- Salati, L. M. & Amir-Ahmady, B. Dietary regulation of expression of glucose-6-phosphate dehydrogenase. Annu. Rev. Nutr. 21, 121–140 (2001).
CAS PubMed Google Scholar
- Engelman, J. A., Luo, J. & Cantley, L. C. The evolution of phosphatidylinositol 3-kinases as regulators of growth and metabolism. Nature Rev. Genet. 7, 606–619 (2006).
CAS PubMed Google Scholar
- Manning, B. D. & Cantley, L. C. AKT/PKB signaling: navigating downstream. Cell 129, 1261–1274 (2007).
CAS PubMed PubMed Central Google Scholar
- Hardie, D. G. AMP-activated/SNF1 protein kinases: conserved guardians of cellular energy. Nature Rev. Mol. Cell Biol. 8, 774–785 (2007).
CAS Google Scholar
- Wullschleger, S., Loewith, R. & Hall, M. N. TOR signaling in growth and metabolism. Cell 124, 471–484 (2006).
CAS PubMed Google Scholar
- Nurse, P. A long twentieth century of the cell cycle and beyond. Cell 100, 71–78 (2000).
Article CAS PubMed Google Scholar
- Sherr, C. J. G1 phase progression: cycling on cue. Cell 79, 551–555 (1994).
CAS PubMed Google Scholar
- Coller, H. A., Sang, L. & Roberts, J. M. A new description of cellular quiescence. PLoS Biol. 4, e83 (2006).
PubMed PubMed Central Google Scholar
- Zwerschke, W. et al. Metabolic analysis of senescent human fibroblasts reveals a role for AMP in cellular senescence. Biochem. J. 376, 403–411 (2003).
CAS PubMed PubMed Central Google Scholar
- Sherr, C. J. D-type cyclins. Trends Biochem. Sci. 20, 187–190 (1995).
CAS PubMed Google Scholar
- Yalcin, A. et al. Nuclear targeting of 6-phosphofructo-2-kinase (PFKFB3) increases proliferation via cyclin-dependent kinases. J. Biol. Chem. 284, 24223–24232 (2009). This work shows that unlike other PFKFB isoforms, PFKFB3 is localized to nuclei and that this nuclear localization is required for its ability to control cell cycle progression by altering the expression of multiple cell cycle regulators.
CAS PubMed PubMed Central Google Scholar
- Sakamaki, T. et al. Cyclin D1 determines mitochondrial function in vivo. Mol. Cell. Biol. 26, 5449–5469 (2006). Shows that cyclin D1 also suppresses mitochondrial function and aerobic glycolysis by decreasing the expression of many metabolic enzymes.
CAS PubMed PubMed Central Google Scholar
- Bienvenu, F. et al. Transcriptional role of cyclin D1 in development revealed by a genetic-proteomic screen. Nature 463, 374–378.
- Glauser, D. A. & Schlegel, W. The FoxO/Bcl-6/cyclin D2 pathway mediates metabolic and growth factor stimulation of proliferation in Min6 pancreatic β-cells. J. Recept Signal Transduct Res. 29, 293–298 (2009).
CAS PubMed Google Scholar
- Chesney, J. et al. An inducible gene product for 6-phosphofructo-2-kinase with an AU-rich instability element: role in tumor cell glycolysis and the Warburg effect. Proc. Natl Acad. Sci. USA 96, 3047–3052 (1999).
CAS PubMed PubMed Central Google Scholar
- Okar, D. A. & Lange, A. J. Fructose-2, 6-bisphosphate and control of carbohydrate metabolism in eukaryotes. Biofactors 10, 1–14 (1999).
CAS PubMed Google Scholar
- Yang, K., Hitomi, M. & Stacey, D. W. Variations in cyclin D1 levels through the cell cycle determine the proliferative fate of a cell. Cell Div. 1, 32 (2006).
PubMed PubMed Central Google Scholar
- Mandal, S., Freije, W. A., Guptan, P. & Banerjee, U. Metabolic control of G1-S transition: cyclin E degradation by p53-induced activation of the ubiquitin-proteasome system. J. Cell Biol. 188, 473–479 (2010).
CAS PubMed PubMed Central Google Scholar
- Mandal, S., Guptan, P., Owusu-Ansah, E. & Banerjee, U. Mitochondrial regulation of cell cycle progression during development as revealed by the tenured mutation in Drosophila. Dev. Cell 9, 843–854 (2005).
CAS PubMed Google Scholar
- Li, M. & Zhang, P. The function of APC/CCdh1 in cell cycle and beyond. Cell Div. 4, 2 (2009).
PubMed PubMed Central Google Scholar
- Almeida, A., Bolanos, J. P. & Moncada, S. E3 ubiquitin ligase APC/C-Cdh1 accounts for the Warburg effect by linking glycolysis to cell proliferation. Proc. Natl Acad. Sci. USA 107, 738–741. Reports that PFKFB3 is a substrate of the APC and that glycolysis and cell proliferation are therefore dependent on a drop in APC activity.
- Herrero-Mendez, A. et al. The bioenergetic and antioxidant status of neurons is controlled by continuous degradation of a key glycolytic enzyme by APC/C-Cdh1. Nature Cell Biol. 11, 747–752 (2009).
CAS PubMed Google Scholar
- Li, B., Carey, M. & Workman, J. L. The role of chromatin during transcription. Cell 128, 707–719 (2007).
CAS PubMed Google Scholar
- Knosp, O., Talasz, H. & Puschendorf, B. Histone acetylation and histone synthesis in mouse fibroblasts during quiescence and restimulation into S-phase. Mol. Cell Biochem. 101, 51–58 (1991).
CAS PubMed Google Scholar
- Wellen, K. E. et al. ATP-citrate lyase links cellular metabolism to histone acetylation. Science 324, 1076–1080 (2009). Shows that acetyl-CoA generated by ACL is required for histone acetylation; control of ACL activity by glucose uptake therefore allows metabolic input into the histone acetylation required for DNA replication and transcription following growth factor stimulation.
CAS PubMed PubMed Central Google Scholar
- Kaplan, R. S., Mayor, J. A. & Wood, D. O. The mitochondrial tricarboxylate transport protein. cDNA cloning, primary structure, and comparison with other mitochondrial transport proteins. J. Biol. Chem. 268, 13682–13690 (1993).
CAS PubMed Google Scholar
- Annicotte, J. S. et al. The CDK4-pRB-E2F1 pathway controls insulin secretion. Nature Cell Biol. 11, 1017–1023 (2009).
CAS PubMed Google Scholar
- Fajas, L. et al. Impaired pancreatic growth, β cell mass, and beta cell function in E2F1 −/− mice. J. Clin. Invest. 113, 1288–95 (2004).
CAS PubMed PubMed Central Google Scholar
- Danial, N. N. & Korsmeyer, S. J. Cell death: critical control points. Cell 116, 205–219 (2004).
CAS PubMed Google Scholar
- Nicholson, D. W. Caspase structure, proteolytic substrates, and function during apoptotic cell death. Cell Death Differ. 6, 1028–1042 (1999).
CAS PubMed Google Scholar
- Taylor, R. C., Cullen, S. P. & Martin, S. J. Apoptosis: controlled demolition at the cellular level. Nature Rev. Mol. Cell Biol. 9, 231–241 (2008).
CAS Google Scholar
- Acehan, D. et al. Three-dimensional structure of the apoptosome: implications for assembly, procaspase-9 binding, and activation. Mol. Cell 9, 423–432 (2002).
CAS PubMed Google Scholar
- Li, P. et al. Cytochrome c and dATP-dependent formation of Apaf-1/caspase-9 complex initiates an apoptotic protease cascade. Cell 91, 479–489 (1997).
CAS PubMed Google Scholar
- Schafer, Z. T. & Kornbluth, S. The apoptosome: physiological, developmental, and pathological modes of regulation. Dev. Cell 10, 549–561 (2006).
CAS PubMed Google Scholar
- Zou, H., Henzel, W. J., Liu, X., Lutschg, A. & Wang, X. Apaf-1, a human protein homologous to C. elegans CED-4, participates in cytochrome _c_-dependent activation of caspase-3. Cell 90, 405–413 (1997).
CAS PubMed Google Scholar
- Jones, R. G. et al. AMP-activated protein kinase induces a p53-dependent metabolic checkpoint. Mol. Cell 18, 283–293 (2005).
CAS PubMed Google Scholar
- Oda, E. et al. Noxa, a BH3-only member of the Bcl-2 family and candidate mediator of p53-induced apoptosis. Science 288, 1053–1058 (2000).
CAS PubMed Google Scholar
- Miyashita, T. & Reed, J. C. Tumor suppressor p53 is a direct transcriptional activator of the human bax gene. Cell 80, 293–299 (1995).
CAS PubMed Google Scholar
- Nakano, K. & Vousden, K. H. PUMA, a novel proapoptotic gene, is induced by p53. Mol. Cell 7, 683–694 (2001).
CAS PubMed Google Scholar
- Chipuk, J. E., Bouchier-Hayes, L., Kuwana, T., Newmeyer, D. D. & Green, D. R. PUMA couples the nuclear and cytoplasmic proapoptotic function of p53. Science 309, 1732–1735 (2005).
CAS PubMed Google Scholar
- Tinel, A. & Tschopp, J. The PIDDosome, a protein complex implicated in activation of caspase-2 in response to genotoxic stress. Science 304, 843–846 (2004).
CAS PubMed Google Scholar
- Zhao, Y. et al. Glucose metabolism attenuates p53 and Puma-dependent cell death upon growth factor deprivation. J. Biol. Chem. 283, 36344–36353 (2008). Shows that cell death induced by PUMA is linked to nutrient levels, as high glucose metabolism can suppress p53-mediated PUMA induction even under conditions of growth factor withdrawal.
CAS PubMed PubMed Central Google Scholar
- Mihara, M. et al. p53 has a direct apoptogenic role at the mitochondria. Mol. Cell 11, 577–590 (2003).
CAS PubMed Google Scholar
- Ide, T. et al. GAMT, a p53-inducible modulator of apoptosis, is critical for the adaptive response to nutrient stress. Mol. Cell 36, 379–392 (2009).
CAS PubMed PubMed Central Google Scholar
- Kondoh, H. et al. Glycolytic enzymes can modulate cellular life span. Cancer Res. 65, 177–185 (2005).
CAS PubMed Google Scholar
- Matoba, S. et al. p53 regulates mitochondrial respiration. Science 312, 1650–1653 (2006).
CAS PubMed Google Scholar
- Bensaad, K. et al. TIGAR, a p53-inducible regulator of glycolysis and apoptosis. Cell 126, 107–120 (2006). Identifies a new p53-inducible gene, TIGAR, that can decrease intracellular levels of Fru-2,6-BP, thereby dampening glycolysis and protecting cells from reactive oxygen species-induced apoptosis through PPP-mediated generation of NADPH.
CAS PubMed Google Scholar
- Hu, W. et al. Glutaminase 2, a novel p53 target gene regulating energy metabolism and antioxidant function. Proc. Natl Acad. Sci. USA 107, 7455–7460 (2010).
CAS PubMed PubMed Central Google Scholar
- Suzuki, S. et al. Phosphate-activated glutaminase (GLS2), a p53-inducible regulator of glutamine metabolism and reactive oxygen species. Proc. Natl Acad. Sci. USA 107, 7461–7466 (2010).
CAS PubMed PubMed Central Google Scholar
- Baliga, B. C., Read, S. H. & Kumar, S. The biochemical mechanism of caspase-2 activation. Cell Death Differ. 11, 1234–1241 (2004).
CAS PubMed Google Scholar
- Krumschnabel, G., Manzl, C. & Villunger, A. Caspase-2: killer, savior and safeguard — emerging versatile roles for an ill-defined caspase. Oncogene 28, 3093–3096 (2009).
CAS PubMed PubMed Central Google Scholar
- Bergeron, L. et al. Defects in regulation of apoptosis in caspase-2-deficient mice. Genes Dev. 12, 1304–1314 (1998).
CAS PubMed PubMed Central Google Scholar
- Nutt, L. K. et al. Metabolic regulation of oocyte cell death through the CaMKII-mediated phosphorylation of caspase-2. Cell 123, 89–103 (2005). Shows that nutrients sufficient to promote the generation of NADPH through the PPP can promote NADPH-dependent suppressive phosphorylation of caspase 2 by CaMKII.
CAS PubMed PubMed Central Google Scholar
- Nutt, L. K. et al. Metabolic control of oocyte apoptosis mediated by 14-3-3ζ-regulated dephosphorylation of caspase-2. Dev. Cell 16, 856–866 (2009).
CAS PubMed PubMed Central Google Scholar
- Newmeyer, D. D., Farschon, D. M. & Reed, J. C. Cell-free apoptosis in Xenopus egg extracts: inhibition by Bcl-2 and requirement for an organelle fraction enriched in mitochondria. Cell 79, 353–364 (1994).
CAS PubMed Google Scholar
- Bouchier-Hayes, L. et al. Characterization of cytoplasmic caspase-2 activation by induced proximity. Mol. Cell 35, 830–840 (2009). This work employs bimolecular fluorescence complementation to demonstrate cytoplasmic activation of caspase 2 in response to several stimuli, including DHEA, an inhibitor of the PPP.
CAS PubMed PubMed Central Google Scholar
- Andersen, J. L. et al. Restraint of apoptosis during mitosis through interdomain phosphorylation of caspase-2. EMBO J. 28, 3216–3227 (2009).
CAS PubMed PubMed Central Google Scholar
- Shulga, N., Wilson-Smith, R. & Pastorino, J. G. Hexokinase II detachment from the mitochondria potentiates cisplatin induced cytotoxicity through a caspase-2 dependent mechanism. Cell Cycle 8, 3355–3364 (2009).
CAS PubMed Google Scholar
- Ryan, S. D. et al. Amyloid-β42 signals tau hyperphosphorylation and compromises neuronal viability by disrupting alkylacylglycerophosphocholine metabolism. Proc. Natl Acad. Sci. USA 106, 20936–20941 (2009).
CAS PubMed PubMed Central Google Scholar
- Majewski, N. et al. Hexokinase-mitochondria interaction mediated by Akt is required to inhibit apoptosis in the presence or absence of Bax and Bak. Mol. Cell 16, 819–830 (2004).
CAS PubMed Google Scholar
- Klein, J. Membrane breakdown in acute and chronic neurodegeneration: focus on choline-containing phospholipids. J. Neural Transm. 107, 1027–1063 (2000).
CAS PubMed Google Scholar
- Troy, C. M. et al. Caspase-2 mediates neuronal cell death induced by β-amyloid. J. Neurosci. 20, 1386–1392 (2000).
CAS PubMed PubMed Central Google Scholar
- Tait, S. W. & Green, D. R. Mitochondria and cell death: outer membrane permeabilization and beyond. Nature Rev. Mol. Cell Biol. 11, 621–632 (2010).
CAS Google Scholar
- Danial, N. N. BCL-2 family proteins: critical checkpoints of apoptotic cell death. Clin. Cancer Res. 13, 7254–7263 (2007).
CAS PubMed Google Scholar
- del Peso, L., Gonzalez-Garcia, M., Page, C., Herrera, R. & Nunez, G. Interleukin-3-induced phosphorylation of BAD through the protein kinase Akt. Science 278, 687–689 (1997).
CAS PubMed Google Scholar
- Datta, S. R. et al. Akt phosphorylation of BAD couples survival signals to the cell-intrinsic death machinery. Cell 91, 231–241 (1997).
CAS PubMed Google Scholar
- Rathmell, J. C., Vander Heiden, M. G., Harris, M. H., Frauwirth, K. A. & Thompson, C. B. In the absence of extrinsic signals, nutrient utilization by lymphocytes is insufficient to maintain either cell size or viability. Mol. Cell 6, 683–692 (2000).
CAS PubMed Google Scholar
- Harada, H. et al. Phosphorylation and inactivation of BAD by mitochondria-anchored protein kinase A. Mol. Cell 3, 413–422 (1999).
CAS PubMed Google Scholar
- Datta, S. R. et al. Survival factor-mediated BAD phosphorylation raises the mitochondrial threshold for apoptosis. Dev. Cell 3, 631–643 (2002).
CAS PubMed Google Scholar
- Danial, N. N. et al. BAD and glucokinase reside in a mitochondrial complex that integrates glycolysis and apoptosis. Nature 424, 952–956 (2003). Shows that BAD is required for assembly of a glucokinase-containing protein complex necessary both for mitochondrial glucokinase activity and optimal glucose-dependent mitochondrial respiratory function.
CAS PubMed Google Scholar
- Alves, N. L. et al. The Noxa/Mcl-1 axis regulates susceptibility to apoptosis under glucose limitation in dividing T cells. Immunity 24, 703–716 (2006).
CAS PubMed Google Scholar
- Rathmell, J. C. et al. Akt-directed glucose metabolism can prevent Bax conformation change and promote growth factor-independent survival. Mol. Cell Biol. 23, 7315–7328 (2003).
CAS PubMed PubMed Central Google Scholar
- Yamaguchi, H. & Wang, H. G. The protein kinase PKB/Akt regulates cell survival and apoptosis by inhibiting Bax conformational change. Oncogene 20, 7779–7786 (2001).
CAS PubMed Google Scholar
- Pastorino, J. G., Shulga, N. & Hoek, J. B. Mitochondrial binding of hexokinase II inhibits Bax-induced cytochrome c release and apoptosis. J. Biol. Chem. 277, 7610–7618 (2002).
CAS PubMed Google Scholar
- Majewski, N., Nogueira, V., Robey, R. B. & Hay, N. Akt inhibits apoptosis downstream of BID cleavage via a glucose-dependent mechanism involving mitochondrial hexokinases. Mol. Cell. Biol. 24, 730–740 (2004).
CAS PubMed PubMed Central Google Scholar
- Zhao, Y. et al. Glycogen synthase kinase 3α and 3β mediate a glucose-sensitive antiapoptotic signaling pathway to stabilize Mcl-1. Mol. Cell. Biol. 27, 4328–4339 (2007).
CAS PubMed PubMed Central Google Scholar
- Maurer, U., Charvet, C., Wagman, A. S., Dejardin, E. & Green, D. R. Glycogen synthase kinase-3 regulates mitochondrial outer membrane permeabilization and apoptosis by destabilization of MCL-1. Mol. Cell 21, 749–760 (2006).
CAS PubMed Google Scholar
- Jacobson, M. D. et al. Bcl-2 blocks apoptosis in cells lacking mitochondrial DNA. Nature 361, 365–369 (1993).
CAS PubMed Google Scholar
- Wang, J., Silva, J. P., Gustafsson, C. M., Rustin, P. & Larsson, N. G. Increased in vivo apoptosis in cells lacking mitochondrial DNA gene expression. Proc. Natl Acad. Sci. USA 98, 4038–4043 (2001).
CAS PubMed PubMed Central Google Scholar
- Ow, Y. P., Green, D. R., Hao, Z. & Mak, T. W. Cytochrome c: functions beyond respiration. Nature Rev. Mol. Cell Biol. 9, 532–542 (2008).
CAS Google Scholar
- Wikstrom, M. K. Proton pump coupled to cytochrome c oxidase in mitochondria. Nature 266, 271–273 (1977).
CAS PubMed Google Scholar
- Liu, X., Kim, C. N., Yang, J., Jemmerson, R. & Wang, X. Induction of apoptotic program in cell-free extracts: requirement for dATP and cytochrome c. Cell 86, 147–157 (1996).
CAS PubMed Google Scholar
- Schubert, D. Glucose metabolism and Alzheimer's disease. Ageing Res. Rev. 4, 240–257 (2005).
CAS PubMed Google Scholar
- Warburg, O. On the origin of cancer cells. Science 123, 309–314 (1956).
CAS PubMed Google Scholar
- Vaughn, A. E. & Deshmukh, M. Glucose metabolism inhibits apoptosis in neurons and cancer cells by redox inactivation of cytochrome c. Nature Cell Biol. 10, 1477–1483 (2008).
CAS PubMed Google Scholar
- Colell, A. et al. GAPDH and autophagy preserve survival after apoptotic cytochrome c release in the absence of caspase activation. Cell 129, 983–997 (2007). Shows that GAPDH supports survival in cells with permeabilized mitochondria by increasing glycolysis and, in a new nuclear role, increasing autophagy.
CAS PubMed Google Scholar
- Rathmell, J. C. & Kornbluth, S. Filling a GAP(DH) in caspase-independent cell death. Cell 129, 861–863 (2007).
CAS PubMed PubMed Central Google Scholar
- Green, D. R. & Kroemer, G. The pathophysiology of mitochondrial cell death. Science 305, 626–629 (2004).
CAS PubMed Google Scholar
- Chipuk, J. E. & Green, D. R. Do inducers of apoptosis trigger caspase-independent cell death? Nature Rev. Mol. Cell Biol. 6, 268–275 (2005).
CAS Google Scholar
- Majeski, A. E. & Dice, J. F. Mechanisms of chaperone-mediated autophagy. Int. J. Biochem. Cell Biol. 36, 2435–2444 (2004).
CAS PubMed Google Scholar
- Colell, A., Green, D. R. & Ricci, J. E. Novel roles for GAPDH in cell death and carcinogenesis. Cell Death Differ. 16, 1573–1581 (2009).
CAS PubMed Google Scholar
- Lartigue, L. et al. Caspase-independent mitochondrial cell death results from loss of respiration, not cytotoxic protein release. Mol. Biol. Cell 20, 4871–4884 (2009).
CAS PubMed PubMed Central Google Scholar
- Chalfant, C. E. et al. De novo ceramide regulates the alternative splicing of caspase 9 and Bcl-x in A549 lung adenocarcinoma cells. Dependence on protein phosphatase-1. J. Biol. Chem. 277, 12587–12595 (2002).
CAS PubMed Google Scholar
- Seol, D. W. & Billiar, T. R. A caspase-9 variant missing the catalytic site is an endogenous inhibitor of apoptosis. J. Biol. Chem. 274, 2072–2076 (1999).
CAS PubMed Google Scholar
- Kim, H. S. et al. SIRT3 is a mitochondria-localized tumor suppressor required for maintenance of mitochondrial integrity and metabolism during stress. Cancer Cell 17, 41–52 (2010).
CAS PubMed PubMed Central Google Scholar
- Xu, P., Vernooy, S. Y., Guo, M. & Hay, B. A. The Drosophila microRNA Mir-14 suppresses cell death and is required for normal fat metabolism. Curr. Biol. 13, 790–795 (2003).
CAS PubMed Google Scholar
- Yi, C. H. et al. A genome-wide RNAi screen reveals multiple regulators of caspase activation. J. Cell Biol. 179, 619–626 (2007).
CAS PubMed PubMed Central Google Scholar
- Ruvolo, P. P., Deng, X., Ito, T., Carr, B. K. & May, W. S. Ceramide induces Bcl2 dephosphorylation via a mechanism involving mitochondrial PP2A. J. Biol. Chem. 274, 20296–300 (1999).
CAS PubMed Google Scholar
- Ganesan, V. et al. Ceramide and activated Bax act synergistically to permeabilize the mitochondrial outer membrane. Apoptosis 15, 553–562 (2010).
CAS PubMed Google Scholar
- Siskind, L. J. et al. The BCL-2 protein BAK is required for long-chain ceramide generation during apoptosis. J. Biol. Chem. 285, 11818–11826 (2010).
CAS PubMed PubMed Central Google Scholar