The role of microorganisms in coral health, disease and evolution (original) (raw)

References

  1. Sebens, K. Biodiversity of coral reefs: what are we losing and why? Amer. Zool. 34, 115–133 (1994).
    Article Google Scholar
  2. Costanza, et al. The value of the world's ecosystem services and natural capital. Nature 387, 253–260 (1997).
    Article CAS Google Scholar
  3. Bourne, D. G. & Munn, C. B. Diversity of bacteria associated with the coral Pocillopora damicornis from the Great Barrier Reef. Environ. Microbiol. 7, 1162–1174 (2005).
    Article CAS PubMed Google Scholar
  4. Koren, O. & Rosenberg, E. Bacteria associated with mucus and tissues of the coral Oculina patagonica in summer and winter. Appl. Environ. Microbiol. 72, 5254–5259 (2006).
    Article CAS PubMed PubMed Central Google Scholar
  5. Pantos, et al. The bacterial ecology of a plague-like disease affecting the Caribbean coral Montastraea annularis. Environ. Microbiol. 5, 370–382 (2003).
    Article CAS PubMed Google Scholar
  6. Ritchie, K. B. & Smith, G. W. in Coral Health and Disease (eds Rosenberg, E. & Loya, Y.) 259–264 (Springer, Berlin, New York, 2004).
    Book Google Scholar
  7. Rohwer, F., Breitbart, M., Jara, J., Azam, F. & Knowlton, N. Diversity of bacteria associated with the Caribbean coral Montastraea franksi. Coral Reefs 20, 85–91 (2001).
    Article Google Scholar
  8. Rohwer, F., Seguritan, V., Azam, F. & Knowlton, N. Diversity and distribution of coral-associated bacteria. Mar. Ecol. Prog. Ser. 243, 1–10 (2002).
    Article Google Scholar
  9. Kellogg, C. A Tropical Archaea: diversity associated with the surface microlayer of corals. Mar. Ecol. Progr. Ser. 273, 81–88 (2004).
    Article CAS Google Scholar
  10. Rohwer, F & Kelly, S. in Coral Health and Disease (eds Rosenberg, E. & Loya, Y.) 265–277 (Springer, Berlin, New York, 2004).
    Book Google Scholar
  11. Brandt, K. Über die morphologische und physiologische Bedeutung des Chlorophylls bei Tieren. Mitt Zool Stat Neapol 4, 191 (1883).
    Google Scholar
  12. Klebbs, G. Ein kleiner Beitrag zur Kenntnis der Peridineen. Bot. Z. 10, 46–47 (1884).
    Google Scholar
  13. Taylor, D. L. in Symbiosis and the Sea (ed. Vernberg, C. B. W.) 245–262 (Univ. South Carolina Press, Columbia, 1974).
    Google Scholar
  14. Pawlowski, J., Holzmann, M., Fahrni, J. F., Pochon, X. & Lee, J. J. Molecular identification of algal endosymbionts in large miliolid foraminifera: 2. Dinoflagellates. J. Eukaryot. Microbiol. 48, 368–373 (2001).
    Article CAS PubMed Google Scholar
  15. Pochon, X., Pawlowski, J., Zaninetti, L. & Rowan, R. High genetic diversity and relative specificity among _Symbiodinium_-like endosymbiotic dinoflagellates in soritid foraminiferans. Mar. Biol. 139, 1069–1078 (2001).
    Article Google Scholar
  16. Baker, A. C. Flexibility and specificity in coral–algal symbiosis: diversity, ecology and biogeography of Symbiodinium. Ann. Rev. Ecol. Syst. 34, 661–689 (2003).
    Article Google Scholar
  17. Baker, A. C. in Coral Health and Disease. (eds Roseberg, E. & Loya, Y.) 177–194 (Springer, Berlin, New York, 2004).
    Book Google Scholar
  18. Fallowski, P. G., Dubinsky, Z., Muscatine, L. & Porter, J. W. Light and the bioenergetics of a symbiotic coral. Bioscience 34, 705–709 (1984).
    Article Google Scholar
  19. Muscatine, L. in Coral Reefs: Ecosystems of the World (eds Goodall, D. W. & Dubinsky, Z.) 25, 75–87 (Elsevier, Amsterdam, 1990).
    Google Scholar
  20. Kühl, M., Cohen, Y., Tage, D., Jorgensen, B. & Revsbech, B. Microenvironment and photosynthesis of zooxanthellae in scelcatinian corals studied with microsensors for O2, pH and light. Mar. Ecol. Prog. Ser. 117, 159–172 (1995).
    Article Google Scholar
  21. Banin, E., Vassilakos, D., Orr, E., Martinez, R. J. & Rosenberg, E. Superoxide dismutase is a virulence factor produced by the coral bleaching pathogen Vibrio shiloi. Curr. Microbiol. 46, 418–422 (2003).
    Article CAS PubMed Google Scholar
  22. Rowan, R. & Knowlton, N. Intraspecific diversity and ecological zonation in coral-algal symbiosis. Proc. Natl Acad. Sci. USA 92, 2850–2853 (1995).
    Article CAS PubMed PubMed Central Google Scholar
  23. Baker, A. C. & Rowan, R. Diversity of symbiotic dinoflagaellates (zooxanthellae) in scleractinian corals of the Caribbean and eastern Pacific. Proc. 8th Int. Coral Reef Symp. Panama 2, 1301–1305 (1997).
    CAS Google Scholar
  24. Baker, A. C. Reef corals bleach to survive change. Nature 411, 765–766 (2001).
    Article CAS PubMed Google Scholar
  25. LaJeunesse, T. C. et al. Low symbiont diversity in southern Great Barrier Reef corals relative to those of the Caribbean. Limnol. Oceanogr. 48, 2046–2054 (2003).
    Article Google Scholar
  26. Ducklow, H. W. & Mitchel, R. Bacterial populations and adaptations in the mucus layers on living corals. Limnol. Oceanogr. 24, 715–725 (1979).
    Article Google Scholar
  27. Shashar, N., Cohen, Y., Loya, Y. & Sar, N. Nitrogen fixation (acetylene reduction) in stony corals: evidence for coral–bacteria interactions. Mar. Ecol. Prog. Ser. 111, 259–264 (1994).
    Article CAS Google Scholar
  28. Ritchie, K. B. & Smith, W. G. Carbon-source utilization of coral-associated marine heterotrophs. J. Mar. Biotechnol. 3, 107–109 (1995).
    Google Scholar
  29. Ritchie, K. B. & Smith, W. G. Physiological comparisons of bacterial communities from various species of scleractinian corals. Proc. 8th Int. Coral Reef Symp. 1, 521–526 (1997).
    Google Scholar
  30. Williams, V. M., Viner, A. B. & Broughton, W. L. Nitrogen fixation (acetylene reduction) associated with the living coral Acropora variabilis. Mar. Biol. 94, 531–535 (1987).
    Article Google Scholar
  31. Lesser, M. P., Mazel, C. H., Gorbunov, M. Y. & Falkowski, P. G. Discovery of symbiotic nitrogen-fixing cyanobacteria in corals. Science 305, 997–1000 (2004).
    Article CAS PubMed Google Scholar
  32. Brown, B. E. & Bythell, J. C. Perspectives on mucus secretion in reef corals. Mar. Ecol. Progr. Ser. 296, 291–309 (2005).
    Article CAS Google Scholar
  33. Ferrer, L. M. & Szmant, A. M. Nutrient regeneration by the endolithic community in coral skeletons. Proc. 6th Int. Coral Reef Symp. Australia 3, 1–4 (1988).
    Google Scholar
  34. Fine, M. & Loya, Y. Endolithic algae — an alternative source of energy during coral bleaching. Proc. R. Soc. Lond. B 269, 1205–1210 (2002).
    Article Google Scholar
  35. Shlicther, D, Zscharnach, H. & Krisch, H. Transfer of photoassimilates from endolithic algae to coral tissue. Naturwissenschaften 82, 561–564 (1995).
    Article Google Scholar
  36. Webster, et al. Metamorphosis of a scleractinian coral in response to microbial biofilms. Appl. Environ. Microbiol. 70, 1213–1221 (2004).
    Article CAS PubMed PubMed Central Google Scholar
  37. Wegley, et al. Coral-associated Archaea. Mar. Ecol. Prog. Ser. 273, 89–96 (2004).
    Article CAS Google Scholar
  38. Davy, et al. Viruses: agents of coral disease? Dis. Aquat. Org. 69, 101–110 (2006).
    Article CAS Google Scholar
  39. Hughes, T. P. et al. Climate change, human impacts, and the resilience of coral reefs. Science 301, 929–933 (2003).
    Article CAS PubMed Google Scholar
  40. Goreau, T. J., Hayes, R. L. & Strong, A. E. Tracking South Pacific coral reef bleaching by satellite and field observations. Proc. 8th Int. Coral Reef Symp. 2, 1491–1494 (1997).
    Google Scholar
  41. Hayes, R. L. & Goreau, N. I. The significance of emerging diseases in the tropical coral reef ecosystem. Revista de Biological Tropical 46, 173–185 (1998).
    Google Scholar
  42. Hoegh-Guldberg, O. Climate change, coral bleaching and the future of the world's coral reefs. Mar. Freshwater Res. 50, 839–866 (1999).
    Article Google Scholar
  43. Kushmaro, A., Loya, Y., Fine, M. & Rosenberg, E. Bacterial infection and coral bleaching. Nature 380, 396 (1996).
    Article CAS Google Scholar
  44. Kushmaro, A., Rosenberg, E., Fine, M. & Loya, Y. Bleaching of the coral Oculina patagonica by Vibrio AK-1. Mar. Ecol. Prog. Ser. 147, 159–165 (1997).
    Article Google Scholar
  45. Ben-Haim Y, Rosenberg, E. A novel Vibrio sp. pathogen of the coral Pocillopora damicornis. Mar. Biol. 141, 47–55 (2002).
    Article Google Scholar
  46. Ben-Haim, Y., Zicherman-Keren, M. & Rosenberg, E. Temperature-regulated bleaching and lysis of the coral Pocillopora damicornis by the novel pathogen Vibrio coralliilyticus. Appl. Envir. Microbiol. 69, 4236–4242 (2003).
    Article CAS Google Scholar
  47. Fine, M. & Loya. Y. The coral Oculina patagonica: a new immigrant to the Mediterranean coast of Israel. Isr. J. Zool. 41, 81 (1995).
    Google Scholar
  48. Kushmaro, A., Rosenberg, E., Fine, M., Ben-Haim, Y. & Loya, Y. Effect of temperature on bleaching of the coral Oculina patagonica by Vibrio shiloi AK-1. Mar. Ecol. Prog. Ser. 171, 131–137 (1998).
    Article Google Scholar
  49. Rosenberg, E. & Falkowitz, L. The Vibrio shiloi/Oculina patagonica model system of coral bleaching. Ann. Rev. Microbiol. 58, 143–159 (2004).
    Article CAS Google Scholar
  50. Ritchie, K. B., Dennis, J. H., McGrath, T. & Smith, G. W. Bacteria associated with bleached and non-bleached areas of Montastraea annularis. Proc. Symp. Nat. Hist. Bahamas 5, 75–80 (1994).
    Google Scholar
  51. Harvell, et al. Climate and disease risks for terrestrial and marine biota. Science 296, 2158–2162 (2002).
    Article CAS PubMed Google Scholar
  52. Szmant, A. M. Nutrient enrichment on coral reefs: is it a major cause of coral reef decline? Estuaries 25, 743–766 (2002).
    Article CAS Google Scholar
  53. Jackson, et al. Historical over-fishing and the recent collapse of coastal ecosystems. Science 293, 629–637 (2001).
    Article CAS PubMed Google Scholar
  54. Intergovernmental Panel on Climate Change (IPCC). Climate change 2001: IPCC third assessment report. IPCC web site [online], (2001).
  55. Toren, A., Landau, L., Kushmaro, A., Loya, Y. & Rosenberg, E. Effect of temperature on adhesion of Vibrio strain AK-1 to Oculina patagonica and on coral bleaching. Appl. Environ. Microb. 64, 1379–1384 (1998).
    CAS Google Scholar
  56. Banin, E., Sanjay, K. H., Naider, F. & Rosenberg, E. Proline-rich peptide from the coral pathogen Vibrio shiloi that inhibits photosynthesis of zooxanthellae. Appl. Environ. Microbiol. 67, 1536–1541 (2001).
    Article CAS PubMed PubMed Central Google Scholar
  57. Bruno, J. F., Petes, L. E., Harvell, C. D. & Hettinger, A. Nurtient enrichment can increase the severity of coral diseases. Ecol. Lett. 6, 1056–1061 (2003).
    Article Google Scholar
  58. Kline, D. I., Kuntz, N. M., Breitbart, M., Knowlton, N. & Rohwer, F. Role of elevated organic carbon levels and microbial activity in coral mortality. Mar. Ecol. Prog. Ser. 314, 119–125 (2006).
    Article CAS Google Scholar
  59. McCook, L. J., Jompa, J. & Diaz-Pulido, G. Competition between corals and algae on coral reefs: a review of evidence and mechanisms. Coral Reefs 19, 400–417 (2001).
    Article Google Scholar
  60. Smith, et al. Indirect effects of algae on coral: algae-mediated, microbe-induced coral mortality. Ecol. Lett. 9, 835–845 (2006).
    Article PubMed Google Scholar
  61. Reshef, L., Koren, O., Loya, Y., Zilber-Rosenberg, I. & Rosenberg, E. The coral probiotic hypothesis. Environ. Microbiol. 8, 2068–2073 (2006).
    Article CAS PubMed Google Scholar
  62. Mullen, K. M., Peters, E. C & Harvell, C. D. in Coral Health and Disease (eds Rosenberg, E. & Loya, Y.) 377–399 (Springer, Berlin, New York, 2004).
    Book Google Scholar
  63. Koh, E. G. L. Do scleractinian corals engage in chemical warfare against microbes? J. Chem. Ecol. 23, 379–398 (1997).
    Article CAS Google Scholar
  64. Castillo, I., Lodeiros, C., Nunez, M. & Campos, I. In vitro study of antibacterial substances produced by bacteria associated with various marine organisms. Rev. Biol. Trop. 49, 1213–1221 (2001).
    CAS PubMed Google Scholar
  65. Ritchie, K. B. Regulation of microbial populations by coral surface mucus and mucus-associated bacteria. Mar. Ecol. Prog. Ser. 322, 1–14 (2006).
    Article CAS Google Scholar
  66. Geffen, Y. & Rosenberg E. Stress-induced rapid release of antibacterials by scleractinian corals. Mar. Biol. 146, 931–935 (2005).
    Article Google Scholar
  67. Denner, et al. Aurantimonas coralicida gen. nov., sp. nov., the causative agent of white plague type II on Caribbean scleractinian corals. Int. J. Syst. Evol. Microbiol. 53, 1115–1122 (2003).
    Article CAS PubMed Google Scholar
  68. Richardson, L. L. & Aronson, R. B. Infectious diseases of reef corals. Proc. 9th Intl. Coral Reef Symp. Indonesia 2, 1225–1230 (2002).
    Google Scholar
  69. Brown, B. E., Dunne, R. P., Goodson, M. S. & Douglas, A. E. Marine ecology — bleaching patterns in reef corals. Nature 404, 142–143 (2000).
    Article CAS PubMed Google Scholar
  70. Rohwer, F., Breitbart, M., Jara, J., Azam, F. & Knowlton, K. Diversity of bacteria associated with the Caribbean coral Montastraea franksi. Coral Reefs 20, 85–91 (2001).
    Article Google Scholar
  71. Martin-Laurent, et al. DNA extraction from soils: old bias for new microbial diversity analysis methods. Appl. Environ. Microbiol. 67, 2354–2359 (2001).
    Article CAS PubMed PubMed Central Google Scholar
  72. Polz, M. F. & Cavanaugh, C. M. Bias in template-to-product ratios in multi-template PCR. Appl. Environ. Microbiol. 64, 3724–3730 (1998).
    CAS PubMed PubMed Central Google Scholar
  73. Forney, L., Zhou, X. & Brown. C. J. Molecular microbial ecology: land of the one-eyed king. Curr. Opin. Microbiol. 7, 210–220 (2004).
    Article CAS PubMed Google Scholar
  74. Frias-Lopez, J., Zerkle, A. L., Bonheyo, G. T. & Fouke, B. W. Partitioning of bacterial communities between seawater and healthy, black band diseased, and dead coral surfaces. Appl. Environ. Microbiol. 68, 2214–2228 (2002).
    Article CAS PubMed PubMed Central Google Scholar
  75. Cooney, V. et al. Characterization of the bacterial consortium associated with black band disease in coral using molecular microbiological techniques. Environ. Microbiol. 4, 401–413 (2002).
    Article PubMed Google Scholar
  76. Sekar, R., Mills, D. K., Remily, E. R., Voss, J. D. & Richardson, L. L. Microbial communities in the surface mucopolysaccharide layer and the black band microbial mat of black band-diseased Siderastrea siderea. Appl. Environ. Microbiol. 72, 5963–5973 (2006).
    Article CAS PubMed PubMed Central Google Scholar
  77. Casas, V. et al. Widespread association of a _Rickettsiales_-like bacterium with reef-building corals. Environ. Microbiol. 6, 1137–1148 (2004).
    Article PubMed Google Scholar
  78. Banin, E., Israely, T., Fine, M., Loya, Y. & Rosenberg, E. Role of endosymbiotic zooxanthellae and coral mucus in the adhesion of the coral-bleaching pathogen Vibrio shiloi to its host. FEMS Microbiol. Lett. 199, 33–37 (2001).
    Article CAS PubMed Google Scholar
  79. Banin, E. et al. Penetration of the coral-bleaching bacterium Vibrio shiloi into Oculina patagonica. Appl. Environ. Microbiol. 66, 3031–3036 (2000).
    Article CAS PubMed PubMed Central Google Scholar
  80. Ben-Haim, Y., Banin, E., Kushmaro, A., Loya, Y. & Rosenberg, E. Inhibition of photosynthesis and bleaching of zooxanthellae by the coral pathogen Vibrio shiloi. Environ. Microbiol. 1, 223–229 (1999).
    Article CAS PubMed Google Scholar
  81. Israely, T., Banin, E. & Rosenberg, E. Growth, differentiation and death of Vibrio shiloi in coral tissue as a function of seawater temperature. Aquat. Microb. Ecol. 24, 1–8 (2001).
    Article Google Scholar
  82. Sussman, M., Loya, Y., Fine, M. & Rosenberg, E. The marine fireworm Hermodice carunculata is a winter reservior and spring-summer vector for the coral-bleaching pathogen Vibrio shiloi. Environ. Microbiol. 5, 250–255 (2003).
    Article PubMed Google Scholar
  83. Smith, G. W., Ives, L. D., Nagelkerken, I. A. & Ritchie K. B. Caribbean sea fan mortalities. Nature 383, 487 (1996).
    Article CAS Google Scholar
  84. Geiser, D. M. Taylor, J. W., Fitchie, K. B. & Smith, G. W. Cause of sea fan death in the West Indies. Nature 394, 137–138 (1998).
    Article CAS Google Scholar
  85. Jokiel, P. L. & Coles S. L. Response of Hawaiian and other Indo Pacific reef corals to elevated temperatures. Coral Reefs 8, 155–162 (1990).
    Article Google Scholar
  86. Ritchie, K. B. & Smith, G. W. Preferential carbon utilization by surface bacterial communities from water mass, normal and white-band diseased Acropora cervicornis. Mol. Mar. Biol. Biotechnol. 4, 345–352 (1995).
    CAS Google Scholar
  87. Barash, Y., Sulam, R., Loya, Y. & Rosenberg, E. Bacterial strain BA-3 and a filterable factor cause a white plague-like disease in corals from the Eilat coral reef. Aquat. Microb. Ecol. 40, 183–189 (2005).
    Article Google Scholar
  88. Thompson, et al. Thalassomonas loyana sp. nov., a causative agent of the white plague-like disease of corals on the Eilat coral reef. Int. J. Syst. Evol. Microbiol. 56, 365–368 (2006).
    Article CAS PubMed Google Scholar
  89. Patterson, et al. The etiology of white pox a lethal disease of the Caribbean elkhorn coral, Acropora palmata. Proc. Natl Acad. Sci. USA 99, 8725–8730 (2002).
    Article CAS PubMed PubMed Central Google Scholar
  90. Cervino, et al. Relationship of Vibrio species infection and elevated temperatures to yellow blotch/band disease in Caribbean corals. Appl. Environ. Microbiol. 70, 6855–6864 (2004).
    Article CAS PubMed PubMed Central Google Scholar
  91. Richardson, L. L. in Coral Health and Disease (eds Rosenberg, E. & Loya, Y.) 325–336 (Springer, Berlin, New York, 2004).
    Book Google Scholar

Download references