Snyder, W. B., Wendland, B. & Emr, S. D. Endosome-associated complex, ESCRT-II, recruits transport machinery for protein sorting at the multivesicular body. Dev. Cell3, 283–289 (2002). CASPubMed Google Scholar
Babst, M., Katzmann, D. J., Estepa-Sabal, E. J., Meerloo, T. & Emr, S. D. ESCRT-III: an endosome-associated heterooligomeric protein complex required for MVB sorting. Dev. Cell3, 271–282 (2002). CASPubMed Google Scholar
Katzmann, D. J., Babst, M. & Emr, S. D. Ubiquitin-dependent sorting into the multivesicular body pathway requires the function of a conserved endosomal protein sorting complex, ESCRT-I. Cell106, 145–155 (2001). CASPubMed Google Scholar
Spitzer, C. et al. The Arabidopsis elch mutant reveals functions of an ESCRT component in cytokinesis. Development133, 4679–4689 (2006). CASPubMed Google Scholar
Carlton, J. G. & Martin-Serrano, J. Parallels between cytokinesis and retroviral budding: a role for the ESCRT machinery. Science316, 1908–1912 (2007). CASPubMed Google Scholar
Morita, E. et al. Human ESCRT and ALIX proteins interact with proteins of the midbody and function in cytokinesis. EMBO J.26, 4215–4227 (2007). CASPubMedPubMed Central Google Scholar
Morita, E. & Sundquist, W. I. Retrovirus budding. Annu. Rev. Cell Devel. Biol.20, 395–425 (2004). CAS Google Scholar
Fujii, K., Hurley, J. H. & Freed, E. O. Beyond Tsg101: the role of Alix in 'ESCRTing' HIV-1. Nature Rev. Microbiol.5, 912–916 (2007). CAS Google Scholar
Filimonenko, M. et al. Functional multivesicular bodies are required for autophagic clearance of protein aggregates associated with neurodegenerative disease. J. Cell Biol.179, 485–500 (2007). CASPubMedPubMed Central Google Scholar
Lee, J. A., Beigneux, A., Ahmad, S. T., Young, S. G. & Gao, F. B. ESCRT-III dysfunction causes autophagosome accumulation and neurodegeneration. Curr. Biol.17, 1561–1567 (2007). CASPubMed Google Scholar
Rieder, S. E., Banta, L. M., Kohrer, K., McCaffery, J. M. & Emr, S. D. Multilamellar endosome-like compartment accumulates in the yeast Vps28 vacuolar protein sorting mutant. Mol. Biol. Cell7, 985–999 (1996). CASPubMedPubMed Central Google Scholar
Nickerson, D. P., West, M. & Odorizzi, G. Did2 coordinates Vps4-mediated dissociation of ESCRT-III from endosomes. J. Cell Biol.175, 715–720 (2006). CASPubMedPubMed Central Google Scholar
Nickerson, D. P., West, M., Henry, R. & Odorizzi, G. Regulators of Vps4 activity at endosomes differentially influence the size and rate of formation of intralumenal vesicles. Mol. Biol. Cell21, 1023–1032 (2010). CASPubMedPubMed Central Google Scholar
Hanson, P. I., Roth, R., Lin, Y. & Heuser, J. E. Plasma membrane deformation by circular arrays of ESCRT-III protein filaments. J. Cell Biol.180, 389–402 (2008). Using EM of ESCRT-III proteins overexpressed in cultured mammalian cells, this study shows that SNF7 assembles into circular filaments that can be induced to create or stabilize negative curvature in buds and tubules that deform the membrane away from the cytoplasm. CASPubMedPubMed Central Google Scholar
Lata, S. et al. Helical structures of ESCRT-III are disassembled by VPS4. Science321, 1354–1357 (2008). Reports the reconstitution of a tubular ESCRT-III structure from human VPS24 and VPS2, and shows that VPS4 can disassemble it from the inner surface of the tube. CASPubMedPubMed Central Google Scholar
Bajorek, M. et al. Structural basis for ESCRT-III protein autoinhibition. Nature Struct. Mol. Biol.16, 754–762 (2009). CAS Google Scholar
Wollert, T., Wunder, C., Lippincott-Schwartz, J. & Hurley, J. H. Membrane scission by the ESCRT-III complex. Nature458, 172–177 (2009). Shows that the three earliest-assembling subunits of ESCRT-III — Vps20, Snf7 and Vps24 — have an intrinsic membrane scission activity. The fourth subunit, Vps2, is not required for scission, but is required for coupling to Vps4. Also shows that the AAA+ ATPase Vps4 is required for recycling ESCRT-III but not for scission. CASPubMedPubMed Central Google Scholar
Im, Y. J., Wollert, T., Boura, E. & Hurley, J. H. Structure and function of the ESCRT-II–III interface in multivesicular body biogenesis. Dev. Cell17, 234–243 (2009). CASPubMedPubMed Central Google Scholar
Wollert, T. & Hurley, J. H. Molecular mechanism of multivesicular body biogenesis by the ESCRT complexes. Nature464, 864–869 (2010). Reveals that ESCRT-I and ESCRT-II work together to induce membrane budding through assembly at the bud neck. This assembly recruits ESCRT-III selectively to the membrane neck, thus ensuring that the ESCRTs are consumed in the ILV. CASPubMedPubMed Central Google Scholar
Lenz, M., Crow, D. J. G. & Joanny, J. F. Membrane buckling induced by curved filaments. Phys. Rev. Lett.103, 038101 (2009). PubMed Google Scholar
Fabrikant, G. et al. Computational model of membrane fission catalyzed by ESCRT-III. PLOS Comp. Biol.5, e1000575 (2009). This computational analysis of the energetics of membrane scission shows that the experimentally determined membrane affinity of ESCRT-III, when incorporated into an assembly of realistic dimensions, is sufficient to provide the energy required for membrane scission. Google Scholar
Raiborg, C. & Stenmark, H. The ESCRT machinery in endosomal sorting of ubiquitylated membrane proteins. Nature458, 445–452 (2009). CASPubMed Google Scholar
Hanson, P. I., Shim, S. & Merrill, S. A. Cell biology of the ESCRT machinery. Curr. Opin. Cell Biol.21, 568–574 (2009). CASPubMedPubMed Central Google Scholar
Carlton, J. G. & Martin-Serrano, J. The ESCRT machinery: new functions in viral and cellular biology. Biochem. Soc. Trans.37, 195–199 (2009). CASPubMed Google Scholar
Hurley, J. H. & Emr, S. D. The ESCRT complexes: structure and mechanism of a membrane-trafficking network. Annu. Rev. Biophys. Biomol. Struct.35, 277–298 (2006). CASPubMedPubMed Central Google Scholar
Saksena, S., Sun, J., Chu, T. & Emr, S. D. ESCRTing proteins in the endocytic pathway. Trends. Biochem. Sci.32, 561–573 (2007). CASPubMed Google Scholar
Williams, R. L. & Urbe, S. The emerging shape of the ESCRT machinery. Nature Rev. Mol. Cell Biol.8, 355–368 (2007). CAS Google Scholar
Hurley, J. H. ESCRT complexes and the biogenesis of multivesicular bodies. Curr. Opin. Cell Biol.20, 4–11 (2008). CASPubMedPubMed Central Google Scholar
Stuffers, S., Brech, A. & Stenmark, H. ESCRT proteins in physiology and disease. Exp. Cell Res.315, 1619–1626 (2009). CASPubMed Google Scholar
Chu, T., Sun, J., Saksena, S. & Emr, S. D. New component of ESCRT-I regulates endosomal sorting complex assembly. J. Cell Biol.175, 815–823 (2006). CASPubMedPubMed Central Google Scholar
Oestreich, A. J., Davies, B. A., Payne, J. A. & Katzmann, D. J. Mvb12 is a novel member of ESCRT-I involved in cargo selection by the multivesicular body pathway. Mol. Biol. Cell18, 646–657 (2006). PubMed Google Scholar
Curtiss, M., Jones, C. & Babst, M. Efficient cargo sorting by ESCRT-I and the subsequent release of ESCRT-I from multivesicular bodies requires the subunit Mvb12. Mol. Biol. Cell18, 636–645 (2006). PubMed Google Scholar
Kostelansky, M. S. et al. Molecular architecture and functional model of the complete yeast ESCRT-I heterotetramer. Cell129, 485–498 (2007). CASPubMedPubMed Central Google Scholar
Katzmann, D. J., Stefan, C. J., Babst, M. & Emr, S. D. Vps27 recruits ESCRT machinery to endosomes during MVB sorting. J. Cell Biol.162, 413–423 (2003). CASPubMedPubMed Central Google Scholar
Bilodeau, P. S., Winistorfer, S. C., Kearney, W. R., Robertson, A. D. & Piper, R. C. Vps27–Hse1 and ESCRT-I complexes cooperate to increase efficiency of sorting ubiquitinated proteins at the endosome. J. Cell Biol.163, 237–243 (2003). CASPubMedPubMed Central Google Scholar
Pornillos, O. et al. HIV Gag mimics the Tsg101-recruiting activity of the human Hrs protein. J. Cell Biol.162, 425–434 (2003). CASPubMedPubMed Central Google Scholar
Teo, H., Veprintsev, D. B. & Williams, R. L. Structural insights into endosomal sorting complex required for transport (ESCRT-I) recognition of ubiquitinated proteins. J. Biol. Chem.279, 28689–28696 (2004). CASPubMed Google Scholar
Sundquist, W. I. et al. Ubiquitin recognition by the human TSG101 protein. Mol. Cell13, 783–789 (2004). CASPubMed Google Scholar
Shields, S. B. et al. ESCRT ubiquitin binding domains function cooperatively during MVB cargo sorting. J. Cell Biol.185, 213–224 (2009). CASPubMedPubMed Central Google Scholar
Lee, H. H., Elia, N., Ghirlando, R., Lippincott-Schwartz, J. & Hurley, J. H. Midbody targeting of the ESCRT machinery by a noncanonical coiled coil in CEP55. Science322, 576–580 (2008). CASPubMedPubMed Central Google Scholar
Kostelansky, M. S. et al. Structural and functional organization of the ESCRT-I trafficking complex. Cell125, 113–126 (2006). CASPubMedPubMed Central Google Scholar
Gill, D. J. et al. Structural insight into the ESCRT-I/-II link and its role in MVB trafficking. EMBO J.26, 600–612 (2007). CASPubMedPubMed Central Google Scholar
Teo, H. L. et al. ESCRT-I core and ESCRT-II GLUE domain structures reveal role for GLUE in linking to ESCRT-I and membranes. Cell125, 99–111 (2006). CASPubMed Google Scholar
Hierro, A. et al. Structure of the ESCRT-II endosomal trafficking complex. Nature431, 221–225 (2004). CASPubMed Google Scholar
Teo, H., Perisic, O., Gonzalez, B. & Williams, R. L. ESCRT-II, an endosome-associated complex required for protein sorting: crystal structure and interactions with ESCRT-III and membranes. Dev. Cell7, 559–569 (2004). CASPubMed Google Scholar
Im, Y. J. & Hurley, J. H. Integrated structural model and membrane targeting mechanism of the human ESCRT-II complex. Dev. Cell14, 902–913 (2008). CASPubMedPubMed Central Google Scholar
Teis, D., Saksena, S., Judson, B. L. & Emr, S. D. ESCRT-II coordinates the assembly of ESCRT-III filaments for cargo sorting and multivesicular body vesicle formation. EMBO J.29, 871–883 (2010). CASPubMedPubMed Central Google Scholar
Saksena, S., Wahlman, J., Teis, D., Johnson, A. E. & Emr, S. D. Functional reconstitution of ESCRT-III assembly and disassembly. Cell136, 97–109 (2009). Elegantly shows by fluorescence spectroscopy that Vps20 and Snf7 undergo a series of conformational changes as ESCRT-III polymerizes on membranes. CASPubMedPubMed Central Google Scholar
Slagsvold, T. et al. Eap45 in mammalian ESCRT-II binds ubiquitin via a phosphoinositide-interacting GLUE domain. J. Biol. Chem.280, 19600–19606 (2005). CASPubMed Google Scholar
Alam, S. L. et al. Structural basis for ubiquitin recognition by the human ESCRT-II EAP45 GLUE domain. Nature Struct. Mol. Biol.13, 1029–1030 (2006). CAS Google Scholar
Hirano, S. et al. Structural basis of ubiquitin recognition by mammalian Eap45 GLUE domain. Nature Struct. Mol. Biol.13, 1031–1032 (2006). CAS Google Scholar
Teis, D., Saksena, S. & Emr, S. D. Ordered assembly of the ESCRT-III complex on endosomes is required to sequester cargo during MVB formation. Dev. Cell15, 578–589 (2008). Defines the order in which ESCRT-III proteins are recruited to the endosome in yeast as Vps20, Snf7, Vps24 and Vps2, and quantifies their relative abundance. Snf7 is the most abundant ESCRT-III protein in yeast and is shown by Förster resonance energy transfer to interact with itself. CASPubMed Google Scholar
Muziol, T. et al. Structural basis for budding by the ESCRT-III factor CHMP3. Dev. Cell10, 821–830 (2006). CASPubMed Google Scholar
Xiao, J. Y. et al. Structural basis of Ist1 function and Ist1–Did2 interaction in the multivesicular body pathway and cytokinesis. Mol. Biol. Cell20, 3514–3524 (2009). CASPubMedPubMed Central Google Scholar
Zamborlini, A. et al. Release of autoinhibition converts ESCRT-III components into potent inhibitors of HIV-1 budding. Proc. Natl Acad. Sci. USA103, 19140–19145 (2006). CASPubMedPubMed Central Google Scholar
Shim, S., Kimpler, L. A. & Hanson, P. I. Structure/function analysis of four core ESCRT-III proteins reveals common regulatory role for extreme C-terminal domain. Traffic8, 1068–1079 (2007). CASPubMed Google Scholar
Murk, J. L. A. N. et al. Endosomal compartmentalization in three dimensions: implications for membrane fusion. Proc. Natl Acad. Sci. USA100, 13332–13337 (2003). CASPubMedPubMed Central Google Scholar
Langelier, C. et al. Human ESCRT-II complex and its role in human immunodeficiency virus type 1 release. J. Virol.80, 9465–9480 (2006). CASPubMedPubMed Central Google Scholar
Bajorek, M. et al. Biochemical analyses of human IST1 and its function in cytokinesis. Mol. Biol. Cell20, 1360–1373 (2009). CASPubMedPubMed Central Google Scholar
Ghazi-Tabatabai, S. et al. Structure and disassembly of filaments formed by the ESCRT-III subunit Vps24. Structure16, 1345–1356 (2008). CASPubMed Google Scholar
Babst, M., Sato, T. K., Banta, L. M. & Emr, S. D. Endosomal transport function in yeast requires a novel AAA-type ATPase, Vps4p. EMBO J.16, 1820–1831 (1997). CASPubMedPubMed Central Google Scholar
Babst, M., Wendland, B., Estepa, E. J. & Emr, S. D. The Vps4p AAA ATPase regulates membrane association of a Vps protein complex required for normal endosome function. EMBO J.17, 2982–2993 (1998). CASPubMedPubMed Central Google Scholar
Yu, Z. H., Gonciarz, M. D., Sundquist, W. I., Hill, C. P. & Jensen, G. J. Cryo-EM structure of dodecameric Vps4p and its 2:1 complex with Vta1p. Mol. Biol.377, 364–377 (2008). CAS Google Scholar
Gonciarz, M. D. et al. Biochemical and structural studies of yeast Vps4 oligomerization. J. Mol. Biol.384, 878–895 (2008). CASPubMedPubMed Central Google Scholar
Hartmann, C. et al. Vacuolar protein sorting: two different functional states of the AAA-ATPase Vps4p. J. Mol. Biol.377, 352–363 (2008). CASPubMed Google Scholar
Landsberg, M. J., Vajjhala, P. R., Rothnagel, R., Munn, A. L. & Hankamer, B. Three-dimensional structure of AAA ATPase Vps4: advancing structural insights into the mechanisms of endosomal sorting and enveloped virus budding. Structure17, 427–437 (2009). CASPubMed Google Scholar
Inoue, M. et al. Nucleotide-dependent conformational changes and assembly of the AAA ATPase SKD1/VPS4B. Traffic9, 2180–2189 (2008). CASPubMed Google Scholar
Obita, T. et al. Structural basis for selective recognition of ESCRT-III by the AAA ATPase Vps4. Nature449, 735–739 (2007). CASPubMed Google Scholar
Stuchell-Brereton, M. et al. ESCRT-III recognition by VPS4 ATPases. Nature449, 740–744 (2007). CASPubMed Google Scholar
Kieffer, C. et al. Two distinct modes of ESCRT-III recognition are required for VPS4 functions in lysosomal protein targeting and HIV-1 budding. Dev. Cell15, 62–73 (2008). Together with references 73 and 74, references 79–81 provide the main structural underpinnings for the Vps4 disassembly mechanism. Reference 74 shows that the two hexameric rings of Vps4 are asymmetric, and reference 73 shows that central pore residues are important for function. References 79–81 show how Vps4 binds its ESCRT-III substrates. CASPubMedPubMed Central Google Scholar
Azmi, I. F. et al. ESCRT-III family members stimulate Vps4 ATPase activity directly or via Vta1. Dev. Cell14, 50–61 (2008). CASPubMed Google Scholar
Xiao, J. et al. Structural basis of Vta1 function in the multi-vesicular body sorting pathway. Dev. Cell14, 37–49 (2008). CASPubMedPubMed Central Google Scholar
Rue, S. M., Mattei, S., Saksena, S. & Emr, S. D. Novel Ist1–Did2 complex functions at a late step in multivesicular body sorting. Mol. Biol. Cell19, 475–484 (2008). CASPubMedPubMed Central Google Scholar
Dimaano, C., Jones, C. B., Hanono, A., Curtiss, M. & Babst, M. Ist1 regulates Vps4 localization and assembly. Mol. Biol. Cell19, 465–474 (2008). CASPubMedPubMed Central Google Scholar
Barkow, S. R., Levchenko, I., Baker, T. A. & Sauer, R. T. Polypeptide translocation by the AAA plus ClpXP protease machine. Chem. Biol.16, 605–612 (2009). CASPubMedPubMed Central Google Scholar
Samson, R. Y., Obita, T., Freund, S. M., Williams, R. L. & Bell, S. D. A role for the ESCRT system in cell division in Archaea. Science322, 1710–1713 (2008). CASPubMedPubMed Central Google Scholar
Lindas, A. C., Karlsson, E. A., Lindgren, M. T., Ettema, T. J. G. & Bernander, R. A unique cell division machinery in the Archaea. Proc. Natl Acad. Sci. USA105, 18942–18946 (2008). References 88 and 89 show that in the hyperthermophilic Crenarchaeota, ancient homologues of ESCRT-III and Vps4 are required for the completion of cell division. Crenarchaeota lack homologues of ESCRT-0–ESCRT-II, so these studies strongly suggest that ESCRT-III and Vps4 might be the minimal membrane scission machinery. CASPubMedPubMed Central Google Scholar
Carlton, J. G., Agromayor, M. & Martin-Serrano, J. Differential requirements for Alix and ESCRT-III in cytokinesis and HIV-1 release. Proc. Natl Acad. Sci. USA105, 10541–10546 (2008). CASPubMedPubMed Central Google Scholar
Steigemann, P. & Gerlich, D. W. Cytokinetic abscission: cellular dynamics at the midbody. Trends Cell Biol.19, 606–616 (2009). CASPubMed Google Scholar
Yang, D. et al. Structural basis for midbody targeting of spastin by the ESCRT-III protein CHMP1B. Nature Struct. Mol. Biol.15, 1278–1286 (2008). CAS Google Scholar
Connell, J. W., Lindon, C., Luzio, J. P. & Reid, E. Spastin couples microtubule severing to membrane traffic in completion of cytokinesis and secretion. Traffic10, 42–56 (2009). CASPubMed Google Scholar
Chen, B. J. & Lamb, R. A. Mechanisms for enveloped virus budding: can some viruses do without an ESCRT? Virology372, 221–232 (2008). CASPubMed Google Scholar
Jouvenet, N., Bieniasz, P. D. & Simon, S. M. Imaging the biogenesis of individual HIV-1 virions in live cells. Nature454, 236–240 (2008). CASPubMedPubMed Central Google Scholar
Carlson, L. A. et al. Three-dimensional analysis of budding sites and released virus suggests a revised model for HIV-1 morphogenesis. Cell Host Microbe4, 592–599 (2008). CASPubMedPubMed Central Google Scholar
Fisher, R. D. et al. Structural and biochemical studies of ALIX/AIP1 and its role in retrovirus budding. Cell128, 841–852 (2007). CASPubMed Google Scholar
Usami, Y., Popov, S. & Gottlinger, H. G. Potent rescue of human immunodeficiency virus type 1 late domain mutants by ALIX/AIP1 depends on its CHMP4 binding site. J. Virol.81, 6614–6622 (2007). CASPubMedPubMed Central Google Scholar
McCullough, J. et al. ALIX-CHMP4 interactions in the human ESCRT pathway. Proc. Natl Acad. Sci. USA105, 7687–7691 (2008). CASPubMedPubMed Central Google Scholar
Mizushima, N., Levine, B., Cuervo, A. M. & Klionsky, D. J. Autophagy fights disease through cellular self-digestion. Nature451, 1069–1075 (2008). CASPubMedPubMed Central Google Scholar
Rusten, T. E. & Stenmark, H. How do ESCRT proteins control autophagy? J. Cell Sci.122, 2179–2183 (2009). CASPubMed Google Scholar