Source–sink dynamics of virulence evolution (original) (raw)
References
Dobrindt, U., Hochhut, B., Hentschel, U. & Hacker, J. Genomic islands in pathogenic and environmental microorganisms. Nature Rev. Microbiol.2, 414–424 (2004). ArticleCAS Google Scholar
Sokurenko, E. V., Hasty, D. L. & Dykhuizen, D. E. Pathoadaptive mutations: gene loss and variation in bacterial pathogens. Trends Microbiol.7, 191–195 (1999). ArticleCASPubMed Google Scholar
Levin, B. R. & Bull, J. J. Short-sighted evolution and the virulence of pathogenic microorganisms. Trends Microbiol.2, 76–81 (1994). ArticleCASPubMed Google Scholar
Meyers, L. A., Levin, B. R., Richardson, A. R. & Stojiljkovic, I. Epidemiology, hypermutation, within-host evolution and the virulence of Neisseria meningitidis. Proc. Biol. Sci.270, 1667–1677 (2003). ArticlePubMedPubMed Central Google Scholar
Antia, R., Regoes, R. R., Koella, J. C. & Burgstrom, C. T. The role of evolution in the emergence of infectious disease. Nature426, 658–661 (2003). ArticleCASPubMedPubMed Central Google Scholar
Pulliam, H. R. Sources, sinks, and population regulation. Am. Nat.132, 652–661 (1988). Article Google Scholar
Levin, D. & Clay, K. Dynamics of synthetic Phlox drummondii populations at the species margin. Am. J. Bot.71, 1040–1050 (1984). Article Google Scholar
Bell, M. A. Lateral plate evolution in the threespine stickleback: getting nowhere fast. Genetica112–113, 445–461 (2001). ArticlePubMed Google Scholar
Holt, R. D., Barfield, M. & Gomulkiewicz, R. in Species Invasions: Insights into Ecology, Evolution, and Biogeography (eds Sax, D. F., Stachowicz, J. J. & Gaines, S. D.) 259–290 (Sinauer Associates Inc., Sunderland USA, 2004). Google Scholar
Lynch, M. & Lande, R. in Biotic Interactions and Global Climate Change (eds Kareiva, P. M., Kingsolver, J. G. & Huey, R. B.) 234–250 (Sinauer Associates Inc., Sunderland USA, 1993). Google Scholar
Bürger, R. & Lynch, M. Evolution and extinction in a changing environment: a quantitative-genetic analysis. Evolution49, 151–163 (1995). ArticlePubMed Google Scholar
Gomulkiewicz, R. & Holt, R. D. When does evolution by natural selection prevent extinction? Evolution49, 201–207 (1995). ArticlePubMed Google Scholar
Gomulkiewicz, R., Holt, R. D. & Barfield, M. The effects of density dependence and immigration on local adaptation and niche evolution in a black-hole sink environment. Theor. Popul. Biol.55, 283–296 (1999). ArticleCASPubMed Google Scholar
Holt, R. D., Barfield, M. & Gomulkiewicz, R. Temporal variation can facilitate niche evolution in harsh sink environments. Am. Nat.164, 187–200 (2004). ArticlePubMed Google Scholar
Holt, R. D. & Gaines, M. S. Analysis of adaptation in heterogeneous landscapes: implications for the evolution of fundamental niches. Evol. Ecol.6, 433–447 (1992). Article Google Scholar
Holt, R. D. & Gomulkiewicz, R. How does immigration influence local adaptation? A re-examination of a familiar paradigm. Am. Nat.149, 563–572 (1997). Article Google Scholar
Holt, R. D., Gomulkiewicz, R. & Barfield, M. The phenomology of niche evolution via quantitive traits in a 'black-hole' sink. Proc. Biol. Sci.270, 215–224 (2003). ArticleCASPubMedPubMed Central Google Scholar
Kawecki, T. J. Demography of source–sink populations and the evolution of ecological niches. Evol. Ecol.9, 38–44 (1995). Article Google Scholar
Kawecki, T. J. Adaptation to marginal habitats: contrasting influence of the dispersal rate on the fate of alleles with small and large effects. Proc. Biol. Sci.267, 1315–1320 (2000). ArticleCASPubMedPubMed Central Google Scholar
Holt, R. D. Demographic constraints in evolution: towards unifying the evolutionary theories of senescence and niche conservatism. Evol. Ecol.10, 1–11 (1996). Article Google Scholar
Fry, J. D. The evolution of host specialization: are 'tradeoffs' overrated? Am. Nat.148, S84–S107 (1996). Article Google Scholar
Barton, N. H. in Integrating Genetics and Ecology in a Spatial Context (eds Antonovics, J. & Silvertown, J.) 365–392 (Blackwell, London, 2001). Google Scholar
Kimmel, C. B. et al. Evolution and development of facial bone morphology in threespine sticklebacks. Proc. Natl Acad. Sci. USA102, 5791–5796 (2005). ArticleCASPubMedPubMed Central Google Scholar
Cresko, W. A. Parallel genetic basis for repeated evolution of armor loss in Alaskan threespine stickleback populations. Proc. Natl Acad. Sci. USA101, 6050–6055 (2004). ArticleCAS Google Scholar
Watkinson, A. R. & Sutherland, W. J. Sources, sinks and pseudo-sinks. J.Animal Ecol.64, 126–130 (1995). Article Google Scholar
Haydon, D. T., Cleaveland, S., Taylor, L. H. & Laurenson, M. K. Identifying reservoirs of infection: a conceptual and practical challenge. Emerg. Infect. Dis.8, 1468–1473 (2002). ArticlePubMed Google Scholar
Holt, R. D. & Hochber, M. E. in Adaptive Dynamics of Infectious Diseases: in Pursuit of Virulence Management (eds Dieckmann, U., Metz, J. A. J., Sabelis, M. W. & Sigmund, K.) 104–119 (Cambridge University Press, UK, 2002). Book Google Scholar
Finlay, B. B. & Falkow, S. Common themes in microbial pathogenicity revisited. Microbiol. Mol. Biol. Rev.61, 136–169 (1997). CASPubMedPubMed Central Google Scholar
Casadevall, A. & Pirofski, L. A. The damage-response framework of microbial pathogenesis. Nature Rev. Microbiol.1, 17–24 (2003). ArticleCAS Google Scholar
Stewart, G. R., Robertson, B. D. & Young, D. B. Tuberculosis: a problem with persistence. Nature Rev. Microbiol.1, 97–105 (2003). ArticleCAS Google Scholar
Sansonetti, P. J., Arondel, J., Huerre, M., Harada, A. & Matsushima, K. Interleukin-8 controls bacterial transepithelial translocation at the cost of epithelial destruction in experimental shigellosis. Infect. Immun.67, 1471–1480 (1999). CASPubMedPubMed Central Google Scholar
Dowell, S. F. Seasonal variation in host susceptibility and cycles of certain infectious diseases. Emerg. Infect. Dis.7, 369–374 (2001). ArticleCASPubMedPubMed Central Google Scholar
Blakebrough, I., Greenwood, B., Whittle, H., Bradley, A. & Gilles, H. The epidemiology of infections due to Neisseria meningitidis and Neisseria lactamica in a northern Nigerian community. J. Infect. Dis.146, 626–637 (1982). ArticleCASPubMed Google Scholar
Schneider, R. F. Bacterial pneumonia. Semin. Respir. Infect.14, 327–332 (1999). CASPubMed Google Scholar
Taper, M. L. & Case, T. J. Quantitative genetic models for the co-evolution of character displacement. Ecology66, 355–371 (1985). Article Google Scholar
Brown, J. S. & Pavlovic, N. B. Evolution in heterogeneous environments: effects of migration on habitat specialization. Evol. Ecol.6, 360–382 (1992). Article Google Scholar
Futuyma, D. J. & Moreno, G. The evolution of ecological specialization. Annu. Rev. Ecol. Syst.19, 207–233 (1988). Article Google Scholar
Bayliss, C.D., Field, D. & Moxon, E. R. The simple sequence contingency loci of Haemophilus influenzae and Neisseria meningitidis. J. Clin. Invest.107, 657–662 (2001). ArticleCASPubMedPubMed Central Google Scholar
Maurelli, A. T., Fernandez, R. E., Bloch, C. A., Rode, C. K. & Fasano, A. 'Black holes' and bacterial pathogenicity: a large genomic deletion that enhances the virulence of Shigella spp. and enteroinvasive Escherichia coli. Proc. Natl Acad. Sci. USA95, 3943–3948 (1988). Article Google Scholar
Day, W. A. Jr, Fernandez, R. E. & Maurelli, A. T. Pathoadaptive mutations that enhance virulence: genetic organization of the cadA regions of Shigella spp. Infect. Immun.69, 7471–7480 (2001). ArticleCASPubMedPubMed Central Google Scholar
von Eiff, C. et al. A site-directed Staphylococcus aureus hemB mutant is a small-colony variant which persists intracellularly. J. Bacteriol.179, 4706–4712 (1997). ArticleCASPubMedPubMed Central Google Scholar
Proctor, R. A. et al. Persistent and relapsing infections associated with small-colony variants of Staphylococcus aureus. Clin. Infect. Dis.20, 95–102 (1995). ArticleCASPubMed Google Scholar
Ohara, T. & Itoh, K. Significance of Pseudomonas aeruginosa colonization of the gastrointestinal tract. Intern. Med.42, 1072–1076 (2003). ArticlePubMed Google Scholar
Romling, U., Kader, A., Sriramulu, D. D., Simm, R. & Kronvall, G. Worldwide distribution of Pseudomonas aeruginosa clone C strains in the aquatic environment and cystic fibrosis patients. Environ. Microbiol.7, 1029–1038 (2005). ArticlePubMed Google Scholar
Ruiz, L., Dominguez, M. A., Ruiz, N. & Vinas, M. Relationship between clinical and environmental isolates of Pseudomonas aeruginosa in a hospital setting. Arch. Med. Res.35, 251–257 (2004). ArticlePubMed Google Scholar
Martin, D. W. et al. Mechanism of conversion to mucoidy in Pseudomonas aeruginosa infecting cystic fibrosis patients. Proc. Natl Acad. Sci. USA90, 8377–8381 (1993). ArticleCASPubMedPubMed Central Google Scholar
Boucher, J. C., Yu, H., Mudd, M. H. & Deretic, V. Mucoid Pseudomonas aeruginosa in cystic fibrosis: characterization of muc mutations in clinical isolates and analysis of clearance in a mouse model of respiratory infection. Infect. Immun.65, 3838–3846 (1997). CASPubMedPubMed Central Google Scholar
Yu, H., Hanes, M., Chrisp, C. E., Boucher, J. C. & Deretic, V. Microbial pathogenesis in cystic fibrosis: pulmonary clearance of mucoid Pseudomonas aeruginosa and inflammation in a mouse model of repeated respiratory challenge. Infect. Immun.66, 280–288 (1998). CASPubMedPubMed Central Google Scholar
Anthony, M. et al. Genetic analysis of Pseudomonas aeruginosa isolates from the sputa of Australian adult cystic fibrosis patients. J. Clin. Microbiol.40, 2772–2778 (2002). ArticleCASPubMedPubMed Central Google Scholar
Johnson, J. R. & Russo, T. A. Extraintestinal pathogenic Escherichia coli: the other bad E. coli. J. Lab. Clin. Med.139, 155–162 (2002). ArticleCASPubMed Google Scholar
Hooton, T. M. & Stamm, W. E. Diagnosis and treatment of uncomplicated urinary tract infection. Infect. Dis. Clin. North Am.11, 551–581 (1997). ArticleCASPubMed Google Scholar
Brown, P.D. & Foxman, B. Pathogenesis of urinary tract infection: the role of sexual behavior and sexual transmission. Curr. Infect. Dis. Rep.2, 513–517 (2000). ArticleCASPubMed Google Scholar
Johnson, J. R., Brown, J. J., Carlino, U. B. & Russo, T. A. Colonization with and acquisition of uropathogenic Escherichia coli as revealed by polymerase chain reaction-based detection. J. Infect. Dis.177, 1120–1124 (1998). ArticleCASPubMed Google Scholar
Connell, I. et al. Type 1 fimbrial expression enhances Escherichia coli virulence for the urinary tract. Proc. Natl Acad. Sci. USA93, 9827–9832 (1996). ArticleCASPubMedPubMed Central Google Scholar
Hung, C. S. et al. Structural basis of tropism of Escherichia coli to the bladder during urinary tract infection. Mol. Microbiol.44, 903–915 (2002). ArticleCASPubMed Google Scholar
Bloch, C., Stocker, B. & Orndorff, P. A key role for type 1 pili in enterobacterial communicability. Mol. Microbiol.6, 697–701 (1992). ArticleCASPubMed Google Scholar
Sokurenko, E. V., Courtney, H. S., Maslow, J., Siitonen, A. & Hasty, D. L. Quantitative differences in adhesiveness of type 1 fimbriated Escherichia coli due to structural differences in fimH genes. J. Bacteriol.177, 3680–3686 (1995). ArticleCASPubMedPubMed Central Google Scholar
Sokurenko, E. V. et al. Pathogenic adaptation of Escherichia coli by natural variation of the FimH adhesin. Proc. Natl Acad. Sci. USA95, 8922–8926 (1998). ArticleCASPubMedPubMed Central Google Scholar
Thomas, W. E., Nilsson, L. M., Forero, M., Sokurenko, E. V. & Vogel, V. Shear-dependent 'stick-and-roll' adhesion of type 1 fimbriated Escherichia coli. Mol. Microbiol.53, 1545–1557 (2004). ArticleCASPubMed Google Scholar
Thomas, W. E., Trintchina, E., Forero, M., Vogel, V. & Sokurenko, E. V. Bacterial adhesion to target cells enhanced by shear force. Cell109, 913–923 (2002). ArticleCASPubMed Google Scholar
Sokurenko, E. V. et al. Selection footprint in the FimH adhesin shows pathoadaptive niche differentiation in Escherichia coli. Mol. Biol. Evol.21, 1373–1383 (2004). ArticleCASPubMed Google Scholar
Gordon, D. M, & Riley, M. A. A theoretical and experimental analysis of bacterial growth in the bladder. Mol. Microbiol.6, 555–562 (1992). ArticleCASPubMed Google Scholar
Ziebuhr, W., Ohlsen, K., Karch, H., Korhonen, T. & Hacker, J. Evolution of bacterial pathogenesis. Cell. Mol. Life Sci.56, 719–728 (1999). ArticleCASPubMed Google Scholar
Nowrouzian, F. L., Wold, A. E. & Adlerberth, I. Escherichia coli strains belonging to phylogenetic group B2 have superior capacity to persist in the intestinal microflora of infants. J. Infect. Dis.191, 1078–1083 (2005). ArticleCASPubMed Google Scholar