The microbial nitrogen-cycling network (original) (raw)
Galloway, J. N. et al. Transformation of the nitrogen cycle: recent trends, questions, and potential solutions. Science320, 889–892 (2008). A comprehensive overview of the human impact on biogeochemical nitrogen cycling. CASPubMed Google Scholar
Erisman, J. W., Sutton, M. A., Galloway, J., Klimont, Z. & Winiwarter, W. How a century of ammonia synthesis changed the world. Nat. Geosci.1, 636–639 (2008). CAS Google Scholar
Stein, L. Y. & Klotz, M. G. The nitrogen cycle. Curr. Biol.26, R94–R98 (2016). CASPubMed Google Scholar
Yan, Y. et al. Nitrogen fixation island and rhizosphere competence traits in the genome of root-associated Pseudomonas stutzeri A1501. Proc. Natl Acad. Sci. USA105, 7564–7569 (2008). CASPubMed Google Scholar
Füssel, J. et al. Adaptability as the key to success for the ubiquitous marine nitrite oxidizer Nitrococcus. Sci. Adv.3, e1700807 (2017). PubMedPubMed Central Google Scholar
Daims, H., Lücker, S. & Wagner, M. A. New perspective on microbes formerly known as nitrite-oxidizing bacteria. Trends Microbiol.24, 699–712 (2016). CASPubMed Google Scholar
Caranto, J. D. & Lancaster, K. M. Nitric oxide is an obligate bacterial nitrification intermediate produced by hydroxylamine oxidoreductase. Proc. Natl Acad. Sci. USA114, 8217–8222 (2017). CASPubMed Google Scholar
Maalcke, W. J. et al. Structural basis of biological NO generation by octaheme oxidoreductases. J. Biol. Chem.289, 1228–1242 (2014). CASPubMed Google Scholar
Ettwig, K. F. et al. Nitrite-driven anaerobic methane oxidation by oxygenic bacteria. Nature464, 543–548 (2010). The discovery of oxygenic denitrification. CASPubMed Google Scholar
Kartal, B. et al. Molecular mechanism of anaerobic ammonium oxidation. Nature479, 127–130 (2011). Isolation and characterization of the unique enzyme that produces free hydrazine. CASPubMed Google Scholar
Griffin, B. M., Schott, J. & Schink, B. Nitrite, an electron donor for anoxygenic photosynthesis. Science316, 1870–1870 (2007). The discovery of phototrophic nitrite oxidation. CASPubMed Google Scholar
van Kessel, M. A. et al. Complete nitrification by a single microorganism. Nature528, 555–559 (2015). Together with reference 12, this article reports the discovery of complete nitrification by a single microorganism. CASPubMedPubMed Central Google Scholar
Konneke, M. et al. Isolation of an autotrophic ammonia-oxidizing marine archaeon. Nature437, 543–546 (2005). The discovery of ammonia-oxidizing archaea. PubMed Google Scholar
Risgaard-Petersen, N. et al. Evidence for complete denitrification in a benthic foraminifer. Nature443, 93–96 (2006). CASPubMed Google Scholar
Thompson, A. W. et al. Unicellular cyanobacterium symbiotic with a single-celled eukaryotic alga. Science337, 1546–1550 (2012). Shows that the ubiquitous unicellular cyanobacterium UCYN-A forms a nitrogen-fixing symbiosis with an algae. CASPubMed Google Scholar
Eady, R. R. Structure-function relationships of alternative nitrogenases. Chem. Rev.96, 3013–3030 (1996). CASPubMed Google Scholar
Zehr, J. P., Jenkins, B. D., Short, S. M. & Steward, G. F. Nitrogenase gene diversity and microbial community structure: a cross-system comparison. Environ. Microbiol.5, 539–554 (2003). CASPubMed Google Scholar
Vitousek, P. M. & Howarth, R. W. Nitrogen limitation on land and in the sea: How can it occur? Biogeochemistry13, 87–115 (1991). Google Scholar
Bothe, H., Schmitz, O., Yates, M. G. & Newton, W. E. Nitrogen Fixation and Hydrogen Metabolism in Cyanobacteria. Microbiol. Mol. Biol. Rev.74, 529–551 (2010). CASPubMedPubMed Central Google Scholar
Robson, R. L. & Postgate, J. R. Oxygen and hydrogen in biological nitrogen fixation. Annu. Rev. Microbiol.34, 183–207 (1980). CASPubMed Google Scholar
Berman-Frank, I., Lundgren, P. & Falkowski, P. Nitrogen fixation and photosynthetic oxygen evolution in cyanobacteria. Res. Microbiol.154, 157–164 (2003). CASPubMed Google Scholar
Inomura, K., Bragg, J. & Follows, M. J. A quantitative analysis of the direct and indirect costs of nitrogen fixation: a model based on Azotobacter vinelandii. ISME J.11, 166–175 (2017). CASPubMed Google Scholar
Martinez-Perez, C. et al. The small unicellular diazotrophic symbiont, UCYN-A, is a key player in the marine nitrogen cycle. Nat. Microbiol.1, 16163 (2016). CASPubMed Google Scholar
Brune, A. Symbiotic digestion of lignocellulose in termite guts. Nat. Rev. Microbiol.12, 168–180 (2014). CASPubMed Google Scholar
Lechene, C. P., Luyten, Y., McMahon, G. & Distel, D. L. Quantitative imaging of nitrogen fixation by individual bacteria within animal cells. Science317, 1563–1566 (2007). CASPubMed Google Scholar
Burris, R. H. & Roberts, G. Biological nitrogen fixation. Annu. Rev. Nutr.13, 317–335 (1993). CASPubMed Google Scholar
Hooper, A. B., Vannelli, T., Bergmann, D. J. & Arciero, D. M. Enzymology of the oxidation of ammonia to nitrite by bacteria. Antonie Leeuwenhoek71, 59–67 (1997). CASPubMed Google Scholar
Arp, D. J. & Stein, L. Y. Metabolism of inorganic N compounds by ammonia-oxidizing bacteria. Crit. Rev. Biochem. Mol. Biol.38, 471–495 (2003). CASPubMed Google Scholar
Prosser, J. I. & Nicol, G. W. Relative contributions of archaea and bacteria to aerobic ammonia oxidation in the environment. Environ. Microbiol.10, 2931–2941 (2008). CAS Google Scholar
Wuchter, C. et al. Archaeal nitrification in the ocean. Proc. Natl Acad. Sci. USA103, 12317–12322 (2006). CASPubMed Google Scholar
Francis, C. A., Roberts, K. J., Beman, J. M., Santoro, A. E. & Oakley, B. B. Ubiquity and diversity of ammonia-oxidizing archaea in water columns and sediments of the ocean. Proc. Natl Acad. Sci. USA102, 14683–14688 (2005). Shows that ammonia-oxidizing archaea are ubiquitous in the oceans. CASPubMed Google Scholar
Leininger, S. et al. Archaea predominate among ammonia-oxidizing prokaryotes in soils. Nature442, 806–809 (2006). Shows that archaea are major ammonia oxidizers in soils. CAS Google Scholar
Lehtovirta-Morley, L. E., Stoecker, K., Vilcinskas, A., Prosser, J. I. & Nicol, G. W. Cultivation of an obligate acidophilic ammonia oxidizer from a nitrifying acid soil. Proc. Natl Acad. Sci. USA108, 15892–15897 (2011). The discovery of an acidophilic ammonia oxidizer. CASPubMed Google Scholar
Tourna, M. et al. Nitrososphaera viennensis, an ammonia oxidizing archaeon from soil. Proc. Natl Acad. Sci. USA108, 8420–8425 (2011). CASPubMed Google Scholar
Burton, S. A. & Prosser, J. I. Autotrophic ammonia oxidation at low pH through urea hydrolysis. Appl. Environ. Microbiol.67, 2952–2957 (2001). CASPubMedPubMed Central Google Scholar
Kits, K. D. et al. Kinetic analysis of a complete nitrifier reveals an oligotrophic lifestyle. Nature549, 269–272 (2017). CASPubMedPubMed Central Google Scholar
Hakemian, A. S. & Rosenzweig, A. C. The biochemistry of methane oxidation. Annu. Rev. Biochem.76, 223–241 (2007). CASPubMed Google Scholar
Stein, L. Y. & Klotz, M. G. Nitrifying and denitrifying pathways of methanotrophic bacteria. Biochem. Soc. Trans.39, 1826–1831 (2011). CASPubMed Google Scholar
Stoecker, K. et al. Cohn's Crenothrix is a filamentous methane oxidizer with an unusual methane monooxygenase. Proc. Natl Acad. Sci. USA103, 2363–2367 (2006). CASPubMed Google Scholar
Simon, J. & Klotz, M. G. Diversity and evolution of bioenergetic systems involved in microbial nitrogen compound transformations. Biochim. Biophys. Acta1827, 114–135 (2013). An extensive overview of enzymes involved in microbial nitrogen transformations. CASPubMed Google Scholar
Kozlowski, J. A., Stieglmeier, M., Schleper, C., Klotz, M. G. & Stein, L. Y. Pathways and key intermediates required for obligate aerobic ammonia-dependent chemolithotrophy in bacteria and Thaumarchaeota. ISME J.10, 1836–1845 (2016). CASPubMedPubMed Central Google Scholar
Kartal, B. et al. How to make a living from anaerobic ammonium oxidation. FEMS Microbiol. Rev.37, 428–461 (2013). CASPubMed Google Scholar
Ren, T., Roy, R. & Knowles, R. Production and consumption of nitric oxide by three methanotrophic bacteria. Appl. Environ. Microbiol.66, 3891–3897 (2000). CASPubMedPubMed Central Google Scholar
Nyerges, G. & Stein, L. Y. Ammonia cometabolism and product inhibition vary considerably among species of methanotrophic bacteria. FEMS Microbiol. Lett.297, 131–136 (2009). CASPubMed Google Scholar
Schott, J., Griffin, B. M. & Schink, B. Anaerobic phototrophic nitrite oxidation by Thiocapsa sp. strain KS1 and Rhodopseudomonas sp. strain LQ17. Microbiology156, 2428–2437 (2010). CASPubMed Google Scholar
Strous, M. et al. Deciphering the evolution and metabolism of an anammox bacterium from a community genome. Nature440, 790–794 (2006). PubMed Google Scholar
Strous, M. et al. Missing lithotroph identified as new planctomycete. Nature400, 446–449 (1999). The discovery of anaerobic ammonium-oxidizing bacteria. CASPubMed Google Scholar
Koch, H. et al. Growth of nitrite-oxidizing bacteria by aerobic hydrogen oxidation. Science345, 1052–1054 (2014). CASPubMed Google Scholar
Koch, H. et al. Expanded metabolic versatility of ubiquitous nitrite-oxidizing bacteria from the genus Nitrospira. Proc. Natl Acad. Sci. USA112, 11371–11376 (2015). CASPubMed Google Scholar
Maia, L. B. & Moura, J. J. How biology handles nitrite. Chem. Rev.114, 5273–5357 (2014). CASPubMed Google Scholar
Pachiadaki, M. G. et al. Major role of nitrite-oxidizing bacteria in dark ocean carbon fixation. Science358, 1046–1051 (2017). CASPubMed Google Scholar
Philippot, L., Hallin, S. & Schloter, M. Ecology of denitrifying prokaryotes in agricultural soil. Adv. Agronomy96, 249–305 (2007). CAS Google Scholar
Lam, P. & Kuypers, M. M. Microbial nitrogen-cycling processes in oxygen minimum zones. Annu. Rev. Mar. Sci.3, 317–345 (2011). Google Scholar
Kraft, B. et al. The environmental controls that govern the end product of bacterial nitrate respiration. Science345, 676–679 (2014). CASPubMed Google Scholar
Lundberg, J. O., Weitzberg, E. & Gladwin, M. T. The nitrate-nitrite-nitric oxide pathway in physiology and therapeutics. Nat. Rev. Drug Discov.7, 156–167 (2008). CASPubMed Google Scholar
Moreno-Vivian, C., Cabello, P., Martinez-Luque, M., Blasco, R. & Castillo, F. Prokaryotic nitrate reduction: molecular properties and functional distinction among bacterial nitrate reductases. J. Bacteriol.181, 6573–6584 (1999). CASPubMedPubMed Central Google Scholar
Preisler, A. et al. Biological and chemical sulfide oxidation in a Beggiatoa inhabited marine sediment. ISME J.1, 341–353 (2007). CASPubMed Google Scholar
Lam, P. et al. Revising the nitrogen cycle in the Peruvian oxygen minimum zone. Proc. Natl Acad. Sci. USA106, 4752–4757 (2009). CASPubMed Google Scholar
Bristow, L. A. et al. N2 production rates limited by nitrite availability in the Bay of Bengal oxygen minimum zone. Nat. Geosci.10, 24–29 (2017). CAS Google Scholar
Haroon, M. F. et al. Anaerobic oxidation of methane coupled to nitrate reduction in a novel archaeal lineage. Nature500, 567–570 (2013). The discovery of nitrate-reducing methanotrophic archaea. CASPubMed Google Scholar
Ettwig, K. F. et al. Archaea catalyze iron-dependent anaerobic oxidation of methane. Proc. Natl Acad. Sci. USA113, 12792–12796 (2016). CASPubMed Google Scholar
Cardoso, R. B. et al. Sulfide oxidation under chemolithoautotrophic denitrifying conditions. Biotechnol. Bioengineer.95, 1148–1157 (2006). CAS Google Scholar
Weber, K. A., Achenbach, L. A. & Coates, J. D. Microorganisms pumping iron: anaerobic microbial iron oxidation and reduction. Nat. Rev. Microbiol.4, 752–764 (2006). CASPubMed Google Scholar
Gruber, N. The marine nitrogen cycle: overview and challenges. Nitrogen Marine Environ.2, 1–50 (2008). Google Scholar
Stolz, J. F. & Basu, P. Evolution of nitrate reductase: molecular and structural variations on a common function. Chembiochem3, 198–206 (2002). CASPubMed Google Scholar
Malm, S. et al. The roles of the nitrate reductase NarGHJI, the nitrite reductase NirBD and the response regulator GlnR in nitrate assimilation of Mycobacterium tuberculosis. Microbiology155, 1332–1339 (2009). CASPubMed Google Scholar
Blöchl, E. et al. Pyrolobus fumarii, gen. and sp. nov., represents a novel group of archaea, extending the upper temperature limit for life to 113 C. Extremophiles1, 14–21 (1997). PubMed Google Scholar
Kamp, A., de Beer, D., Nitsch, J. L., Lavik, G. & Stief, P. Diatoms respire nitrate to survive dark and anoxic conditions. Proc. Natl Acad. Sci. USA108, 5649–5654 (2011). CASPubMed Google Scholar
Zhou, Z. et al. Ammonia fermentation, a novel anoxic metabolism of nitrate by fungi. J. Biol. Chem.277, 1892–1896 (2002). CASPubMed Google Scholar
Tikhonova, T. V. et al. Molecular and catalytic properties of a novel cytochrome c nitrite reductase from nitrate-reducing haloalkaliphilic sulfur-oxidizing bacterium Thioalkalivibrio nitratireducens. Biochim. Biophys. Acta1764, 715–723 (2006). CASPubMed Google Scholar
Atkinson, S. J., Mowat, C. G., Reid, G. A. & Chapman, S. K. An octaheme c-type cytochrome from Shewanella oneidensis can reduce nitrite and hydroxylamine. FEBS Lett.581, 3805–3808 (2007). CASPubMed Google Scholar
Einsle, O. et al. Structure of cytochrome c nitrite reductase. Nature400, 476–480 (1999). CASPubMed Google Scholar
Haase, D., Hermann, B., Einsle, O. & Simon, J. Epsilonproteobacterial hydroxylamine oxidoreductase (εHao): characterization of a 'missing link' in the multihaem cytochrome c family. Mol. Microbiol.105, 127–138 (2017). CASPubMed Google Scholar
Tiedje, J. M. in in Biology of Anaerobic Microorganisms (ed. Zehnder, A. J. B.) 179–244 (Wiley, New York, NY, USA, 1988). Google Scholar
Brunet, R. & Garcia-Gil, L. Sulfide-induced dissimilatory nitrate reduction to ammonia in anaerobic freshwater sediments. FEMS Microbiol. Ecol.21, 131–138 (1996). CAS Google Scholar
Seitz, H.-J. & Cypionka, H. Chemolithotrophic growth of Desulfovibrio desulfuricans with hydrogen coupled to ammonification of nitrate or nitrite. Arch. Microbiol.146, 63–67 (1986). CAS Google Scholar
Robertson, E. K., Roberts, K. L., Burdorf, L. D. W., Cook, P. & Thamdrup, B. Dissimilatory nitrate reduction to ammonium coupled to Fe(II) oxidation in sediments of a periodically hypoxic estuary. Limnol. Oceanogr.61, 365–381 (2016). CAS Google Scholar
Rütting, T., Boeckx, P., Müller, C. & Klemedtsson, L. Assessment of the importance of dissimilatory nitrate reduction to ammonium for the terrestrial nitrogen cycle. Biogeosciences8, 1779–1791 (2011). Google Scholar
Burgin, A. J. & Hamilton, S. K. Have we overemphasized the role of denitrification in aquatic ecosystems? A review of nitrate removal pathways. Front. Ecol. Environ.5, 89–96 (2007). Google Scholar
Lomas, M. W. & Lipschultz, F. Forming the primary nitrite maximum: nitrifiers or phytoplankton? Limnol. Oceanogr.51, 2453–2467 (2006). CAS Google Scholar
Graf, D. R., Jones, C. M. & Hallin, S. Intergenomic comparisons highlight modularity of the denitrification pathway and underpin the importance of community structure for N2O emissions. PloS ONE9, e114118 (2014). PubMedPubMed Central Google Scholar
Bartossek, R., Nicol, G. W., Lanzen, A., Klenk, H. P. & Schleper, C. Homologues of nitrite reductases in ammonia-oxidizing archaea: diversity and genomic context. Environ. Microbiol.12, 1075–1088 (2010). CASPubMed Google Scholar
Kartal, B. & Keltjens, J. T. Anammox biochemistry: a tale of heme c proteins. Trends Biochem. Sci.41, 998–1011 (2016). CASPubMed Google Scholar
Fang, F. C. Antimicrobial reactive oxygen and nitrogen species: concepts and controversies. Nat. Rev. Microbiol.2, 820–832 (2004). CASPubMed Google Scholar
Hallin, S., Philippot, L., Löffler, F. E., Sanford, R. A. & Jones, C. M. Genomics and ecology of novel N2O-reducing microorganisms. Trends Microbiol.26, 43–55 (2018). CASPubMed Google Scholar
Ravishankara, A. R., Daniel, J. S. & Portmann, R. W. Nitrous Oxide (N2O): the dominant ozone-depleting substance emitted in the 21st century. Science326, 123–125 (2009). CASPubMed Google Scholar
Saraiva, L. M., Vicente, J. B. & Teixeira, M. The role of the flavodiiron proteins in microbial nitric oxide detoxification. Adv. Microb. Physiol.49, 77–129 (2004). CASPubMed Google Scholar
Rodrigues, R. et al. Desulfovibrio gigas flavodiiron protein affords protection against nitrosative stress in vivo. J. Bacteriol.188, 2745–2751 (2006). CASPubMedPubMed Central Google Scholar
Shoun, H., Fushinobu, S., Jiang, L., Kim, S.-W. & Wakagi, T. Fungal denitrification and nitric oxide reductase cytochrome P450nor. Phil. Trans. R. Soc. B Biol Sci.367, 1186–1194 (2012). CAS Google Scholar
Wang, J. et al. The roles of the hybrid cluster protein, Hcp, and its reductase, Hcr, in high affinity nitric oxide reduction that protects anaerobic cultures of Escherichia coli against nitrosative stress. Mol. Microbiol.100, 877–892 (2016). CASPubMed Google Scholar
Hino, T. et al. Structural basis of biological N2O generation by bacterial nitric oxide reductase. Science330, 1666–1670 (2010). CASPubMed Google Scholar
Matsumoto, Y. et al. Crystal structure of quinol-dependent nitric oxide reductase from Geobacillus stearothermophilus. Nat. Struct. Mol. Biol.19, 238–245 (2012). CASPubMed Google Scholar
Al-Attar, S. & de Vries, S. An electrogenic nitric oxide reductase. FEBS Lett.589, 2050–2057 (2015). CASPubMed Google Scholar
Liu, S. et al. Abiotic conversion of extracellular NH2OH contributes to N2O emission during ammonia oxidation. Environ. Sci. Technol.51, 13122–13132 (2017). CASPubMed Google Scholar
Stocker, T. F. et al. IPCC, 2013: Climate Change 2013: The Physical Science Basis. Contribution of Working Group I to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change (Cambridge Univ. Press, 2013). Google Scholar
Davidson, E. A. The contribution of manure and fertilizer nitrogen to atmospheric nitrous oxide since 1860. Nat. Geosci.2, 659–662 (2009). CAS Google Scholar
Crutzen, P., Mosier, A., Smith, K. & Winiwarter, W. N2O release from agro-biofuel production negates global warming reduction by replacing fossil fuels. Atmos. Chem. Phys.8, 389–395 (2008). CAS Google Scholar
Zumft, W. G. & Kroneck, P. M. Respiratory transformation of nitrous oxide (N2O) to dinitrogen by Bacteria and Archaea. Adv. Microb. Physiol.52, 107–227 (2006). Google Scholar
Cabello, P., Roldan, M. D. & Moreno-Vivian, C. Nitrate reduction and the nitrogen cycle in archaea. Microbiology150, 3527–3546 (2004). CASPubMed Google Scholar
Simon, J., Einsle, O., Kroneck, P. M. & Zumft, W. G. The unprecedented nos gene cluster of Wolinella succinogenes encodes a novel respiratory electron transfer pathway to cytochrome c nitrous oxide reductase. FEBS Lett.569, 7–12 (2004). CASPubMed Google Scholar
Sanford, R. A. et al. Unexpected nondenitrifier nitrous oxide reductase gene diversity and abundance in soils. Proc. Natl Acad. Sci. USA109, 19709–19714 (2012). CASPubMed Google Scholar
Jones, C. M. et al. Recently identified microbial guild mediates soil N2O sink capacity. Nat. Climate Change4, 801–805 (2014). CAS Google Scholar
Piña-Ochoa, E. et al. Widespread occurrence of nitrate storage and denitrification among Foraminifera and Gromiida. Proc. Natl Acad. Sci. USA107, 1148–1153 (2010). PubMed Google Scholar
Philippot, L., Andert, J., Jones, C. M., Bru, D. & Hallin, S. Importance of denitrifiers lacking the genes encoding the nitrous oxide reductase for N2O emissions from soil. Global Change Biol.17, 1497–1504 (2011). Google Scholar
Codispoti, L. & Christensen, J. Nitrification, denitrification and nitrous oxide cycling in the eastern tropical South Pacific Ocean. Mar. Chem.16, 277–300 (1985). CAS Google Scholar
Van de Graaf, A. A., de Bruijn, P., Robertson, L. A., Jetten, M. S. & Kuenen, J. G. Autotrophic growth of anaerobic ammonium-oxidizing micro-organisms in a fluidized bed reactor. Microbiology142, 2187–2196 (1996). CAS Google Scholar
Mulder, A., Vandegraaf, A. A., Robertson, L. A. & Kuenen, J. G. Anaerobic ammonium oxidation discovered in a denitrifying fluidized bed reactor. FEMS Microbiol. Ecol.16, 177–183 (1995). The discovery of anaerobic ammonium oxidation. CAS Google Scholar
Dietl, A. et al. The inner workings of the hydrazine synthase multiprotein complex. Nature527, 394–397 (2015). CASPubMed Google Scholar
Harhangi, H. R. et al. Hydrazine synthase, a unique phylomarker with which to study the presence and biodiversity of anammox bacteria. Appl. Environ. Microbiol.78, 752–758 (2012). CASPubMedPubMed Central Google Scholar
Wang, Y. et al. Co-occurrence and distribution of nitrite-dependent anaerobic ammonium and methane-oxidizing bacteria in a paddy soil. Fems Microbiol. Lett.336, 79–88 (2012). CASPubMed Google Scholar
Maalcke, W. J. et al. Characterization of anammox hydrazine dehydrogenase, a key N2-producing enzyme in the global nitrogen cycle. J. Biol. Chem.291, 17077–17092 (2016). CASPubMedPubMed Central Google Scholar
Neumann, S. et al. Isolation and characterization of a prokaryotic cell organelle from the anammox bacterium Kuenenia stuttgartiensis. Mol. Microbiol.94, 794–802 (2014). CASPubMed Google Scholar
de Almeida, N. M. et al. Membrane-bound electron transport systems of an anammox bacterium: a complexome analysis. Biochim. Biophys. Acta1857, 1694–1704 (2016). CASPubMed Google Scholar
de Almeida, N. M. et al. Immunogold localization of key metabolic enzymes in the anammoxosome and on the tubule-like structures of Kuenenia stuttgartiensis. J. Bacteriol.197, 2432–2441 (2015). CASPubMedPubMed Central Google Scholar
Kuypers, M. M. et al. Anaerobic ammonium oxidation by anammox bacteria in the Black Sea. Nature422, 608–611 (2003). The first detection of anaerobic ammonium-oxidizing bacteria in the environment. CASPubMed Google Scholar
Kuypers, M. M. M. et al. Massive nitrogen loss from the Benguela upwelling system through anaerobic ammonium oxidation. Proc. Natl Acad. Sci. USA102, 6478–6483 (2005). CASPubMed Google Scholar
Devol, A. H. Nitrogen cycle: Solution to a marine mystery. Nature422, 575–576 (2003). CASPubMed Google Scholar
Bronk, D. A. & Steinberg, D. K. in Nitrogen in the in Marine Environment 2nd edn 385–467 (Academic Press, San Diego, 2008). Google Scholar
Sunagawa, S. et al. Structure and function of the global ocean microbiome. Science348, 1261359 (2015). Google Scholar
Gruber, N. & Galloway, J. N. An Earth-system perspective of the global nitrogen cycle. Nature451, 293–296 (2008). CASPubMed Google Scholar
Vaksmaa, A. et al. Enrichment of anaerobic nitrate-dependent methanotrophic 'Candidatus Methanoperedens nitroreducens' archaea from an Italian paddy field soil. Appl. Microbiol. Biotechnol.101, 7075–7084 (2017). CASPubMedPubMed Central Google Scholar
Martens-Habbena, W., Berube, P. M., Urakawa, H., de la Torre, J. R. & Stahl, D. A. Ammonia oxidation kinetics determine niche separation of nitrifying Archaea and Bacteria. Nature461, 976–979 (2009). CAS Google Scholar
Schleper, C. & Nicol, G. W. Ammonia-oxidising archaea — physiology, ecology and evolution. Adv. Microb. Physiol.57, 41 (2010). Google Scholar
Pjevac, P. et al. AmoA-targeted polymerase chain reaction primers for the specific detection and quantification of comammox Nitrospira in the environment. Front. Microbiol.8, 1508 (2017). PubMedPubMed Central Google Scholar
Oshiki, M. et al. Nitrate-dependent ferrous iron oxidation by anaerobic ammonium oxidation (anammox) bacteria. Appl. Environ. Microbiol.79, 4087–4093 (2013). CASPubMedPubMed Central Google Scholar
Ferousi, C. et al. Iron assimilation and utilization in anaerobic ammonium oxidizing bacteria. Curr. Opin. Chem. Biol.37, 129–136 (2017). CASPubMed Google Scholar
Jensen, M. M. et al. Intensive nitrogen loss over the Omani Shelf due to anammox coupled with dissimilatory nitrite reduction to ammonium. ISME J.5, 1660–1670 (2011). CASPubMedPubMed Central Google Scholar
Jones, C. M., Graf, D. R. H., Bru, D., Philippot, L. & Hallin, S. The unaccounted yet abundant nitrous oxide-reducing microbial community: a potential nitrous oxide sink. ISME J.7, 417–426 (2013). CASPubMed Google Scholar
Heylen, K. & Keltjens, J. Redundancy and modularity in membrane-associated dissimilatory nitrate reduction in Bacillus. Front. Microbiol.3, 371 (2012). PubMedPubMed Central Google Scholar
Canfield, D. E., Thamdrup, B. & Kristensen, E. Aquatic Geomicrobiology (Elsevier Academic Press, 2005). Google Scholar
Sutton, M. A. et al. The European Nitrogen Assessment: Sources, Effects and Policy Perspectives (Cambridge Univ. Press, 2011). Google Scholar
Canfield, D. E., Glazer, A. N. & Falkowski, P. G. The evolution and future of Earth's nitrogen cycle. Science330, 192–196 (2010). CASPubMed Google Scholar
Duce, R. A. et al. Impacts of atmospheric anthropogenic nitrogen on the open ocean. Science320, 893–897 (2008). CASPubMed Google Scholar
Grosskopf, T. et al. Doubling of marine dinitrogen-fixation rates based on direct measurements. Nature488, 361–364 (2012). CASPubMed Google Scholar
McGroddy, M. E., Daufresne, T. & Hedin, L. O. Scaling of C:N:P stoichiometry in forests worldwide: implications of terrestrial redfield-type ratios. Ecology85, 2390–2401 (2004). Google Scholar
Rittmann, B. E. & McCarty, P. L. Environmental Biotechnology: Principles and Applications (Tata McGraw-Hill Education, 2012). Google Scholar
Kartal, B., Kuenen, J.v. & Van Loosdrecht, M. Sewage treatment with anammox. Science328, 702–703 (2010). CASPubMed Google Scholar
Lackner, S. et al. Full-scale partial nitritation/anammox experiences — an application survey. Water Res.55, 292–303 (2014). CASPubMed Google Scholar
Park, H.-D., Wells, G. F., Bae, H., Criddle, C. S. & Francis, C. A. Occurrence of ammonia-oxidizing archaea in wastewater treatment plant bioreactors. Appl. Environ. Microbiol.72, 5643–5647 (2006). CASPubMedPubMed Central Google Scholar
Luesken, F. A. et al. Simultaneous nitrite-dependent anaerobic methane and ammonium oxidation processes. Appl. Environ. Microbiol.77, 6802–6807 (2011). CASPubMedPubMed Central Google Scholar
Starkenburg, S. R., Arp, D. J. & Bottomley, P. J. Expression of a putative nitrite reductase and the reversible inhibition of nitrite-dependent respiration by nitric oxide in Nitrobacter winogradskyi Nb-255. Environ. Microbiol.10, 3036–3042 (2008). CASPubMed Google Scholar
Freitag, A. & Bock, E. Energy conservation in Nitrobacter. FEMS Microbiol. Lett.66, 157–162 (1990). CAS Google Scholar
Wijma, H. J., Canters, G. W., de Vries, S. & Verbeet, M. P. Bidirectional catalysis by copper-containing nitrite reductase. Biochemistry43, 10467–10474 (2004). CASPubMed Google Scholar
Sousa, F. L. et al. The superfamily of heme–copper oxygen reductases: types and evolutionary considerations. Biochim. Biophys. Acta1817, 629–637 (2012). CASPubMed Google Scholar
Rothery, R. A., Workun, G. J. & Weiner, J. H. The prokaryotic complex iron–sulfur molybdoenzyme family. Biochim. Biophys. Acta1778, 1897–1929 (2008). CASPubMed Google Scholar
Ishii, S., Ikeda, S., Minamisawa, K. & Senoo, K. Nitrogen cycling in rice paddy environments: past achievements and future challenges. Microbes Environ.26, 282–292 (2011). PubMed Google Scholar