Source–sink dynamics of virulence evolution (original) (raw)

References

  1. Dobrindt, U., Hochhut, B., Hentschel, U. & Hacker, J. Genomic islands in pathogenic and environmental microorganisms. Nature Rev. Microbiol. 2, 414–424 (2004).
    Article CAS Google Scholar
  2. Sokurenko, E. V., Hasty, D. L. & Dykhuizen, D. E. Pathoadaptive mutations: gene loss and variation in bacterial pathogens. Trends Microbiol. 7, 191–195 (1999).
    Article CAS PubMed Google Scholar
  3. Levin, B. R. & Bull, J. J. Short-sighted evolution and the virulence of pathogenic microorganisms. Trends Microbiol. 2, 76–81 (1994).
    Article CAS PubMed Google Scholar
  4. Meyers, L. A., Levin, B. R., Richardson, A. R. & Stojiljkovic, I. Epidemiology, hypermutation, within-host evolution and the virulence of Neisseria meningitidis. Proc. Biol. Sci. 270, 1667–1677 (2003).
    Article PubMed PubMed Central Google Scholar
  5. Antia, R., Regoes, R. R., Koella, J. C. & Burgstrom, C. T. The role of evolution in the emergence of infectious disease. Nature 426, 658–661 (2003).
    Article CAS PubMed PubMed Central Google Scholar
  6. Pulliam, H. R. Sources, sinks, and population regulation. Am. Nat. 132, 652–661 (1988).
    Article Google Scholar
  7. Levin, D. & Clay, K. Dynamics of synthetic Phlox drummondii populations at the species margin. Am. J. Bot. 71, 1040–1050 (1984).
    Article Google Scholar
  8. Bell, M. A. Lateral plate evolution in the threespine stickleback: getting nowhere fast. Genetica 112–113, 445–461 (2001).
    Article PubMed Google Scholar
  9. Kirkpatrick, M. & Barton, N. H. Evolution of a species' range. Am. Nat. 150, 1–23 (1997).
    Article CAS PubMed Google Scholar
  10. Holt, R. D., Barfield, M. & Gomulkiewicz, R. in Species Invasions: Insights into Ecology, Evolution, and Biogeography (eds Sax, D. F., Stachowicz, J. J. & Gaines, S. D.) 259–290 (Sinauer Associates Inc., Sunderland USA, 2004).
    Google Scholar
  11. Lynch, M. & Lande, R. in Biotic Interactions and Global Climate Change (eds Kareiva, P. M., Kingsolver, J. G. & Huey, R. B.) 234–250 (Sinauer Associates Inc., Sunderland USA, 1993).
    Google Scholar
  12. Bürger, R. & Lynch, M. Evolution and extinction in a changing environment: a quantitative-genetic analysis. Evolution 49, 151–163 (1995).
    Article PubMed Google Scholar
  13. Gomulkiewicz, R. & Holt, R. D. When does evolution by natural selection prevent extinction? Evolution 49, 201–207 (1995).
    Article PubMed Google Scholar
  14. Gomulkiewicz, R., Holt, R. D. & Barfield, M. The effects of density dependence and immigration on local adaptation and niche evolution in a black-hole sink environment. Theor. Popul. Biol. 55, 283–296 (1999).
    Article CAS PubMed Google Scholar
  15. Holt, R. D., Barfield, M. & Gomulkiewicz, R. Temporal variation can facilitate niche evolution in harsh sink environments. Am. Nat. 164, 187–200 (2004).
    Article PubMed Google Scholar
  16. Holt, R. D. & Gaines, M. S. Analysis of adaptation in heterogeneous landscapes: implications for the evolution of fundamental niches. Evol. Ecol. 6, 433–447 (1992).
    Article Google Scholar
  17. Holt, R. D. & Gomulkiewicz, R. How does immigration influence local adaptation? A re-examination of a familiar paradigm. Am. Nat. 149, 563–572 (1997).
    Article Google Scholar
  18. Holt, R. D., Gomulkiewicz, R. & Barfield, M. The phenomology of niche evolution via quantitive traits in a 'black-hole' sink. Proc. Biol. Sci. 270, 215–224 (2003).
    Article CAS PubMed PubMed Central Google Scholar
  19. Kawecki, T. J. Demography of source–sink populations and the evolution of ecological niches. Evol. Ecol. 9, 38–44 (1995).
    Article Google Scholar
  20. Kawecki, T. J. Adaptation to marginal habitats: contrasting influence of the dispersal rate on the fate of alleles with small and large effects. Proc. Biol. Sci. 267, 1315–1320 (2000).
    Article CAS PubMed PubMed Central Google Scholar
  21. Holt, R. D. Demographic constraints in evolution: towards unifying the evolutionary theories of senescence and niche conservatism. Evol. Ecol. 10, 1–11 (1996).
    Article Google Scholar
  22. Fry, J. D. The evolution of host specialization: are 'tradeoffs' overrated? Am. Nat. 148, S84–S107 (1996).
    Article Google Scholar
  23. Barton, N. H. in Integrating Genetics and Ecology in a Spatial Context (eds Antonovics, J. & Silvertown, J.) 365–392 (Blackwell, London, 2001).
    Google Scholar
  24. Kimmel, C. B. et al. Evolution and development of facial bone morphology in threespine sticklebacks. Proc. Natl Acad. Sci. USA 102, 5791–5796 (2005).
    Article CAS PubMed PubMed Central Google Scholar
  25. Cresko, W. A. Parallel genetic basis for repeated evolution of armor loss in Alaskan threespine stickleback populations. Proc. Natl Acad. Sci. USA 101, 6050–6055 (2004).
    Article CAS Google Scholar
  26. Watkinson, A. R. & Sutherland, W. J. Sources, sinks and pseudo-sinks. J.Animal Ecol. 64, 126–130 (1995).
    Article Google Scholar
  27. Haydon, D. T., Cleaveland, S., Taylor, L. H. & Laurenson, M. K. Identifying reservoirs of infection: a conceptual and practical challenge. Emerg. Infect. Dis. 8, 1468–1473 (2002).
    Article PubMed Google Scholar
  28. Holt, R. D. & Hochber, M. E. in Adaptive Dynamics of Infectious Diseases: in Pursuit of Virulence Management (eds Dieckmann, U., Metz, J. A. J., Sabelis, M. W. & Sigmund, K.) 104–119 (Cambridge University Press, UK, 2002).
    Book Google Scholar
  29. Finlay, B. B. & Falkow, S. Common themes in microbial pathogenicity revisited. Microbiol. Mol. Biol. Rev. 61, 136–169 (1997).
    CAS PubMed PubMed Central Google Scholar
  30. Casadevall, A. & Pirofski, L. A. The damage-response framework of microbial pathogenesis. Nature Rev. Microbiol. 1, 17–24 (2003).
    Article CAS Google Scholar
  31. Stewart, G. R., Robertson, B. D. & Young, D. B. Tuberculosis: a problem with persistence. Nature Rev. Microbiol. 1, 97–105 (2003).
    Article CAS Google Scholar
  32. Sansonetti, P. J., Arondel, J., Huerre, M., Harada, A. & Matsushima, K. Interleukin-8 controls bacterial transepithelial translocation at the cost of epithelial destruction in experimental shigellosis. Infect. Immun. 67, 1471–1480 (1999).
    CAS PubMed PubMed Central Google Scholar
  33. Dowell, S. F. Seasonal variation in host susceptibility and cycles of certain infectious diseases. Emerg. Infect. Dis. 7, 369–374 (2001).
    Article CAS PubMed PubMed Central Google Scholar
  34. Blakebrough, I., Greenwood, B., Whittle, H., Bradley, A. & Gilles, H. The epidemiology of infections due to Neisseria meningitidis and Neisseria lactamica in a northern Nigerian community. J. Infect. Dis. 146, 626–637 (1982).
    Article CAS PubMed Google Scholar
  35. Schneider, R. F. Bacterial pneumonia. Semin. Respir. Infect. 14, 327–332 (1999).
    CAS PubMed Google Scholar
  36. Taper, M. L. & Case, T. J. Quantitative genetic models for the co-evolution of character displacement. Ecology 66, 355–371 (1985).
    Article Google Scholar
  37. Brown, J. S. & Pavlovic, N. B. Evolution in heterogeneous environments: effects of migration on habitat specialization. Evol. Ecol. 6, 360–382 (1992).
    Article Google Scholar
  38. Futuyma, D. J. & Moreno, G. The evolution of ecological specialization. Annu. Rev. Ecol. Syst. 19, 207–233 (1988).
    Article Google Scholar
  39. Bayliss, C.D., Field, D. & Moxon, E. R. The simple sequence contingency loci of Haemophilus influenzae and Neisseria meningitidis. J. Clin. Invest. 107, 657–662 (2001).
    Article CAS PubMed PubMed Central Google Scholar
  40. Maurelli, A. T., Fernandez, R. E., Bloch, C. A., Rode, C. K. & Fasano, A. 'Black holes' and bacterial pathogenicity: a large genomic deletion that enhances the virulence of Shigella spp. and enteroinvasive Escherichia coli. Proc. Natl Acad. Sci. USA 95, 3943–3948 (1988).
    Article Google Scholar
  41. Day, W. A. Jr, Fernandez, R. E. & Maurelli, A. T. Pathoadaptive mutations that enhance virulence: genetic organization of the cadA regions of Shigella spp. Infect. Immun. 69, 7471–7480 (2001).
    Article CAS PubMed PubMed Central Google Scholar
  42. von Eiff, C. et al. A site-directed Staphylococcus aureus hemB mutant is a small-colony variant which persists intracellularly. J. Bacteriol. 179, 4706–4712 (1997).
    Article CAS PubMed PubMed Central Google Scholar
  43. Proctor, R. A. et al. Persistent and relapsing infections associated with small-colony variants of Staphylococcus aureus. Clin. Infect. Dis. 20, 95–102 (1995).
    Article CAS PubMed Google Scholar
  44. Ohara, T. & Itoh, K. Significance of Pseudomonas aeruginosa colonization of the gastrointestinal tract. Intern. Med. 42, 1072–1076 (2003).
    Article PubMed Google Scholar
  45. Romling, U., Kader, A., Sriramulu, D. D., Simm, R. & Kronvall, G. Worldwide distribution of Pseudomonas aeruginosa clone C strains in the aquatic environment and cystic fibrosis patients. Environ. Microbiol. 7, 1029–1038 (2005).
    Article PubMed Google Scholar
  46. Ruiz, L., Dominguez, M. A., Ruiz, N. & Vinas, M. Relationship between clinical and environmental isolates of Pseudomonas aeruginosa in a hospital setting. Arch. Med. Res. 35, 251–257 (2004).
    Article PubMed Google Scholar
  47. Martin, D. W. et al. Mechanism of conversion to mucoidy in Pseudomonas aeruginosa infecting cystic fibrosis patients. Proc. Natl Acad. Sci. USA 90, 8377–8381 (1993).
    Article CAS PubMed PubMed Central Google Scholar
  48. Boucher, J. C., Yu, H., Mudd, M. H. & Deretic, V. Mucoid Pseudomonas aeruginosa in cystic fibrosis: characterization of muc mutations in clinical isolates and analysis of clearance in a mouse model of respiratory infection. Infect. Immun. 65, 3838–3846 (1997).
    CAS PubMed PubMed Central Google Scholar
  49. Yu, H., Hanes, M., Chrisp, C. E., Boucher, J. C. & Deretic, V. Microbial pathogenesis in cystic fibrosis: pulmonary clearance of mucoid Pseudomonas aeruginosa and inflammation in a mouse model of repeated respiratory challenge. Infect. Immun. 66, 280–288 (1998).
    CAS PubMed PubMed Central Google Scholar
  50. Anthony, M. et al. Genetic analysis of Pseudomonas aeruginosa isolates from the sputa of Australian adult cystic fibrosis patients. J. Clin. Microbiol. 40, 2772–2778 (2002).
    Article CAS PubMed PubMed Central Google Scholar
  51. Johnson, J. R. & Russo, T. A. Extraintestinal pathogenic Escherichia coli: the other bad E. coli. J. Lab. Clin. Med. 139, 155–162 (2002).
    Article CAS PubMed Google Scholar
  52. Hooton, T. M. & Stamm, W. E. Diagnosis and treatment of uncomplicated urinary tract infection. Infect. Dis. Clin. North Am. 11, 551–581 (1997).
    Article CAS PubMed Google Scholar
  53. Brown, P.D. & Foxman, B. Pathogenesis of urinary tract infection: the role of sexual behavior and sexual transmission. Curr. Infect. Dis. Rep. 2, 513–517 (2000).
    Article CAS PubMed Google Scholar
  54. Johnson, J. R., Brown, J. J., Carlino, U. B. & Russo, T. A. Colonization with and acquisition of uropathogenic Escherichia coli as revealed by polymerase chain reaction-based detection. J. Infect. Dis. 177, 1120–1124 (1998).
    Article CAS PubMed Google Scholar
  55. Connell, I. et al. Type 1 fimbrial expression enhances Escherichia coli virulence for the urinary tract. Proc. Natl Acad. Sci. USA 93, 9827–9832 (1996).
    Article CAS PubMed PubMed Central Google Scholar
  56. Hung, C. S. et al. Structural basis of tropism of Escherichia coli to the bladder during urinary tract infection. Mol. Microbiol. 44, 903–915 (2002).
    Article CAS PubMed Google Scholar
  57. Bloch, C., Stocker, B. & Orndorff, P. A key role for type 1 pili in enterobacterial communicability. Mol. Microbiol. 6, 697–701 (1992).
    Article CAS PubMed Google Scholar
  58. Sokurenko, E. V., Courtney, H. S., Maslow, J., Siitonen, A. & Hasty, D. L. Quantitative differences in adhesiveness of type 1 fimbriated Escherichia coli due to structural differences in fimH genes. J. Bacteriol. 177, 3680–3686 (1995).
    Article CAS PubMed PubMed Central Google Scholar
  59. Sokurenko, E. V. et al. Pathogenic adaptation of Escherichia coli by natural variation of the FimH adhesin. Proc. Natl Acad. Sci. USA 95, 8922–8926 (1998).
    Article CAS PubMed PubMed Central Google Scholar
  60. Thomas, W. E., Nilsson, L. M., Forero, M., Sokurenko, E. V. & Vogel, V. Shear-dependent 'stick-and-roll' adhesion of type 1 fimbriated Escherichia coli. Mol. Microbiol. 53, 1545–1557 (2004).
    Article CAS PubMed Google Scholar
  61. Thomas, W. E., Trintchina, E., Forero, M., Vogel, V. & Sokurenko, E. V. Bacterial adhesion to target cells enhanced by shear force. Cell 109, 913–923 (2002).
    Article CAS PubMed Google Scholar
  62. Sokurenko, E. V. et al. Selection footprint in the FimH adhesin shows pathoadaptive niche differentiation in Escherichia coli. Mol. Biol. Evol. 21, 1373–1383 (2004).
    Article CAS PubMed Google Scholar
  63. Gordon, D. M, & Riley, M. A. A theoretical and experimental analysis of bacterial growth in the bladder. Mol. Microbiol. 6, 555–562 (1992).
    Article CAS PubMed Google Scholar
  64. Ziebuhr, W., Ohlsen, K., Karch, H., Korhonen, T. & Hacker, J. Evolution of bacterial pathogenesis. Cell. Mol. Life Sci. 56, 719–728 (1999).
    Article CAS PubMed Google Scholar
  65. Nowrouzian, F. L., Wold, A. E. & Adlerberth, I. Escherichia coli strains belonging to phylogenetic group B2 have superior capacity to persist in the intestinal microflora of infants. J. Infect. Dis. 191, 1078–1083 (2005).
    Article CAS PubMed Google Scholar

Download references