zur Hausen, H. The search for infectious causes of human cancers: where and why (Nobel lecture). Angew. Chem. Int. Ed. Engl.48, 5798–5808 (2009). ArticleCASPubMed Google Scholar
Warren, J. R. Helicobacter: the ease and difficulty of a new discovery (Nobel lecture). Chem. Med. Chem.1, 672–685 (2006). ArticleCASPubMed Google Scholar
Qin, J. J. et al. A human gut microbial gene catalogue established by metagenomic sequencing. Nature464, 59–65 (2010). CASPubMedPubMed Central Google Scholar
Dethlefsen, L., Eckburg, P. B., Bik, E. M. & Relman, D. A. Assembly of the human intestinal microbiota. Trends Ecol. Evol.21, 517–523 (2006). ArticlePubMed Google Scholar
Claesson, M. J. et al. Composition, variability, and temporal stability of the intestinal microbiota of the elderly. Proc. Natl Acad. Sci. USA108 (Suppl. 1), 4586–4591 (2011). ArticleCASPubMed Google Scholar
Marchesi, J. R. Human distal gut microbiome. Environ. Microbiol.13, 3088–3102 (2011). ArticlePubMed Google Scholar
Proctor, L. M. The human microbiome project in 2011 and beyond. Cell Host Microbe10, 287–291 (2011). ArticleCASPubMed Google Scholar
Dove, W. F. et al. Intestinal neoplasia in the ApcMin mouse: independence from the microbial and natural killer (beige locus) status. Cancer Res.57, 812–814 (1997). CASPubMed Google Scholar
Sellon, R. K. et al. Resident enteric bacteria are necessary for development of spontaneous colitis and immune system activation in interleukin-10-deficient mice. Infect. Immun.66, 5224–5231 (1998). CASPubMedPubMed Central Google Scholar
Uronis, J. M. et al. Modulation of the intestinal microbiota alters colitis-associated colorectal cancer susceptibility. PLoS ONE4, e6026 (2009). ArticleCASPubMedPubMed Central Google Scholar
Vogelstein, B. & Kinzler, K. W. The multistep nature of cancer. Trends Genet.9, 138–141 (1993). ArticleCASPubMed Google Scholar
Ferlay, J. et al. Estimates of worldwide burden of cancer in 2008: GLOBOCAN 2008. Int. J. Cancer127, 2893–2917 (2010). ArticleCASPubMed Google Scholar
Watson, A. J. & Collins, P. D. Colon cancer: a civilization disorder. Dig. Dis.29, 222–228 (2011). ArticlePubMed Google Scholar
Barker, N. et al. Crypt stem cells as the cells-of-origin of intestinal cancer. Nature457, 608–611 (2009). ArticleCASPubMed Google Scholar
Ricci-Vitiani, L., Fabrizi, E., Palio, E. & De Maria, R. Colon cancer stem cells. J. Mol. Med.87, 1097–1104 (2009). ArticlePubMed Google Scholar
Lakatos, P. L. & Lakatos, L. Risk for colorectal cancer in ulcerative colitis: changes, causes and management strategies. World J. Gastroenterol.14, 3937–3947 (2008). ArticlePubMedPubMed Central Google Scholar
Phelps, R. A., Broadbent, T. J., Stafforini, D. M. & Jones, D. A. New perspectives on APC control of cell fate and proliferation in colorectal cancer. Cell Cycle8, 2549–2556 (2009). ArticleCASPubMed Google Scholar
Sheng, H. et al. Nuclear translocation of β-catenin in hereditary and carcinogen-induced intestinal adenomas. Carcinogenesis19, 543–549 (1998). ArticleCASPubMed Google Scholar
Hanahan, D. & Weinberg, R. A. Hallmarks of cancer: the next generation. Cell144, 646–674 (2011). ArticleCASPubMed Google Scholar
Kostic, A. D. et al. Genomic analysis identifies association of Fusobacterium with colorectal carcinoma. Genome Res.22, 292–298 (2011). ArticleCASPubMed Google Scholar
Castellarin, M. et al. Fusobacterium nucleatum infection is prevalent in human colorectal carcinoma. Genome Res.22, 299–306 (2011). ArticleCASPubMed Google Scholar
Sears, C. L. & Pardoll, D. M. Perspective: alpha-bugs, their microbial partners, and the link to colon cancer. J. Infect. Dis.203, 306–311 (2011). ArticlePubMedPubMed Central Google Scholar
Green, G. L. et al. Molecular characterization of the bacteria adherent to human colorectal mucosa. J. Appl. Microbiol.100, 460–469 (2006). ArticleCASPubMed Google Scholar
Rajilić-Stojanović, M., Smidt, H. & de Vos, W. M. Diversity of the human gastrointestinal tract microbiota revisited. Environ. Microbiol.9, 2125–2136 (2007). ArticlePubMed Google Scholar
Hong, P. Y., Croix, J. A., Greenberg, E., Gaskins, H. R. & Mackie, R. I. Pyrosequencing-based analysis of the mucosal microbiota in healthy individuals reveals ubiquitous bacterial groups and micro-heterogeneity. PLoS ONE6, e25042 (2011). ArticleCASPubMedPubMed Central Google Scholar
Boleij, A. & Tjalsma, H. Gut bacteria in health and disease: a survey on the interface between intestinal microbiology and colorectal cancer. Biol. Rev. Camb. Philos. Soc. 2 Feb 2012 (doi:10.1111/j.1469-185X.2012.00218.x). ArticlePubMed Google Scholar
Huycke, M. M., Abrams, V. & Moore, D. R. Enterococcus faecalis produces extracellular superoxide and hydrogen peroxide that damages colonic epithelial cell DNA. Carcinogenesis23, 529–536 (2002). ArticleCASPubMed Google Scholar
Wang, X. M. & Huycke, M. M. Extracellular superoxide production by Enterococcus faecalis promotes chromosomal instability in mammalian cells. Gastroenterology132, 551–561 (2007). ArticleCASPubMed Google Scholar
Wang, X. M. et al. Enterococcus faecalis induces aneuploidy and tetraploidy in colonic epithelial cells through a bystander effect. Cancer Res.68, 9909–9917 (2008). ArticleCASPubMedPubMed Central Google Scholar
Nougayrède, J. P. et al. Escherichia coli induces DNA double-strand breaks in eukaryotic cells. Science313, 848–851 (2006). ArticleCASPubMed Google Scholar
Cuevas-Ramos, G. et al. Escherichia coli induces DNA damage in vivo and triggers genomic instability in mammalian cells. Proc. Natl Acad. Sci. USA107, 11537–11542 (2010). ArticleCASPubMedPubMed Central Google Scholar
Wu, S. et al. The Bacteroides fragilis toxin binds to a specific intestinal epithelial cell receptor. Infect. Immun.74, 5382–5390 (2006). ArticleCASPubMedPubMed Central Google Scholar
Toprak, N. U. et al. A possible role of Bacteroides fragilis enterotoxin in the aetiology of colorectal cancer. Clin. Microbiol. Infect.12, 782–786 (2006). ArticleCASPubMed Google Scholar
Goodwin, A. C. et al. Polyamine catabolism contributes to enterotoxigenic _Bacteroides fragilis_-induced colon tumorigenesis. Proc. Natl Acad. Sci. USA108, 15354–15359 (2011). ArticleCASPubMedPubMed Central Google Scholar
Wu, S., Rhee, K. J., Zhang, M., Franco, A. & Sears, C. L. Bacteroides fragilis toxin stimulates intestinal epithelial cell shedding and gamma-secretase-dependent E-cadherin cleavage. J. Cell Sci.120, 1944–1952 (2007). ArticleCASPubMed Google Scholar
Wu, S. G. et al. A human colonic commensal promotes colon tumorigenesis via activation of T helper type 17 T cell responses. Nature Med.15, 1016–1022 (2009). ArticleCASPubMed Google Scholar
Housseau, F. & Sears, C. L. Enterotoxigenic Bacteroides fragilis (ETBF)-mediated colitis in Min (Apc+/−) mice: a human commensal-based murine model of colon carcinogenesis. Cell Cycle9, 3–5 (2010). ArticleCASPubMed Google Scholar
Mangan, P. R. et al. Transforming growth factor-β induces development of the TH17 lineage. Nature441, 231–234 (2006). CASPubMed Google Scholar
Maggio-Price, L. et al. Bacterial infection of Smad3/Rag2 double-null mice with transforming growth factor-β dysregulation as a model for studying inflammation-associated colon cancer. Am. J. Pathol.174, 317–329 (2009). ArticleCASPubMedPubMed Central Google Scholar
Ahmed, S. et al. Mucosa-associated bacterial diversity in relation to human terminal ileum and colonic biopsy samples. Appl. Environ. Microbiol.73, 7435–7442 (2007). ArticleCASPubMedPubMed Central Google Scholar
Shen, X. et al. Molecular characterization of mucosal adherent bacteria and associations with colorectal adenomas. Gut Microbes1, 138–147 (2010). ArticlePubMedPubMed Central Google Scholar
Hirayama, A. et al. Quantitative metabolome profiling of colon and stomach cancer microenvironment by capillary electrophoresis time-of-flight mass spectrometry. Cancer Res.69, 4918–4925 (2009). ArticleCASPubMed Google Scholar
Klein, R. S. et al. Association of Streptococcus bovis with carcinoma of the colon. N. Engl. J. Med.297, 800–802 (1977). ArticleCASPubMed Google Scholar
Boleij, A., van Gelder, M. M., Swinkels, D. W. & Tjalsma, H. Clinical Importance of Streptococcus gallolyticus infection among colorectal cancer patients: systematic review and meta-analysis. Clin. Infect. Dis.53, 870–878 (2011). ArticleCASPubMed Google Scholar
Boleij, A. et al. Selective antibody response to Streptococcus gallolyticus pilus proteins in colorectal cancer patients. Cancer Prev. Res.5, 260–265 (2012). Article Google Scholar
Tjalsma, H. & Boleij, A. Subtyping of Streptococcus bovis group bacteria is needed to fully understand the clinical value of Streptococcus gallolyticus (S. bovis biotype I) infection as early sign of colonic malignancy. Int. J. Clin. Pract.66, 326 (2012). ArticleCASPubMed Google Scholar
Boleij, A. et al. Novel clues on the specific association of Streptococcus gallolyticus subsp gallolyticus with colorectal cancer. J. Infect. Dis.203, 1101–1109 (2011). ArticleCASPubMed Google Scholar
Vanrobaeys, M., De Herdt, P., Charlier, G., Ducatelle, R. & Haesebrouck, F. Ultrastructure of surface components of Streptococcus gallolytics (S. bovis) strains of differing virulence isolated from pigeons. Microbiology145, 335–342 (1999). ArticleCASPubMed Google Scholar
Rusniok, C. et al. Genome sequence of Streptococcus gallolyticus: insights into its adaptation to the bovine rumen and its ability to cause endocarditis. J. Bacteriol.192, 2266–2276 (2010). ArticleCASPubMedPubMed Central Google Scholar
Haimowitz, M. D., Hernandez, L. A. & Herron, R. M. A blood donor with bacteraemia. Lancet365, 1596 (2005). ArticlePubMed Google Scholar
Wentling, G. K., Metzger, P. P., Dozois, E. J., Chua, H. K. & Krishna, M. Unusual bacterial infections and colorectal carcinoma—Streptococcus bovis and Clostridium septicum: report of three cases. Dis. Colon Rectum49, 1223–1227 (2006). ArticlePubMed Google Scholar
Corredoira, J., Alonso, M. P., Pita, J. & Alonso-Mesonero, D. Association between rural residency, group D streptococcal endocarditis and colon cancer? Clin. Microbiol. Infect.14, 190 (2008). ArticleCASPubMed Google Scholar
Boleij, A. et al. Increased exposure to bacterial antigen RpL7/L12 in early stage colorectal cancer patients. Cancer116, 4014–4022 (2010). ArticleCASPubMed Google Scholar
Abdulamir, A. S., Hafidh, R. R. & Bakar, F. A. Molecular detection, quantification, and isolation of Streptococcus gallolyticus bacteria colonizing colorectal tumors: inflammation-driven potential of carcinogenesis via IL-1, COX-2, and IL-8. Mol. Cancer9, 249 (2010). ArticleCASPubMedPubMed Central Google Scholar
Ellmerich, S. et al. Promotion of intestinal carcinogenesis by Streptococcus bovis. Carcinogenesis21, 753–756 (2000). ArticleCASPubMed Google Scholar
Tjalsma, H. et al. Profiling the humoral immune response in colon cancer patients: diagnostic antigens from Streptococcus bovis. Int. J. Cancer119, 2127–2135 (2006). ArticleCASPubMed Google Scholar
Jin, J. S., Kitahara, M., Sakamoto, M., Hattori, M. & Benno, Y. Slackia equolifaciens sp. nov., a human intestinal bacterium capable of producing equol. Int. J. Syst. Evol. Microbiol.60, 1721–1724 (2010). ArticleCASPubMed Google Scholar
Hamer, H. M. et al. Review article: the role of butyrate on colonic function. Aliment. Pharmacol. Ther.27, 104–119 (2008). ArticleCASPubMed Google Scholar
Choi, E. J., Ahn, W. S. & Bae, S. M. Equol induces apoptosis through cytochrome _c_-mediated caspases cascade in human breast cancer MDA-MB-453 cells. Chem. Biol. Interact.177, 7–11 (2009). ArticleCASPubMed Google Scholar
Davis, C. D. & Milner, J. A. Gastrointestinal microflora, food components and colon cancer prevention. J. Nutr. Biochem.20, 743–752 (2009). ArticleCASPubMedPubMed Central Google Scholar
Bordonaro, M., Lazarova, D. L. & Sartorelli, A. C. Butyrate and Wnt signaling: a possible solution to the puzzle of dietary fiber and colon cancer risk? Cell Cycle7, 1178–1183 (2008). ArticleCASPubMed Google Scholar
Kang, H. Y. et al. Progression of atrophic gastritis and intestinal metaplasia drives Helicobacter pylori out of the gastric mucosa. Dig. Dis. Sci.51, 2310–2315 (2006). ArticlePubMed Google Scholar
Sears, C. L. et al. Association of enterotoxigenic Bacteroides fragilis infection with inflammatory diarrhea. Clin. Infect. Dis.47, 797–803 (2008). ArticleCASPubMed Google Scholar
Goto, Y. & Kiyono, H. Epithelial barrier: an interface for the cross-communication between gut flora and immune system. Immunol. Rev.245, 147–163 (2012). ArticleCASPubMed Google Scholar
Kolenbrander, P. E., Palmer, R. J., Periasamy, S. & Jakubovics, N. S. Oral multispecies biofilm development and the key role of cell-cell distance. Nature Rev. Microbiol.8, 471–480 (2010). ArticleCAS Google Scholar
Kaplan, C. W., Lux, R., Haake, S. K. & Shi, W. The Fusobacterium nucleatum outer membrane protein RadD is an arginine-inhibitable adhesin required for inter-species adherence and the structured architecture of multispecies biofilm. Mol. Microbiol.71, 35–47 (2009). ArticleCASPubMed Google Scholar
Smith, P. et al. Host genetics and environmental factors regulate ecological succession of the mouse colon tissue-associated microbiota. PLoS ONE7, e30273 (2012). ArticleCASPubMedPubMed Central Google Scholar
Strauss, J. et al. Invasive potential of gut mucosa-derived fusobacterium nucleatum positively correlates with IBD status of the host. Inflamm. Bowel Dis.17, 1971–1978 (2011). ArticlePubMed Google Scholar
Walker, A. W. et al. Dominant and diet-responsive groups of bacteria within the human colonic microbiota. ISME J.5, 220–230 (2011). ArticleCASPubMed Google Scholar
Lieberman, D. Clinical practice. Screening for colorectal cancer. N. Engl. J. Med.361, 1179–1187 (2009). ArticleCASPubMed Google Scholar
Tjalsma, H. Identification of biomarkers for colorectal cancer through proteomics-based approaches. Expert Rev. Proteomics7, 879–895 (2010). ArticleCASPubMed Google Scholar
Allen-Vercoe, E., Strauss, J. & Chadee, K. Fusobacterium nucleatum: an emerging gut pathogen? Gut Microbes2, 294–298 (2011). ArticlePubMed Google Scholar
He, X. et al. Adherence to streptococci facilitates Fusobacterium nucleatum integration into an oral microbial community. Microb. Ecol.63, 532–542 (2011). ArticlePubMedPubMed Central Google Scholar
Kapatral, V. et al. Genome sequence and analysis of the oral bacterium Fusobacterium nucleatum strain ATCC 25586. J. Bacteriol.184, 2005–2018 (2002). ArticleCASPubMedPubMed Central Google Scholar