Feng, Z. & Levine, A. J. The regulation of energy metabolism and the IGF-1/mTOR pathways by the p53 protein. Trends Cell Biol.20, 427–434 (2010). ArticleCASPubMedPubMed Central Google Scholar
Melino, G. Journal club. A cancer biologist weighs up p53, metabolism and cancer. Nature466, 905 (2010). ArticleCASPubMed Google Scholar
Dötsch, V., Bernassola, F., Coutandin, D., Candi, E. & Melino, G. p63 and p73, the ancestors of p53. Cold Spring Harb. Perspect. Biol.2, a004887 (2010). ArticlePubMedPubMed Central Google Scholar
Vousden, K. H. & Lane, D. P. p53 in health and disease. Nature Rev. Mol. Cell Biol.8, 275–283 (2007). ArticleCAS Google Scholar
Riley, T., Sontag, E., Chen, P. & Levine, A. Transciptional control of human p53-regulated genes. Nature Rev. Mol. Cell Biol.9, 402–412 (2008). ArticleCAS Google Scholar
Flores, E. R. et al. p63 and p73 are required for p53-dependent apoptosis in response to DNA damage. Nature416, 560–564 (2002). ArticleCASPubMed Google Scholar
Tomasini, R. et al. TAp73 knockout shows genomic instability with infertility and tumor suppressor functions. Genes Dev.22, 2677–2691 (2008). ArticleCASPubMedPubMed Central Google Scholar
Wilhelm, M. T. et al. Isoform-specific p73 knockout mice reveal a novel role for ΔNp73 in the DNA damage response pathway. Genes Dev.24, 549–560 (2010). ArticleCASPubMedPubMed Central Google Scholar
Yang, A., Kaghad, M., Caput, D. & McKeon, F. On the shoulders of giants: p63, p73 and the rise of p53. Trends Genet.18, 90–95 (2002). ArticlePubMed Google Scholar
Scoumanne, A., Harms, K. L. & Chen, X. Structural basis for gene activation by p53 family members. Cancer Biol. Ther.4, 1178–1185 (2005). ArticleCASPubMed Google Scholar
Stehmeier, P. & Muller, S. Regulation of p53 family members by the ubiquitin-like SUMO system. DNA Repair (Amst.)8, 491–498 (2009). ArticleCAS Google Scholar
Tomasini, R., Mak, T. W. & Melino, G. The impact of p53 and p73 on aneuploidy and cancer. Trends Cell Biol.18, 244–252 (2008). ArticleCASPubMed Google Scholar
Senoo, M., Pinto, F., Crum, C. P. & McKeon, F. p63 is essential for the proliferative potential of stem cells in stratified epithelia. Cell129, 523–536 (2007). ArticleCASPubMed Google Scholar
Candi, E. et al. DNp63 regulates thymic development through enhanced expression of FgfR2 and Jag2. Proc. Natl Acad. Sci. USA.104, 11999–12004 (2007). ArticleCASPubMedPubMed Central Google Scholar
Finlan, L. E. & Hupp, T. R. p63: the phantom of the tumor suppressor. Cell Cycle6, 1062–1071 (2007). ArticleCASPubMed Google Scholar
Komarova, E. A. et al. p53 is a suppressor of inflammatory response in mice. FASEB J.19, 1030–1032 (2005). ArticleCASPubMed Google Scholar
Cano, C. E. et al. Tumor protein 53-induced nuclear protein 1 is a major mediator of p53 antioxidant function. Cancer Res.69, 219–226 (2009). ArticleCASPubMed Google Scholar
Scrable, H., Medrano, S. & Ungewitter, E. Running on empty: how p53 controls INS/IGF signaling and affects life span. Exp. Gerontol.44, 93–100 (2009). ArticleCASPubMed Google Scholar
Donehower, L. A. et al. Mice deficient for p53 are developmentally normal but susceptible to spontaneous tumours. Nature356, 215–221 (1992). ArticleCASPubMed Google Scholar
Mills, A. A. et al. p63 is a p53 homologue required for limb and epidermal morphogenesis. Nature398, 708–713 (1999). ArticleCASPubMed Google Scholar
Yang, A. et al. p73-deficient mice have neurological, pheromonal and inflammatory defects but lack spontaneous tumours. Nature404, 99–103 (2000). ArticleCASPubMed Google Scholar
Suh, E. K. et al. p63 protects the female germ line during meiotic arrest. Nature444, 624–628 (2006). ArticleCASPubMed Google Scholar
Gonfloni, S. et al. Inhibition of the c-Abl–TAp63 pathway protects mouse oocytes from chemotherapy-induced death. Nature Med.15, 1179–1185 (2009). ArticleCASPubMed Google Scholar
Hu, W., Feng, Z., Teresky, A. K. & Levine, A. J. p53 regulates maternal reproduction through LIF. Nature450, 721–724 (2007). ArticleCASPubMed Google Scholar
Livera, G. et al. p63 null mutation protects mouse oocytes from radio-induced apoptosis. Reproduction135, 3–12 (2008). ArticleCASPubMed Google Scholar
Woodruff, T. K. Preserving fertility during cancer treatment. Nature Med.15, 1124–1125 (2009). ArticleCASPubMed Google Scholar
Li, X. C., Varringer, B. C. & Barbash, D. A. The pachitene checkpoint and its relationship to evolutionary patterns of polyploidization and hybrid sterility. Heredity102, 24–30 (2009). ArticleCASPubMed Google Scholar
Haldane, J. B. S. Sex ratio and unisexual sterility in hybrid animals. J. Genetics12, 101–109 (1922). Article Google Scholar
Linzer, D. I. H. & Levine, A. J. Characterization of a 54K dalton cellular SV40 tumor antigen present in SV40-transformed cells and uninfected embryonal carcinoma cells. Cell17, 43–52 (1979). ArticleCASPubMed Google Scholar
Lane, D. & Crawford, L. V. T-antigen is bound to a host protein in SV40-transformed cells. Nature278, 261–263 (1979). ArticleCASPubMed Google Scholar
Deleo, A. B. et al. Detection of a transformed-related antigen in chemically induced sarcomas and other transformed cells of the mouse. Proc. Natl Acad. Sci. USA.76, 2420–2424 (1979). ArticleCASPubMedPubMed Central Google Scholar
Finlay, C. A., Hinds, P. W. & Levine, A. J. The p53 proto-oncogene can act as a suppressor of transformation. Cell57, 1083–1093 (1989). ArticleCASPubMed Google Scholar
Le Beau, M. M., Westbrook, C. A., Diaz, M. O., Rowley, J. D. & Oren, M. Translocation of the p53 gene in t(15;17) in acute promyelocytic leukaemia. Nature316, 826–828 (1985). ArticleCASPubMed Google Scholar
Chen, P. L., Chen, Y. L., Bookstein, R. & Lee, W. H. Genetic mechanisms of tumor suppression by the human p53 gene. Science250, 1576–1580 (1990). ArticleCASPubMed Google Scholar
Hu, W., Feng, Z., Atwal, G. S. & Levine A. J. p53: a new player in reproduction. Cell Cycle7, 848–852 (2008). ArticleCASPubMed Google Scholar
Tomasini, R. et al. TAp73 regulates the spindle assembly checkpoint by modulating BubR1 activity. Proc. Natl Acad. Sci. USA.106, 797–802 (2009). ArticleCASPubMedPubMed Central Google Scholar
Baker, D. J. et al. BubR1 insufficiency causes early onset of aging-associated phenotypes and infertility in mice. Nature Genet.36, 744–749 (2004). ArticleCASPubMed Google Scholar
Leland, S. et al. Heterozygosity for a Bub1 mutation causes female-specific germ cell aneuploidy in mice. Proc. Natl Acad. Sci. USA.106, 12776–12781 (2009). ArticleCASPubMedPubMed Central Google Scholar
Shuda, K., Schindler, K., Ma, J., Schultz, R. M. & Donovan, P. J. Aurora kinase B modulates chromosome alignment in mouse oocytes. Mol. Reprod. Dev.76, 1094–1105 (2009). ArticleCASPubMedPubMed Central Google Scholar
Van der Hoek, K. H. et al. Intrabursal injection of clodronate liposomes causes macrophage depletion and inhibits ovulation in the mouse ovary. Biol. Reprod.62, 1059–1066 (2000). ArticleCASPubMed Google Scholar
Wu, R., Van Der Hoek, K. H., Ryan, N. K., Norman, R. J. & Robker, R. L. Macrophage contributions to ovarian function. Hum. Reprod. Update10, 119–133 (2004). ArticlePubMed Google Scholar
Kay, C., Jeyendran, R. S. & Coulam, C. B. p53 tumour suppressor gene polymorphism is associated with recurrent implantation failure. Reprod. Biomed. Online13, 492–496 (2006). ArticleCASPubMed Google Scholar
Kang, H.-J. et al. Single nucleotide polymorphisms in the p53 pathway regulate fertility in humans. Proc. Natl Acad. Sci. USA.106, 9761–9766 (2009). ArticleCASPubMedPubMed Central Google Scholar
Sucheston, L. et al. Natural selection and functional genetic variation in the p53 pathway. Hum. Mol. Genet. 25 Jan 2011 (doi:10.1093/hmg/ddr028). ArticleCASPubMedPubMed Central Google Scholar
Deutsch, G. B. et al. DNA damage in oocytes induces a switch of the quality control factor TAp63a from dimer to tetramer. Cell144, 566–576 (2011). ArticleCASPubMedPubMed Central Google Scholar
Yang, A. et al. p63, a p53 homolog at 3q27–29, encodes multiple products with transactivating, death-inducing, and dominant-hegative activities. Mol. Cell2, 305–316 (1998). ArticleCASPubMed Google Scholar
Kaghad, M. et al. Monoallelically expressed gene related to p53 at 1p36, a region frequently deleted in neuroblastoma and other human cancers. Cell90, 809–819 (1997). ArticleCASPubMed Google Scholar
Stiewe, T. The p53 family in differentiation and tumorigenesis. Nature Rev. Cancer7, 165–168 (2007). ArticleCAS Google Scholar
Sayan, A. E. et al. p73 and caspase-cleaved p73 fragments localize to mitochondria and augment TRAIL-induced apoptosis. Oncogene27, 4363–4372 (2008). ArticleCASPubMed Google Scholar
Sayan, B. S., Sayan, A. E., Knight, R. A., Melino, G. & Cohen G. H. p53 is cleaved by caspases generating fragments localizing to mitochondria. J. Biol. Chem.281, 13566–13573 (2006). ArticleCASPubMed Google Scholar
Yang, A. & McKeon, F. p63 and p73: p53 mimics, menaces and more. Nature Rev. Mol. Cell Biol.1, 199–207 (2000). ArticleCAS Google Scholar
Stewart, C. L. et al. Blastocyst implantation depends on maternal expression of leukaemia inhibitory factor. Nature359, 76–79 (1992). ArticleCASPubMed Google Scholar
Pehar, M. et al. Altered longevity-assurance activity of p53:p44 in the mouse causes memory loss, neurodegeneration and premature death. Aging Cell9, 174–190 (2010). ArticleCASPubMed Google Scholar
Fujita, K. et al. p53 isoforms Δ133p53 and p53β are endogenous regulators of replicative cellular senescence. Nature Cell Biol.11, 1135–1142 (2009). ArticleCASPubMed Google Scholar
Rohaly, G., Korf, K., Dehde, S. & Dornreiter, I. Simian virus 40 activates ATR-Δp53 signalling to override cell cycle and DNA replication control. J. Virol.84, 10727–10747 (2010). ArticleCASPubMedPubMed Central Google Scholar
Medawar, A. et al. ΔNp63 is essential for epidermal commitment of embryonic stem cells. PLoS ONE 3, e3341 (2008). Article Google Scholar
Candi, E. et al. TAp63 and DNp63 in cancer and epidermal development. Cell Cycle6, 274–285 (2007). ArticleCASPubMed Google Scholar
Fabre, S. et al. Regulation of ovulation rate in mammals: contribution of sheep genetic models. Reprod. Biol. Endocrinol.4, 20 (2006). ArticlePubMedPubMed Central Google Scholar
Jagarlamudi, K. et al. Oocyte-specific deletion of Pten in mice reveals a stage-specific function of PTEN/PI3K signaling in oocytes in controlling follicular activation. PLoS ONE4, e6186 (2009). ArticlePubMedPubMed Central Google Scholar
Reddy, P. et al. PDK1 signaling in oocytes controls reproductive aging and lifespan by manipulating the survival of primordial follicles. Hum. Mol. Genet.18, 2813–2824 (2009). ArticleCASPubMed Google Scholar
Rajkovic, A., Pangas, S. A., Ballow, M., Suzumori, N. & Matzuk, M. M. NOBOX deficiency disrupts early folliculogenesis and oocyte-specific gene expression. Science305, 1157–1159 (2004). ArticleCASPubMed Google Scholar
Walters, K. A. et al. Female mice haploinsufficient for an inactivated androgen receptor (AR) exhibit age-dependent defects that resemble the AR null phenotype of dysfunctional late follicle development, ovulation, and fertility. Endocrinol.148, 3674–3684 (2007). ArticleCAS Google Scholar
Adhikari, D. et al. Tsc/mTORC1 signaling in oocytes governs the quiescence and activation of primordial follicles. Hum. Mol. Genet.19, 397–410 (2010). ArticleCASPubMed Google Scholar
Brown, C. et al. Subfertility caused by altered follicular development and oocyte growth in female mice lacking PKBα/Akt1. Biol. Reprod.82, 246–256 (2010). ArticleCASPubMedPubMed Central Google Scholar