Listening in on bacteria: acyl-homoserine lactone signalling (original) (raw)
Tomasz, A. Control of the competent state in Pneumococcus by a hormone-like cell product: an example of a new type of regulatory mechanism in bacteria. Nature208, 155–159 (1965). CASPubMed Google Scholar
Nealson, K. H., Platt, T. & Hastings, J. W. Cellular control of the synthesis and activity of the bacterial luminescent system. J. Bacteriol.104, 313–322 (1970).The discovery of autoinducer activity inVibrio fischeri. CASPubMedPubMed Central Google Scholar
Fuqua, W. C., Winans, S. C. & Greenberg, E. P. Quorum sensing in bacteria: the LuxR–LuxI family of cell density-responsive transcriptional regulators. J. Bacteriol.176, 269–275 (1994).The introduction of the term 'quorum sensing' to describe population-density-responsive gene regulation by LuxR–LuxI regulatory systems. CASPubMedPubMed Central Google Scholar
Eberhard, A. et al. Structural identification of autoinducer of Photobacterium fischeri luciferase. Biochemistry20, 2444–2449 (1981).Chemical characterization of theVibrio fischeriacyl-HSL, then called autoinducer. CASPubMed Google Scholar
Engebrecht, J., Nealson, K. H. & Silverman, M. Bacterial bioluminescence: isolation and genetic analysis of the functions from Vibrio fischeri. Cell32, 773–781 (1983).Molecular cloning ofVibrio fischeri luxgenes and demonstration of regulation inEscherichia coli. CASPubMed Google Scholar
Bainton, N. J. et al. A general role for the lux autoinducer in bacterial cell signalling: control of antibiotic biosynthesis in Erwinia. Gene116, 87–91 (1992). CASPubMed Google Scholar
Gray, K. M. & Garey, J. R. The evolution of bacterial LuxI and LuxR quorum sensing regulators. Microbiology147, 2379–2387 (2001). CASPubMed Google Scholar
Gray, K. M. et al. Cell-to-cell signalling in the symbiotic nitrogen-fixing bacterium Rhizobium leguminosarum: autoinduction of a stationary phase and rhizosphere-expressed genes. J. Bacteriol.178, 372–376 (1996). CASPubMedPubMed Central Google Scholar
Puskas, A., Greenberg, E. P., Kaplan, S. & Schaefer, A. L. A quorum-sensing system in the free-living photosynthetic bacterium Rhodobacter sphaeroides. J. Bacteriol.179, 7530–7537 (1997). CASPubMedPubMed Central Google Scholar
Lithgow, J. K. et al. The regulatory locus cinRI in Rhizobium leguminosarum controls a network of quorum-sensing loci. Mol. Microbiol.37, 81–97 (2000). CASPubMed Google Scholar
Kaplan, H. B. & Greenberg, E. P. Diffusion of autoinducer is involved in regulation of the Vibrio fischeri luminescence system. J. Bacteriol.163, 1210–1214 (1985). CASPubMedPubMed Central Google Scholar
Engebrecht, J. & Silverman, M. Identification of genes and gene products necessary for bacterial bioluminescence. Proc. Natl Acad. Sci. USA81, 4154–4158 (1984). CASPubMed Google Scholar
Devine, J. H., Shadel, G. S. & Baldwin, T. O. Identification of the operator of the lux regulon from the Vibrio fischeri strain ATCC7744. Proc. Natl Acad. Sci. USA86, 5688–5692 (1989). CASPubMed Google Scholar
Egland, K. A. & Greenberg, E. P. Quorum sensing in Vibrio fischeri: elements of the luxI promoter. Mol. Microbiol.31, 1197–1204 (1999). CASPubMed Google Scholar
Boettcher, K. J. & Ruby, E. G. Detection and quantification of Vibrio fischeri autoinducer from the symbiotic squid light organs. J. Bacteriol.177, 1053–1058 (1995). CASPubMedPubMed Central Google Scholar
Lee, K.-H. & Ruby, E. G. The detection of the squid light organ symbiont Vibrio fischeri in Hawaiian seawater by using lux gene probes. Appl. Environ. Microbiol.58, 942–947 (1992). CASPubMedPubMed Central Google Scholar
Nealson, K. H. & Hastings, J. W. Bacterial bioluminescence: its control and ecological significance. Microbiol. Rev.43, 496–518 (1979). CASPubMedPubMed Central Google Scholar
Gilson, L., Kuo, A. & Dunlap, P. V. AinS and a new family of autoinducer synthesis proteins. J. Bacteriol.177, 6946–6951 (1995). CASPubMedPubMed Central Google Scholar
Hanzelka, B. L. et al. Acylhomoserine lactone synthase activity of the Vibrio fischeri AinS protein. J. Bacteriol.181, 5766–5770 (1999). CASPubMedPubMed Central Google Scholar
Kuo, A., Blough, N. V. & Dunlap, P. V. Multiple _N_-acyl-l-homoserine lactone autoinducers of luminescence genes in the marine symbiotic bacterium Vibrio fischeri. J. Bacteriol.176, 7558–7565 (1994). CASPubMedPubMed Central Google Scholar
Fuqua, C., Parsek, M. & Greenberg, E. P. Regulation of gene expression by cell-to-cell communication: acyl-homoserine lactone quorum sensing. Annu. Rev. Genet.35, 439–468 (2001). CASPubMed Google Scholar
Whiteley, M., Lee, K. M. & Greenberg, E. P. Identification of genes controlled by quorum sensing in Pseudomonas aeruginosa. Proc. Natl Acad. Sci. USA96, 13904–13909 (1999).Mutational screen for quorum-sensing-controlled (qsc) genes inPseudomonas aeruginosaand delineation of the roles of the Las and Rhl systems. CASPubMed Google Scholar
Gambello, M. J. & Iglewski, B. H. Cloning and characterization of the Pseudomonas aeruginosa lasR gene, a transcriptional activator of elastase expression. J. Bacteriol.173, 3000–3009 (1991). CASPubMedPubMed Central Google Scholar
Davies, D. G. et al. The involvement of cell-to-cell signals in the development of a bacterial biofilm. Science280, 295–298 (1998).Evidence that thePseudomonas aeruginosaLas system influences the structural development of surface-adherent biofilms. CASPubMed Google Scholar
Passador, L. et al. Expression of Pseudomonas aeruginosa virulence genes requires cell-to-cell communication. Science260, 1127–1130 (1993). CASPubMed Google Scholar
Latifi, A. et al. Multiple homologues of LuxR and LuxI control expression of virulence determinants and secondary metabolites through quorum sensing in Pseudomonas aeruginosa PAO1. Mol. Microbiol.17, 333–343 (1995). CASPubMed Google Scholar
Pearson, J. P. et al. Structure of the autoinducer required for expression of Pseudomonas aeruginosa virulence genes. Proc. Natl Acad. Sci. USA91, 197–201 (1994). CASPubMed Google Scholar
Pearson, J. P., Passador, L., Iglewski, B. H. & Greenberg, E. P. A second _N_-acylhomoserine lactone signal produced by Pseudomonas aeruginosa. Proc. Natl Acad. Sci. USA92, 1490–1494 (1995). CASPubMed Google Scholar
Winson, M. K. et al. Multiple _N_-acyl-l-homoserine lactone signal molecules regulate production of virulence determinants and secondary metabolites in Pseudomonas aeruginosa. Proc. Natl Acad. Sci. USA92, 9427–9431 (1995). CASPubMed Google Scholar
Brint, J. M. & Ohman, D. E. Synthesis of multiple exoproducts in Pseudomonas aeruginosa is under the control of RhlR–RhlI, another set of regulators in strain PAO1 with homology to the autoinducer-responsive LuxR–LuxI family. J. Bacteriol.177, 7155–7163 (1995). CASPubMedPubMed Central Google Scholar
Chapon-Hervé, V. et al. Regulation of the xcp secretion pathway by multiple quorum-sensing modulons in Pseudomonas aeriginosa. Mol. Microbiol.24, 1169–1178 (1997). PubMed Google Scholar
Ochsner, U. A., Koch, A. K. & Reiser, J. Isolation and characterization of a regulatory gene affecting rhamnolipid biosurfactant synthesis in Pseudomonas aeruginosa. J. Bacteriol.176, 2044–2054 (1994). CASPubMedPubMed Central Google Scholar
Latifi, A. et al. A hierarchical quorum-sensing cascade in Pseudomonas aeruginosa links the transcriptional activators LasR and RhlR (VsmR) to expression of the stationary-phase σ factor RpoS. Mol. Microbiol.21, 1137–1146 (1996). CASPubMed Google Scholar
Ochsner, U. A. & Reiser, J. Autoinducer-mediated regulation of rhamnolipid biosurfactant synthesis in Pseudomonas aeruginosa. Proc. Natl Acad. Sci. USA92, 6424–6428 (1995). CASPubMed Google Scholar
Pearson, J. P., Pesci, E. C. & Iglewski, B. H. Roles of Pseudomonas aeruginosalas and rhl quorum-sensing systems in the control of elastase and rhamnolipid biosynthesis genes. J. Bacteriol.179, 5756–5767 (1997). CASPubMedPubMed Central Google Scholar
Whiteley, M. & Greenberg, E. P. Promoter specificity elements in Pseudomonas aeruginosa quorum-sensing-controlled genes. J. Bacteriol.183, 5529–5534 (2001). CASPubMedPubMed Central Google Scholar
Rumbaugh, K. P., Griswold, J. A., Iglewski, B. H. & Hamood, A. N. Contribution of quorum sensing to the virulence of Pseudomonas aeruginosa in burn wound infections. Infect. Immun.67, 5854–5862 (1999). CASPubMedPubMed Central Google Scholar
Pearson, J. P., Feldman, M., Iglewski, B. H. & Prince, A. Pseudomonas aeruginosa cell-to-cell signaling is required for virulence in a model of acute pulmonary infection. Infect. Immun.68, 4331–4334 (2000). CASPubMedPubMed Central Google Scholar
Moré, M. I. et al. Enzymatic synthesis of a quorum-sensing autoinducer through use of defined substrates. Science272, 1655–1658 (1996).Firstin vitroevidence that an I-type protein, TraI fromAgrobacterium tumefaciens, is an acyl-HSL synthase that uses SAM and fatty-acyl biosynthetic precursors. Google Scholar
Schaefer, A. L. et al. Generation of cell-to-cell signals in quorum sensing: acyl homoserine lactone synthase activity of a purified Vibrio fischeri LuxI protein. Proc. Natl Acad. Sci. USA93, 9505–9509 (1996).Reports that purified LuxI can use SAM and C6-ACP as substrates for acyl-HSL synthesis. CASPubMed Google Scholar
Watson, W. T. et al. Structural basis and specificity of acyl-homoserine lactone signal production in bacterial quorum sensing. Mol. Cell9, 1–20 (2002).First structural information on an acyl-HSL synthase — in this case, EsaI fromPantoea stewartii. Demonstrates similarity toN-acetyltransferases. Google Scholar
Bassler, B. L., Wright, M. & Silverman, M. R. Multiple signalling systems controlling expression of luminescence in Vibrio harveyi: sequence and function of genes encoding a second sensory pathway. Mol. Microbiol.13, 273–286 (1994). CASPubMed Google Scholar
Milton, D. L. et al. The LuxM homologue VanM from Vibrio anguillarum directs the synthesis of _N_-(3-hydroxyhexanoyl)homoserine lactone and _N_-hexanoylhomoserine lactone. J. Bacteriol.183, 3537–3547 (2001). CASPubMedPubMed Central Google Scholar
Laue, B. E. et al. The biocontrol strain Pseudomonas fluorescens F113 produces the Rhizobium small bacteriocin, _N_-(3-hydroxy-7-_cis_-tetradecanoyl)homoserine lactone, via HdtS, a putative novel _N_-acylhomoserine lactone synthase. Microbiology146, 2469–2480 (2000). CASPubMed Google Scholar
Parsek, M. R. et al. Acyl homoserine-lactone quorum-sensing signal generation. Proc. Natl Acad. Sci. USA96, 4360–4365 (1999). CASPubMed Google Scholar
Matthews, R. W. in Escherichia coli and Salmonella: Cellular and Molecular Biology (ed. Niedhardt, F. C.) 600–611 (ASM, Washington, DC, 1996). Google Scholar
Fuqua, C. & Eberhard, A. in Cell–Cell Signaling in Bacteria (eds Dunny, G. M. & Winans, S. C.) 211–230 (ASM, Washington, DC, 1999). Google Scholar
Hanzelka, B. L. et al. Mutational analysis of the Vibrio fischeri LuxI polypeptide: critical regions of an autoinducer synthase. J. Bacteriol.179, 4882–4887 (1997). CASPubMedPubMed Central Google Scholar
Parsek, M. R., Schaefer, A. L. & Greenberg, E. P. Analysis of random and site-directed mutations in rhlI, a Pseudomonas aeruginosa gene encoding an acylhomoserine lactone synthase. Mol. Microbiol.26, 301–310 (1997). CASPubMed Google Scholar
Evans, K. et al. Influence of the MexAB–OprM multidrug efflux system on quorum sensing in Pseudomonas aeruginosa. J. Bacteriol.180, 5443–5447 (1998). CASPubMedPubMed Central Google Scholar
Pearson, J. P., Van Delden, C. & Iglewski, B. H. Active efflux and diffusion are involved in transport of Pseudomonas aeruginosa cell-to-cell signals. J. Bacteriol.181, 1203–1210 (1999). CASPubMedPubMed Central Google Scholar
Welch, M. et al. _N_-acyl homoserine lactone binding to the CarR receptor determines quorum-sensing specificity in Erwinia. EMBO J.19, 631–641 (2000). CASPubMedPubMed Central Google Scholar
Hanzelka, B. L. & Greenberg, E. P. Evidence that the N-terminal region of the Vibrio fischeri LuxR protein constitutes an autoinducer-binding domain. J. Bacteriol.177, 815–817 (1995). CASPubMedPubMed Central Google Scholar
Stevens, A. M. & Greenberg, E. P. in Cell–Cell Signaling in Bacteria (eds Dunny, G. M. & Winans, S. C.) 231–242 (ASM, Washington, DC, 1999). Google Scholar
Henikoff, S., Wallace, J. C. & Brown, J. P. Finding protein similarities with nucleotide sequence databases. Methods Enzymol.183, 111–132 (1990). CASPubMed Google Scholar
Da Re, S. et al. Intramolecular signal transduction within the FixJ transcriptional activator: in vitro evidence for the inhibitory effect of the phosphorylatable regulatory domain. Nucleic Acids Res.9, 1555–1561 (1994). Google Scholar
Zhu, J. & Winans, S. C. The quorum-sensing transcriptional regulator TraR requires its cognate signaling ligand for protein folding, protease resistance, and dimerization. Proc. Natl Acad. Sci. USA98, 1507–1512 (2001).Proposes that TraR fromAgrobacterium tumefaciensfunctions as a receptor only when it is present in its nascent, unfolded form. CASPubMed Google Scholar
Fuqua, W. C. & Winans, S. C. A LuxR–LuxI type regulatory system activates Agrobacterium Ti plasmid conjugal transfer in the presence of a plant tumor metabolite. J. Bacteriol.176, 2796–2806 (1994). CASPubMedPubMed Central Google Scholar
Luo, Z.-Q. & Farrand, S. K. Signal-dependent DNA binding and functional domains of the quorum-sensing activator TraR as identified by repressor activity. Proc. Natl Acad. Sci. USA96, 9009–9014 (1999). CASPubMed Google Scholar
Stevens, A. M. & Greenberg, E. P. Quorum sensing in Vibrio fischeri: essential elements for activation of the luciferase genes. J. Bacteriol.179, 557–562 (1997). CASPubMedPubMed Central Google Scholar
Zhu, J. & Winans, S. C. Autoinducer binding by the quorum-sensing regulator TraR increases affinity for target promoters in vitro and decreases TraR turnover rates in whole cells. Proc. Natl Acad. Sci. USA96, 4832–4837 (1999). CASPubMed Google Scholar
Zhang, R. G. et al. Structure of a bacterial quorum-sensing transcription factor complexed with autoinducer-type pheromone and DNA. Nature417, 971–974 (2002). Reports structural information for TraR ofAgrobacterium tumefacienscomplexed with its acyl-HSL and its DNA binding site. First structural information for any LuxR homologue. CASPubMed Google Scholar
Egland, K. A. & Greenberg, E. P. Quorum sensing in Vibrio fischeri: analysis of the LuxR DNA binding region by alanine-scanning mutagenesis. J. Bacteriol.183, 382–386 (2001). CASPubMedPubMed Central Google Scholar
Choi, S. H. & Greenberg, E. P. The C-terminal region of the Vibrio fischeri LuxR protein contains an inducer-independent lux gene activating domain. Proc. Natl Acad. Sci. USA88, 11115–11119 (1991). CASPubMed Google Scholar
Anderson, R. M., Zimprich, C. A. & Rust, L. A second operator is involved in Pseudomonas aeruginosa elastase (lasB) activation. J. Bacteriol.181, 6264–6270 (1999). CASPubMedPubMed Central Google Scholar
Gray, K. M., Passador, L., Iglewski, B. H. & Greenberg, E. P. Interchangeability and specificity of components from the quorum-sensing regulatory systems of Vibrio fischeri and Pseudomonas aeruginosa. J. Bacteriol.176, 3076–3080 (1994). CASPubMedPubMed Central Google Scholar
Saier, M. H. J., Ramseier, T. M. & Reizer, J. in Escherichia coli and Salmonella: Cellular and Molecular Biology (ed. Neidhardt, F. C.) 1325–1343 (ASM, Washington, DC, 1996). Google Scholar
Rhodius, V. A. & Busby, S. J. W. Positive activation of gene expression. Curr. Opin. Microbiol.1, 152–159 (1998). CASPubMed Google Scholar
Finney, A. H. et al. Role of the C-terminal domain of the alpha subunit of RNA polymerase in LuxR-dependent transcriptional activation of the lux operon during quorum sensing. J. Bacteriol.184, 4520–4528 (2002). CASPubMedPubMed Central Google Scholar
Egland, K. A. & Greenberg, E. P. Conversion of the Vibrio fischeri transcriptional activator, LuxR, to a repressor. J. Bacteriol.182, 805–811 (2000). CASPubMedPubMed Central Google Scholar
Andersson, R. A. et al. Quorum-sensing in the plant pathogen Erwinia carotovora subsp. carotovora: the role of _expR_Ecc . Mol. Plant–Microbe Interact.13, 384–393 (2000). CASPubMed Google Scholar
von Bodman, S. B., Majerczak, D. R. & Coplin, D. L. A negative regulator mediates quorum-sensing control of exopolysaccharide production in Pantoea stewartii subsp. stewartii. Proc. Natl Acad. Sci. USA95, 7687–7692 (1998). CASPubMed Google Scholar
Minogue, T. D., Trebra, M. W., Bernhard, F. & Bodman, S. B. The autoregulatory role of EsaR, a quorum sensing regulator in Pantoea stewartii ssp. stewartii: evidence for a repressor function. Mol. Microbiol.44, 1625–1635 (2002). CASPubMed Google Scholar
Chugani, S. A. et al. QscR, a modulator of quorum-sensing signal synthesis and virulence in Pseudomonas aeruginosa. Proc. Natl Acad. Sci. USA98, 2752–2757 (2001). CASPubMed Google Scholar
Oger, P. et al. Octopine-type Ti plasmids code for a mannopine-inducible dominant-negative allele of traR, the quorum-sensing activator that regulates Ti plasmid conjugal transfer. Mol. Microbiol.27, 277–288 (1998). CASPubMed Google Scholar
Swiderska, A. et al. Inhibition of the Agrobacterium tumefaciens TraR quorum-sensing regulator: interactions with the TraM anti-activator. J. Biol. Chem.276, 49449–49458 (2001). CASPubMed Google Scholar
Zhu, J. & Winans, S. C. Activity of the quorum-sensing regulator TraR of Agrobacterium tumefaciens is inhibited by a truncated, dominant defective TraR-like protein. Mol. Microbiol.27, 289–297 (1998). CASPubMed Google Scholar
Givskov, M. et al. Eukaryotic interference with homoserine lactone-mediated prokaryotic signalling. J. Bacteriol.178, 6618–6622 (1996).Isolation of halogenated furanones — quorum-sensing inhibitors from the red algaDelisea pulchra. CASPubMedPubMed Central Google Scholar
Hentzer, M. et al. Inhibition of quorum sensing in Pseudomonas aeruginosa biofilm bacteria by a halogenated furanone compound. Microbiology148, 87–102 (2002). CASPubMed Google Scholar
Manefield, M. et al. Evidence that halogenated furanones from Delisea pulchra inhibit acylated homoserine lactone (AHL)-mediated gene expression by displacing the AHL signal from its receptor protein. Microbiology145, 283–291 (1999). CASPubMed Google Scholar
Teplitski, M., Robinson, J. B. & Bauer, W. D. Plants secrete substances that mimic bacterial _N_-acyl homoserine lactone signal activities and affect population density-dependent behaviors in associated bacteria. Mol. Plant–Microbe Interact.13, 637–648 (2000). CASPubMed Google Scholar
Dong, Y.-H., Xu, J.-L., Li, X.-Z. & Zhang, L.-H. AiiA, an enzyme that inactivates the acylhomoserine lactone quorum-sensing signal and attenuates virulence of Erwinia carotovora. Proc. Natl Acad. Sci. USA97, 3526–3531 (2000). CASPubMed Google Scholar
Leadbetter, J. R. & Greenberg, E. P. Metabolism of acyl-homoserine lactone quorum-sensing signals by Variovorax paradoxus. J. Bacteriol.182, 6921–6926 (2000). CASPubMedPubMed Central Google Scholar
Dong, Y. H. et al. Quenching quorum-sensing-dependent bacterial infection by an _N_-acyl homoserine lactonase. Nature411, 813–817 (2001).Reports the production of a transgenic plant that produces theBacillusAiiA lactonase, which breaks down acyl-HSLs. This plant is resistant to a pathogen that uses an acyl-HSL to regulate its virulence. CASPubMed Google Scholar
Pirhonen, M., Flego, D., Heikinheimo, R. & Palva, E. T. A small diffusible molecule is responsible for the global control of virulence and exoenzyme production in the plant pathogen Erwinia carotovora. EMBO J.12, 2467–2476 (1993). CASPubMedPubMed Central Google Scholar
Costerton, J. W. et al. Microbial biofilms. Annu. Rev. Microbiol.49, 711–745 (1995). CASPubMed Google Scholar
Singh, P. K. et al. Quorum-sensing signals indicate that cystic fibrosis lungs are infected with bacterial biofilms. Nature407, 762–764 (2000). CASPubMed Google Scholar
Davey, M. E. & O'Toole, G. A. Microbial biofilms: from ecology to molecular genetics. Microbiol. Mol. Biol. Rev.64, 847–867 (2000). CASPubMedPubMed Central Google Scholar
O'Toole, G. A. & Kolter, R. Flagellar and twitching motility are necessary for Pseudomonas aeruginosa biofilm development. Mol. Microbiol.30, 295–304 (1998). CAS Google Scholar
Heydorn, A. et al. Statistical analysis of Pseudomonas aeruginosa biofilm development: impact of mutations in genes involved in twitching motility, cell-to-cell signaling, and stationary-phase σ factor expression. Appl. Environ. Microbiol.68, 2008–2017 (2002). CASPubMedPubMed Central Google Scholar
Huber, B. et al. The cep quorum-sensing system of Burkholderia cepacia H111 controls biofilm formation and swarming motility. Microbiology147, 2517–2528 (2001).Provides evidence that quorum-sensing affects the biofilm development ofBurkholderia cepacia— only the second microbe for which this has been demonstrated. CASPubMed Google Scholar
Lynch, M. J. et al. The regulation of biofilm development by quorum sensing in Aeromonas hydrophila. Environ. Microbiol.4, 18–28 (2002). CASPubMed Google Scholar
Horinouchi, S. in Cell–Cell Signaling in Bacteria (eds Dunny, G. M. & Winans, S. C.) 193–207 (ASM, Washington, DC, 1999). Google Scholar
Dunny, G. M. & Leonard, B. A. Cell–cell communication in Gram-positive bacteria. Annu. Rev. Microbiol.51, 527–564 (1997). CASPubMed Google Scholar
Lazazzera, B. A., Plamer, T., Quisel, J. & Grossman, A. D. in Cell–Cell Signaling in Bacteria (eds Dunny, G. M. & Winans, S. C.) 27–46 (ASM, Washington, DC, 1999). Google Scholar
Morrison, D. A. & Lee, M. S. Regulation of competence for genetic transformation in Streptococcus pneumoniae: a link between quorum sensing and DNA processing genes. Res. Microbiol.151, 445–451 (2000). CASPubMed Google Scholar
Nakayama, J. et al. Gelatinase biosynthesis-activating pheromone: a peptide lactone that mediates a quorum sensing in Enterococcus faecalis. Mol. Microbiol.41, 145–154 (2001). CASPubMed Google Scholar
Novick, R. P. in Cell–Cell Signaling in Bacteria (eds Dunny, G. M. & Winans, S. C.) 129–146 (ASM, Washington, DC, 1999). Google Scholar
Ji, G., Beavis, R. C. & Novick, R. P. Cell density control of staphylococcal virulence mediated by an octapeptide pheromone. Proc. Natl Acad. Sci. USA92, 12055–12059 (1995). CASPubMed Google Scholar
Ji, G., Beavis, R. & Novick, R. P. Bacterial interference caused by autoinducing peptide variants. Science276, 2027–2030 (1997). CASPubMed Google Scholar
Nealson, K. H. Autoinduction of bacterial luciferase: occurrence, mechanism, and significance. Arch. Microbiol.112, 73–79 (1977). CASPubMed Google Scholar
Greenberg, E. P., Hastings, J. W. & Ulitzur, S. Induction of luciferase synthesis in Beneckea harveyi by other marine bacteria. Arch. Microbiol.120, 87–91 (1979). CAS Google Scholar
Cao, J.-G. & Meighen, E. A. Purification and structural identification of an autoinducer for the luminescence system of V. harveyi. J. Biol. Chem.264, 21670–21676 (1989). CASPubMed Google Scholar
Bassler, B. L., Greenberg, E. P. & Stevens, A. M. Cross-species induction of luminescence in the quorum-sensing bacterium Vibrio harveyi. J. Bacteriol.179, 4043–4045 (1997). CASPubMedPubMed Central Google Scholar
Surette, M. G. & Bassler, B. L. Quorum sensing in Escherichia coli and Salmonella typhimurium. Proc. Natl Acad. Sci. USA95, 7046–7050 (1998). CASPubMed Google Scholar
Winans, S. C. Bacterial esperanto. Nature Struct. Biol.9, 83–84 (2002). CASPubMed Google Scholar
Surette, M. G., Miller, M. B. & Bassler, B. L. Quorum sensing in Escherichia coli, Salmonella typhimurium, and Vibrio harveyi: a new family of genes responsible for autoinducer production. Proc. Natl Acad. Sci. USA96, 1639–1644 (1999). CASPubMed Google Scholar
Schauder, S., Shokat, K., Surette, M. G. & Bassler, B. L. The LuxS family of bacterial autoinducers: biosynthesis of a novel quorum-sensing signal molecule. Mol. Microbiol.41, 463–476 (2001). CASPubMed Google Scholar
Winzer, K. et al. LuxS: its role in central metabolism and the in vitro synthesis of 4-hydroxy-5-methyl-3(2H)-furanone. Microbiology148, 909–922 (2002). CASPubMed Google Scholar
Chen, X. et al. Structural identification of a bacterial quorum-sensing signal containing boron. Nature415, 545–549 (2002).Crystal structure of the AI-2 quorum-sensing signal in complex with its receptor. CAS Google Scholar
Greenberg, E. P. in Microbial signalling and communication (eds England, R., Hobbs, G., Bainton, N. & Roberts, D. McL.) 71–84 (Cambridge Univ. Press, Cambridge, UK, 1999). Google Scholar
Dunny, G. M. & Winans, S. C. (eds) Cell–Cell Signaling in Bacteria (ASM, Washington, DC, 1999). Google Scholar
Vannini, A. et al. The crystal structure of the quorum sensing protein TraR bound to its autoinducer and target DNA. EMBO J.21, 4393–4401 (2002). CASPubMedPubMed Central Google Scholar