Life in the human stomach: persistence strategies of the bacterial pathogen Helicobacter pylori (original) (raw)
Wroblewski, L. E., Peek, R. M. Jr & Wilson, K. T. Helicobacter pylori and gastric cancer: factors that modulate disease risk. Clin. Microbiol. Rev.23, 713–739 (2010). ArticleCASPubMedPubMed Central Google Scholar
Palframan, S. L., Kwok, T. & Gabriel, K. Vacuolating cytotoxin A (VacA), a key toxin for Helicobacter pylori pathogenesis. Front. Cell. Infect. Microbiol.2, 92 (2012). ArticleCASPubMedPubMed Central Google Scholar
Vaishnava, S. et al. The antibacterial lectin RegIIIgamma promotes the spatial segregation of microbiota and host in the intestine. Science334, 255–258 (2011). ArticleCASPubMedPubMed Central Google Scholar
Montecucco, C. & Rappuoli, R. Living dangerously: how Helicobacter pylori survives in the human stomach. Nature Rev. Mol. Cell Biol.2, 457–466 (2001). ArticleCAS Google Scholar
Celli, J. P. et al. Rheology of gastric mucin exhibits a pH-dependent sol-gel transition. Biomacromolecules8, 1580–1586 (2007). ArticleCASPubMed Google Scholar
Celli, J. P. et al. Helicobacter pylori moves through mucus by reducing mucin viscoelasticity. Proc. Natl Acad. Sci. USA106, 14321–14326 (2009). Study showing thatH. pyloriis immobilized by gastric mucin gel at low pH but in the presence of urea induces a pH-dependent gel-to-solution transition that allows the bacterium to swim freely. ArticlePubMedPubMed Central Google Scholar
Howitt, M. R. et al. ChePep controls Helicobacter pylori infection of the gastric glands and chemotaxis in the Epsilonproteobacteria. mBio 26 Jul 2011 (doi:10.1128/mBio.00098-1).
Rolig, A. S., Carter, J. E. & Ottemann, K. M. Bacterial chemotaxis modulates host cell apoptosis to establish a T-helper cell, type 17 (Th17)-dominant immune response in Helicobacter pylori infection. Proc. Natl Acad. Sci. USA108, 19749–19754 (2011). Study demonstrating that chemotaxis promotes interactions between the bacteria and epithelium that drive pro-inflammatory TH17 responses. ArticlePubMedPubMed Central Google Scholar
Rolig, A. S., Shanks, J., Carter, J. E. & Ottemann, K. M. Helicobacter pylori requires TlpD-driven chemotaxis to proliferate in the antrum. Infect. Immun.80, 3713–3720 (2012). ArticleCASPubMedPubMed Central Google Scholar
Terry, K., Williams, S. M., Connolly, L. & Ottemann, K. M. Chemotaxis plays multiple roles during Helicobacter pylori animal infection. Infect. Immun.73, 803–811 (2005). ArticleCASPubMedPubMed Central Google Scholar
Bonis, M., Ecobichon, C., Guadagnini, S., Prevost, M. C. & Boneca, I. G. A. M23B family metallopeptidase of Helicobacter pylori required for cell shape, pole formation and virulence. Mol. Microbiol.78, 809–819 (2010). ArticleCASPubMed Google Scholar
Sycuro, L. K. et al. Peptidoglycan crosslinking relaxation promotes Helicobacter pylori's helical shape and stomach colonization. Cell141, 822–833 (2010). References 13 and 14 first identified cell wall enzymes that reduce crosslinking in the cell wall and that promote helical cell shape, which in turn promotes efficient stomach colonization. ArticleCASPubMedPubMed Central Google Scholar
Sycuro, L. K. et al. Multiple peptidoglycan modification networks modulate Helicobacter pylori's cell shape, motility, and colonization potential. PLoS Pathog.8, e1002603 (2012). ArticleCASPubMedPubMed Central Google Scholar
Williams, S. M. et al. Helicobacter pylori chemotaxis modulates inflammation and bacterium-gastric epithelium interactions in infected mice. Infect. Immun.75, 3747–3757 (2007). ArticleCASPubMedPubMed Central Google Scholar
Sayi, A. et al. The CD4+ T cell-mediated IFN-gamma response to Helicobacter infection is essential for clearance and determines gastric cancer risk. J. Immunol.182, 7085–7101 (2009). This paper revealed that T cell responses toH. pyloripromote clearance on the one hand and immunopathology on the other hand, which complicates vaccine development. ArticleCASPubMed Google Scholar
Gobert, A. P. et al. Helicobacter pylori arginase inhibits nitric oxide production by eukaryotic cells: a strategy for bacterial survival. Proc. Natl Acad. Sci. USA98, 13844–13849 (2001). ArticleCASPubMedPubMed Central Google Scholar
Wang, G., Alamuri, P. & Maier, R. J. The diverse antioxidant systems of Helicobacter pylori. Mol. Microbiol.61, 847–860 (2006). ArticleCASPubMed Google Scholar
Dorer, M. S., Sessler, T. H. & Salama, N. R. Recombination and DNA repair in Helicobacter pylori. Annu. Rev. Microbiol.65, 329–348 (2011). ArticleCASPubMedPubMed Central Google Scholar
Chaturvedi, R. et al. Spermine oxidase mediates the gastric cancer risk associated with Helicobacter pylori CagA. Gastroenterology141, 1696–1708 (2011). ArticleCASPubMed Google Scholar
Touati, E. et al. Chronic Helicobacter pylori infections induce gastric mutations in mice. Gastroenterology124, 1408–1419 (2003). ArticleCASPubMed Google Scholar
Orillard, E., Radicella, J. P. & Marsin, S. Biochemical and cellular characterization of Helicobacter pylori RecA, a protein with high-level constitutive expression. J. Bacteriol.193, 6490–6497 (2011). ArticleCASPubMedPubMed Central Google Scholar
Dorer, M. S., Cohen, I. E., Sessler, T. H., Fero, J. & Salama, N. R. Natural competence promotes Helicobacter pylori chronic infection. Infect. Immun.81, 209–215 (2012). ArticleCASPubMed Google Scholar
Aras, R. A., Kang, J., Tschumi, A. I., Harasaki, Y. & Blaser, M. J. Extensive repetitive DNA facilitates prokaryotic genome plasticity. Proc. Natl Acad. Sci. USA100, 13579–13584 (2003). ArticleCASPubMedPubMed Central Google Scholar
Aras, R. A. et al. Plasticity of repetitive DNA sequences within a bacterial (Type IV) secretion system component. J. Exp. Med.198, 1349–1360 (2003). ArticleCASPubMedPubMed Central Google Scholar
Barrozo, R. M. et al. Functional plasticity in the Type IV secretion system of Helicobacter pylori. PLoS Pathog.9, e1003189 (2013). ArticlePubMedPubMed Central Google Scholar
Alm, R. A. et al. Comparative genomics of Helicobacter pylori: analysis of the outer membrane protein families. Infect. Immun.68, 4155–4168 (2000). ArticleCASPubMedPubMed Central Google Scholar
Colbeck, J. C., Hansen, L. M., Fong, J. M. & Solnick, J. V. Genotypic profile of the outer membrane proteins BabA and BabB in clinical isolates of Helicobacter pylori. Infect. Immun.74, 4375–4378 (2006). ArticleCASPubMedPubMed Central Google Scholar
Hennig, E. E., Allen, J. M. & Cover, T. L. Multiple chromosomal loci for the babA gene in Helicobacter pylori. Infect. Immun.74, 3046–3051 (2006). ArticleCASPubMedPubMed Central Google Scholar
Solnick, J. V., Hansen, L. M., Salama, N. R., Boonjakuakul, J. K. & Syvanen, M. Modification of Helicobacter pylori outer membrane protein expression during experimental infection of rhesus macaques. Proc. Natl Acad. Sci. USA101, 2106–2111 (2004). This was the first demonstration of gene conversion as a mechanism for phase variation of adhesin expression during experimental infection. ArticleCASPubMedPubMed Central Google Scholar
Ilver, D. et al. Helicobacter pylori adhesin binding fucosylated histo-blood group antigens revealed by retagging. Science279, 373–377 (1998). ArticleCASPubMed Google Scholar
Kawai, M. et al. Evolution in an oncogenic bacterial species with extreme genome plasticity: Helicobacter pylori East Asian genomes. BMC Microbiol.11, 104 (2011). ArticleCASPubMedPubMed Central Google Scholar
Talarico, S., Whitefield, S. E., Fero, J., Haas, R. & Salama, N. R. Regulation of Helicobacter pylori adherence by gene conversion. Mol. Microbiol.84, 1050–1061 (2012). ArticleCASPubMedPubMed Central Google Scholar
Styer, C. M. et al. Expression of the BabA adhesin during experimental infection with Helicobacter pylori. Infect. Immun.78, 1593–1600 (2010). ArticleCASPubMedPubMed Central Google Scholar
Goodwin, A. C. et al. Expression of the Helicobacter pylori adhesin SabA is controlled via phase variation and the ArsRS signal transduction system. Microbiology154, 2231–2240 (2008). ArticleCASPubMedPubMed Central Google Scholar
Salaun, L., Ayraud, S. & Saunders, N. J. Phase variation mediated niche adaptation during prolonged experimental murine infection with Helicobacter pylori. Microbiology151, 917–923 (2005). ArticleCASPubMed Google Scholar
Kao, C. Y., Sheu, S. M., Sheu, B. S. & Wu, J. J. Length of thymidine homopolymeric repeats modulates promoter activity of sabA in Helicobacter pylori. Helicobacter17, 203–209 (2012). ArticleCASPubMed Google Scholar
Covacci, A. et al. Molecular characterization of the 128-kDa immunodominant antigen of Helicobacter pylori associated with cytotoxicity and duodenal ulcer. Proc. Natl Acad. Sci. USA90, 5791–5795 (1993). ArticleCASPubMedPubMed Central Google Scholar
Tummuru, M. K., Cover, T. L. & Blaser, M. J. Cloning and expression of a high-molecular-mass major antigen of Helicobacter pylori: evidence of linkage to cytotoxin production. Infect. Immun.61, 1799–1809 (1993). CASPubMedPubMed Central Google Scholar
Murata-Kamiya, N. Pathophysiological functions of the CagA oncoprotein during infection by Helicobacter pylori. Microbes Infect.13, 799–807 (2011). ArticleCASPubMed Google Scholar
Ohnishi, N. et al. Transgenic expression of Helicobacter pylori CagA induces gastrointestinal and hematopoietic neoplasms in mouse. Proc. Natl Acad. Sci. USA105, 1003–1008 (2008). A study using transgenic expression to show that CagA can behave as an oncogene. ArticlePubMedPubMed Central Google Scholar
Yamazaki, S. et al. The CagA protein of Helicobacter pylori is translocated into epithelial cells and binds to SHP-2 in human gastric mucosa. J. Infect. Dis.187, 334–337 (2003). ArticleCASPubMed Google Scholar
Tsugawa, H. et al. Reactive oxygen species-induced autophagic egradation of Helicobacter pylori CagA is specifically suppressed in cancer stem-like cells. Cell Host Microbe12, 764–777 (2012). This study defines a molecular interaction by which certain alleles of VacA attenuate CagA activity in cells through autophagy-dependent degradation. These results provide a possible mechanism for the observed association between carriage of CagA and VacA s1m1 alleles. Additionally, the identification of stem-like cells that are resistant to VacA s1m1 autophagy induction indicate a possible CagA-dependent cancer precursor. ArticleCASPubMed Google Scholar
Ishimoto, T. et al. CD44 variant regulates redox status in cancer cells by stabilizing the xCT subunit of system xc(-) and thereby promotes tumor growth. Cancer Cell19, 387–400 (2011). ArticleCASPubMed Google Scholar
Oh, J. D., Karam, S. M. & Gordon, J. I. Intracellular Helicobacter pylori in gastric epithelial progenitors. Proc. Natl Acad. Sci. USA102, 5186–5191 (2005). ArticleCASPubMedPubMed Central Google Scholar
Hayashi, T., Morohashi, H. & Hatakeyama, M. Bacterial EPIYA effectors - Where do they come from? What are they? Where are they going? Cell. Microbiol.15, 377–385 (2012). ArticleCASPubMedPubMed Central Google Scholar
Mueller, D. et al. c-Src and c-Abl kinases control hierarchic phosphorylation and function of the CagA effector protein in Western and East Asian Helicobacter pylori strains. J. Clin. Invest.122, 1553–1566 (2012). Mutational analysis demonstrating that SRC and ABL family kinases phosphorylate CagA sequentially and in a tightly controlled manner. ArticleCASPubMedPubMed Central Google Scholar
Israel, D. A. et al. Helicobacter pylori strain-specific differences in genetic content, identified by microarray, influence host inflammatory responses. J. Clin. Invest.107, 611–620 (2001). ArticleCASPubMedPubMed Central Google Scholar
Arnold, I. C. et al. Tolerance rather than immunity protects from _Helicobacter pylori_-induced gastric preneoplasia. Gastroenterology140, 199–209 (2011). ArticleCASPubMed Google Scholar
Philpott, D. J. et al. Reduced activation of inflammatory responses in host cells by mouse-adapted Helicobacter pylori isolates. Cell. Microbiol.4, 285–296 (2002). ArticleCASPubMed Google Scholar
Tan, S., Noto, J. M., Romero-Gallo, J., Peek, R. M. Jr & Amieva, M. R. Helicobacter pylori perturbs iron trafficking in the epithelium to grow on the cell surface. PLoS Pathog.7, e1002050 (2011). ArticleCASPubMedPubMed Central Google Scholar
Terradot, L. & Waksman, G. Architecture of the Helicobacter pylori Cag-type IV secretion system. FEBS J.278, 1213–1222 (2011). ArticleCASPubMed Google Scholar
Christie, P. J., Atmakuri, K., Krishnamoorthy, V., Jakubowski, S. & Cascales, E. Biogenesis, architecture, and function of bacterial type IV secretion systems. Annu. Rev. Microbiol.59, 451–485 (2005). ArticleCASPubMed Google Scholar
Fischer, W. et al. Systematic mutagenesis of the Helicobacter pylori cag pathogenicity island: essential genes for CagA translocation in host cells and induction of interleukin-8. Mol. Microbiol.42, 1337–1348 (2001). ArticleCASPubMed Google Scholar
Pham, K. T. et al. CagI is an essential component of the Helicobacter pylori Cag type IV secretion system and forms a complex with CagL. PLoS ONE7, e35341 (2012). ArticleCASPubMedPubMed Central Google Scholar
Rohde, M., Puls, J., Buhrdorf, R., Fischer, W. & Haas, R. A novel sheathed surface organelle of the Helicobacter pylori cag type IV secretion system. Mol. Microbiol.49, 219–234 (2003). ArticleCASPubMed Google Scholar
Tanaka, J., Suzuki, T., Mimuro, H. & Sasakawa, C. Structural definition on the surface of Helicobacter pylori type IV secretion apparatus. Cell. Microbiol.5, 395–404 (2003). ArticleCASPubMed Google Scholar
Kwok, T. et al. Helicobacter exploits integrin for type IV secretion and kinase activation. Nature449, 862–866 (2007). This was the first demonstration that CagL can interact with integrins and has multiple roles in CagA secretion and Cag T4SS-dependent pathological effects on host cells. ArticleCASPubMed Google Scholar
Conradi, J. et al. An RGD helper sequence in CagL of Helicobacter pylori assists in interactions with integrins and injection of CagA. Front. Cell. Infect. Microbiol.2, 70 (2012). Google Scholar
Shaffer, C. L. et al. Helicobacter pylori exploits a unique repertoire of type IV secretion system components for pilus assembly at the bacteria-host cell interface. PLoS Pathog.7, e1002237 (2011). A study describing robust methods to visualize Cag T4SS pili, revealing that CagA secretion and Cag pilus formation can be uncoupled. ArticleCASPubMedPubMed Central Google Scholar
Jimenez-Soto, L. F. et al. Helicobacter pylori type IV secretion apparatus exploits beta1 integrin in a novel RGD-independent manner. PLoS Pathog.5, e1000684 (2009). ArticleCASPubMedPubMed Central Google Scholar
Kaplan-Turkoz, B. et al. Structural insights into Helicobacter pylori oncoprotein CagA interaction with beta1 integrin. Proc. Natl Acad. Sci. USA109, 14640–14645 (2012). ArticlePubMedPubMed Central Google Scholar
Gorrell, R. J. et al. A novel NOD1- and CagA-independent pathway of interleukin-8 induction mediated by the Helicobacter pylori type IV secretion system. Cell Microbiol. 26 Oct 2012 (doi:10.1111/cmi.12055).
Saha, A., Backert, S., Hammond, C. E., Gooz, M. & Smolka, A. J. Helicobacter pylori CagL activates ADAM17 to induce repression of the gastric H, K-ATPase alpha subunit. Gastroenterology139, 239–248 (2010). ArticleCASPubMed Google Scholar
Tegtmeyer, N. et al. A small fibronectin-mimicking protein from bacteria induces cell spreading and focal adhesion formation. J. Biol. Chem.285, 23515–23526 (2010). ArticleCASPubMedPubMed Central Google Scholar
Wiedemann, T. et al. Helicobacter pylori CagL dependent induction of gastrin expression via a novel alphavbeta5-integrin-integrin linked kinase signalling complex. Gut61, 986–996 (2012). ArticleCASPubMed Google Scholar
Moran, A. P., Lindner, B. & Walsh, E. J. Structural characterization of the lipid A component of Helicobacter pylori rough- and smooth-form lipopolysaccharides. J. Bacteriol.179, 6453–6463 (1997). ArticleCASPubMedPubMed Central Google Scholar
Cullen, T. W. et al. Helicobacter pylori versus the host: remodeling of the bacterial outer membrane is required for survival in the gastric mucosa. PLoS Pathog.7, e1002454 (2012). This paper provides the first description of theH. pyloriphosphatases that are responsible for the modification of lipid A that allows escape from TLR4 recognition and mouse colonization. ArticleCAS Google Scholar
Ishihara, S. et al. Essential role of MD-2 in TLR4-dependent signaling during _Helicobacter pylori_-associated gastritis. J. Immunol.173, 1406–1416 (2004). ArticleCASPubMed Google Scholar
Kawahara, T. et al. Type I Helicobacter pylori lipopolysaccharide stimulates toll-like receptor 4 and activates mitogen oxidase 1 in gastric pit cells. Infect. Immun.69, 4382–4389 (2001). ArticleCASPubMedPubMed Central Google Scholar
Yokota, S. et al. Highly-purified Helicobacter pylori LPS preparations induce weak inflammatory reactions and utilize Toll-like receptor 2 complex but not Toll-like receptor 4 complex. FEMS Immunol. Med. Microbiol.51, 140–148 (2007). ArticleCASPubMed Google Scholar
Smith, S. M. et al. Tribbles 3: a novel regulator of TLR2-mediated signaling in response to Helicobacter pylori lipopolysaccharide. J. Immunol.186, 2462–2471 (2011). ArticleCASPubMed Google Scholar
Rad, R. et al. Extracellular and intracellular pattern recognition receptors cooperate in the recognition of Helicobacter pylori. Gastroenterology136, 2247–2257 (2009). This article provides a comprehensive analysis of innate immune recognition ofH. pyloriusing dendritic cells from gene-targeted mice lacking various combinations of PRRs. ArticleCASPubMed Google Scholar
Sayi, A. et al. TLR-2-activated B cells suppress Helicobacter-induced preneoplastic gastric immunopathology by inducing T regulatory-1 cells. J. Immunol.186, 878–890 (2011). ArticleCASPubMed Google Scholar
Gewirtz, A. T. et al. Helicobacter pylori flagellin evades toll-like receptor 5-mediated innate immunity. J. Infect. Dis.189, 1914–1920 (2004). ArticleCASPubMed Google Scholar
Otani, K. et al. Toll-like receptor 9 signaling has anti-inflammatory effects on the early phase of _Helicobacter pylori_-induced gastritis. Biochem. Biophys. Res. Commun.426, 342–349 (2012). ArticleCASPubMed Google Scholar
Owyang, S. Y., Luther, J., Owyang, C. C., Zhang, M. & Kao, J. Y. Helicobacter pylori DNA's anti-inflammatory effect on experimental colitis. Gut Microbes3, 168–171 (2012). ArticlePubMedPubMed Central Google Scholar
Luther, J. et al. Helicobacter pylori DNA decreases pro-inflammatory cytokine production by dendritic cells and attenuates dextran sodium sulphate-induced colitis. Gut60, 1479–1486 (2011). ArticleCASPubMed Google Scholar
Luther, J., Dave, M., Higgins, P. D. & Kao, J. Y. Association between Helicobacter pylori infection and inflammatory bowel disease: a meta-analysis and systematic review of the literature. Inflamm Bowel Dis.16, 1077–1084 (2010). ArticlePubMed Google Scholar
Gringhuis, S. I., den Dunnen, J., Litjens, M., van der Vlist, M. & Geijtenbeek, T. B. Carbohydrate-specific signaling through the DC-SIGN signalosome tailors immunity to Mycobacterium tuberculosis, HIV-1 and Helicobacter pylori. Nature Immunol.10, 1081–1088 (2009). ArticleCAS Google Scholar
Gringhuis, S. I. et al. C-type lectin DC-SIGN modulates Toll-like receptor signaling via Raf-1 kinase-dependent acetylation of transcription factor NF-kappaB. Immunity26, 605–616 (2007). ArticleCASPubMed Google Scholar
Strowig, T., Henao-Mejia, J., Elinav, E. & Flavell, R. Inflammasomes in health and disease. Nature481, 278–286 (2012). ArticleCASPubMed Google Scholar
Kim, Y. G. et al. The cytosolic sensors Nod1 and Nod2 are critical for bacterial recognition and host defense after exposure to Toll-like receptor ligands. Immunity28, 246–257 (2008). ArticleCASPubMed Google Scholar
Broz, P. & Monack, D. M. Molecular mechanisms of inflammasome activation during microbial infections. Immunol. Rev.243, 174–190 (2011). ArticleCASPubMedPubMed Central Google Scholar
Viala, J. et al. Nod1 responds to peptidoglycan delivered by the Helicobacter pylori cag pathogenicity island. Nature Immunol.5, 1166–1174 (2004). ArticleCAS Google Scholar
Kaparakis, M. et al. Bacterial membrane vesicles deliver peptidoglycan to NOD1 in epithelial cells. Cell. Microbiol.12, 372–385 (2009). ArticleCASPubMed Google Scholar
Hutton, M. L. et al. Helicobacter pylori exploits cholesterol-rich microdomains for induction of NF-kappaB-dependent responses and peptidoglycan delivery in epithelial cells. Infect. Immun.78, 4523–4531 (2010). ArticleCASPubMedPubMed Central Google Scholar
Allison, C. C., Kufer, T. A., Kremmer, E., Kaparakis, M. & Ferrero, R. L. Helicobacter pylori induces MAPK phosphorylation and AP-1 activation via a NOD1-dependent mechanism. J. Immunol.183, 8099–8109 (2009). ArticleCASPubMed Google Scholar
Grubman, A. et al. The innate immune molecule, NOD1, regulates direct killing of Helicobacter pylori by antimicrobial peptides. Cell. Microbiol.12, 626–639 (2009). ArticleCASPubMed Google Scholar
Watanabe, T. et al. NOD1 contributes to mouse host defense against Helicobacter pylori via induction of type I IFN and activation of the ISGF3 signaling pathway. J. Clin. Invest.120, 1645–1662 (2010). This article provides a description of a new signalling pathway linking NOD1 activation byH. pylorito type I IFN production and infection control. ArticleCASPubMedPubMed Central Google Scholar
Hitzler, I. et al. Caspase-1 has both proinflammatory and regulatory properties in Helicobacter infections, which are differentially mediated by its substrates IL-1beta and IL-18. J. Immunol.188, 3594–3602 (2012). ArticleCASPubMed Google Scholar
Tomita, T. et al. Expression of Interleukin-18, a Th1 cytokine, in human gastric mucosa is increased in Helicobacter pylori infection. J. Infect. Dis.183, 620–627 (2001). ArticleCASPubMed Google Scholar
Oertli, M. et al. DC-derived IL-18 drives Treg differentiation, murine _Helicobacter pylori_-specific immune tolerance, and asthma protection. J. Clin. Invest.122, 1082–1096 (2012). ArticleCASPubMedPubMed Central Google Scholar
Tu, S. et al. Overexpression of interleukin-1beta induces gastric inflammation and cancer and mobilizes myeloid-derived suppressor cells in mice. Cancer Cell14, 408–419 (2008). ArticleCASPubMedPubMed Central Google Scholar
El-Omar, E. M. et al. Interleukin-1 polymorphisms associated with increased risk of gastric cancer. Nature404, 398–402 (2000). ArticleCASPubMed Google Scholar
Akhiani, A. A. et al. Protection against Helicobacter pylori infection following immunization is IL-12-dependent and mediated by Th1 cells. J. Immunol.169, 6977–6984 (2002). ArticleCASPubMed Google Scholar
Akhiani, A. A., Schon, K., Franzen, L. E., Pappo, J. & Lycke, N. _Helicobacter pylori_-specific antibodies impair the development of gastritis, facilitate bacterial colonization, and counteract resistance against infection. J. Immunol.172, 5024–5033 (2004). ArticleCASPubMed Google Scholar
Ermak, T. H. et al. Immunization of mice with urease vaccine affords protection against Helicobacter pylori infection in the absence of antibodies and is mediated by MHC class II-restricted responses. J. Exp. Med.188, 2277–2288 (1998). ArticleCASPubMedPubMed Central Google Scholar
Velin, D., Bachmann, D., Bouzourene, H. & Michetti, P. Mast cells are critical mediators of vaccine-induced Helicobacter clearance in the mouse model. Gastroenterology129, 142–155 (2005). ArticleCASPubMed Google Scholar
Velin, D. et al. Interleukin-17 is a critical mediator of vaccine-induced reduction of Helicobacter infection in the mouse model. Gastroenterology136, 2237–2246 (2009). ArticleCASPubMed Google Scholar
Hitzler, I., Oertli, M., Becher, B., Agger, E. M. & Müller, A. Dendritic cells prevent. rather than promote immunity conferred by a Helicobacter vaccine using a mycobacterial adjuvant. Gastroenterology141, 186–196 (2011). ArticleCASPubMed Google Scholar
Shi, Y. et al. _Helicobacter pylori_-induced Th17 responses modulate Th1 cell responses, benefit bacterial growth, and contribute to pathology in mice. J. Immunol.184, 5121–5129 (2010). ArticleCASPubMed Google Scholar
Stoicov, C. et al. T-bet knockout prevents Helicobacter felis-induced gastric cancer. J. Immunol.183, 642–649 (2009). ArticleCASPubMed Google Scholar
Gebert, B., Fischer, W., Weiss, E., Hoffmann, R. & Haas, R. Helicobacter pylori vacuolating cytotoxin inhibits T lymphocyte activation. Science301, 1099–1102 (2003). ArticleCASPubMed Google Scholar
Sundrud, M. S., Torres, V. J., Unutmaz, D. & Cover, T. L. Inhibition of primary human T cell proliferation by Helicobacter pylori vacuolating toxin (VacA) is independent of VacA effects on IL-2 secretion. Proc. Natl Acad. Sci. USA101, 7727–7732 (2004). ArticleCASPubMedPubMed Central Google Scholar
Sewald, X. et al. Integrin subunit CD18 Is the T-lymphocyte receptor for the Helicobacter pylori vacuolating cytotoxin. Cell Host Microbe3, 20–29 (2008). ArticleCASPubMed Google Scholar
Sewald, X., Jimenez-Soto, L. & Haas, R. PKC-dependent endocytosis of the Helicobacter pylori vacuolating cytotoxin in primary T lymphocytes. Cell. Microbiol.13, 482–496 (2010). ArticleCASPubMed Google Scholar
Gerhard, M. et al. A secreted low-molecular-weight protein from Helicobacter pylori induces cell-cycle arrest of T cells. Gastroenterology128, 1327–1339 (2005). ArticleCASPubMed Google Scholar
Schmees, C. et al. Inhibition of T-cell proliferation by Helicobacter pylori gamma-glutamyl transpeptidase. Gastroenterology132, 1820–1833 (2007). ArticleCASPubMed Google Scholar
Oertli, M. et al. Helicobacter pylori gamma-glutamyl transpeptidase and vacuolating cytotoxin promote gastric persistence and immune tolerance. Proc. Natl Acad. Sci. USA110, 3047–3052 (2013). ArticlePubMedPubMed Central Google Scholar
Kao, J. Y. et al. Helicobacter pylori immune escape is mediated by dendritic cell-induced Treg skewing and Th17 suppression in mice. Gastroenterology138, 1046–1054 (2010). ArticleCASPubMed Google Scholar
Kim, J. M. et al. Stimulation of dendritic cells with Helicobacter pylori vacuolating cytotoxin negatively regulates their maturation via the restoration of E2F1. Clin. Exp. Immunol.166, 34–45 (2011). ArticleCASPubMedPubMed Central Google Scholar
Lundgren, A. et al. Mucosal FOXP3-expressing CD4+ CD25high regulatory T cells in _Helicobacter pylori_-infected patients. Infect. Immun.73, 523–531 (2005). ArticleCASPubMedPubMed Central Google Scholar
Lundgren, A., Suri-Payer, E., Enarsson, K., Svennerholm, A. M. & Lundin, B. S. _Helicobacter pylori_-specific CD4+ CD25high regulatory T cells suppress memory T-cell responses to H. pylori in infected individuals. Infect. Immun.71, 1755–1762 (2003). ArticleCASPubMedPubMed Central Google Scholar
Lundgren, A., Trollmo, C., Edebo, A., Svennerholm, A. M. & Lundin, B. S. _Helicobacter pylori_-specific CD4+ T cells home to and accumulate in the human _Helicobacter pylori_-infected gastric mucosa. Infect. Immun.73, 5612–5619 (2005). ArticleCASPubMedPubMed Central Google Scholar
Robinson, K. et al. _Helicobacter pylori_-induced peptic ulcer disease is associated with inadequate regulatory T cell responses. Gut57, 1375–1385 (2008). This study demonstrates that asymptomatic carriers predominantly launch TRegresponses toH. pyloriinfection, whereas patients with peptic ulcer disease generate effector T cell responses. ArticleCASPubMed Google Scholar
Harris, P. R. et al. Helicobacter pylori gastritis in children is associated with a regulatory T-cell response. Gastroenterology134, 491–499 (2008). ArticlePubMed Google Scholar
Ismail, H. F., Fick, P., Zhang, J., Lynch, R. G. & Berg, D. J. Depletion of neutrophils in IL-10(−/−) mice delays clearance of gastric Helicobacter infection and decreases the Th1 immune response to Helicobacter. J. Immunol.170, 3782–3789 (2003). ArticleCASPubMed Google Scholar
Salama, N. R., Otto, G., Tompkins, L. & Falkow, S. Vacuolating cytotoxin of Helicobacter pylori plays a role during colonization in a mouse model of infection. Infect. Immun.69, 730–736 (2001). ArticleCASPubMedPubMed Central Google Scholar
Chevalier, C., Thiberge, J. M., Ferrero, R. L. & Labigne, A. Essential role of Helicobacter pylori gamma-glutamyltranspeptidase for the colonization of the gastric mucosa of mice. Mol. Microbiol.31, 1359–1372 (1999). ArticleCASPubMed Google Scholar
Blaser, M. J. & Falkow, S. What are the consequences of the disappearing human microbiota? Nature Rev. Microbiol.7, 887–894 (2009). ArticleCAS Google Scholar
Amberbir, A. et al. Effects of Helicobacter pylori, geohelminth infection and selected commensal bacteria on the risk of allergic disease and sensitization in 3-year-old Ethiopian children. Clin. Exp. Allergy41, 1422–1430 (2011). ArticleCASPubMed Google Scholar
Blaser, M. J., Chen, Y. & Reibman, J. Does Helicobacter pylori protect against asthma and allergy? Gut57, 561–567 (2008). ArticlePubMed Google Scholar
Chen, Y. & Blaser, M. J. Inverse associations of Helicobacter pylori with asthma and allergy. Arch. Intern. Med.167, 821–827 (2007). ArticlePubMed Google Scholar
Chen, Y. & Blaser, M. J. Helicobacter pylori colonization is inversely associated with childhood asthma. J. Infect. Dis.198, 553–560 (2008). ArticlePubMed Google Scholar
Arnold, I. C. et al. Helicobacter pylori infection prevents allergic asthma in mouse models through the induction of regulatory T cells. J. Clin. Invest.121, 3088–3093 (2011). This paper provides the first experimental evidence of a protective effect ofH. pyloriinfection in allergic asthma. ArticleCASPubMedPubMed Central Google Scholar
Hayashi, T. et al. Tertiary structure-function analysis reveals the pathogenic signaling potentiation mechanism of Helicobacter pylori oncogenic effector CagA. Cell Host Microbe12, 20–33 (2012). This study uses a combination of NMR, X-ray crystallography, modelling and mutational analysis to reveal the molecular mechanisms by which CagA interacts with multiple cellular targets. ArticleCASPubMed Google Scholar
Murata-Kamiya, N., Kikuchi, K., Hayashi, T., Higashi, H. & Hatakeyama, M. Helicobacter pylori exploits host membrane phosphatidylserine for delivery, localization, and pathophysiological action of the CagA oncoprotein. Cell Host Microbe7, 399–411 (2010). ArticleCASPubMed Google Scholar
Olbermann, P. et al. A global overview of the genetic and functional diversity in the Helicobacter pylori cag pathogenicity island. PLoS Genet.6, e1001069 (2010). ArticleCASPubMedPubMed Central Google Scholar
de Sablet, T. et al. Phylogeographic origin of Helicobacter pylori is a determinant of gastric cancer risk. Gut60, 1189–1195 (2011). ArticleCASPubMed Google Scholar
Yeh, Y. C. et al. H. pylori cagL amino acid sequence polymorphism Y58E59 induces a corpus shift of gastric integrin alpha5beta1 related with gastric carcinogenesis. Mol. Carcinog.50, 751–759 (2011). ArticleCASPubMed Google Scholar
Rizzato, C. et al. Variations in Helicobacter pylori cytotoxin-associated genes and their influence in progression to gastric cancer: implications for prevention. PLoS ONE7, e29605 (2012). ArticleCASPubMedPubMed Central Google Scholar
Rupnow, M. F., Chang, A. H., Shachter, R. D., Owens, D. K. & Parsonnet, J. Cost-effectiveness of a potential prophylactic Helicobacter pylori vaccine in the United States. J. Infect. Dis.200, 1311–1317 (2009). ArticlePubMed Google Scholar
Muller, A. & Solnick, J. V. Inflammation, immunity, and vaccine development for Helicobacter pylori. Helicobacter16 (Suppl. 1), 26–32 (2011). ArticleCASPubMed Google Scholar
Czinn, S. J. & Blanchard, T. Vaccinating against Helicobacter pylori infection. Nature Rev. Gastroenterol. Hepatol8, 133–140 (2011). ArticleCAS Google Scholar
Aebischer, T. et al. Correlation of T cell response and bacterial clearance in human volunteers challenged with Helicobacter pylori revealed by randomised controlled vaccination with Ty21a-based Salmonella vaccines. Gut57, 1065–1072 (2008). This article describes the first human vaccine trial in which volunteers were challenged with liveH. pylori; it also provides the first evidence that T cells are required forH. pyloriinfection control in humans. ArticleCASPubMed Google Scholar
Malfertheiner, P. et al. Safety and immunogenicity of an intramuscular Helicobacter pylori vaccine in noninfected volunteers: a phase I study. Gastroenterology135, 787–795 (2008). ArticleCASPubMed Google Scholar
Linz, B. et al. An African origin for the intimate association between humans and Helicobacter pylori. Nature445, 915–918 (2007). ArticlePubMedPubMed Central Google Scholar
Howson, C. P., Hiyama, T. & Wynder, E. L. The decline in gastric cancer: epidemiology of an unplanned triumph. Epidemiol. Rev.8, 1–27 (1986). ArticleCASPubMed Google Scholar
Herbarth, O. et al. Helicobacter pylori colonisation and eczema. J. Epidemiol. Commun. Health61, 638–640 (2007). Article Google Scholar
Higgins, P. D. et al. Prior Helicobacter pylori infection ameliorates _Salmonella typhimurium_-induced colitis: Mucosal crosstalk between stomach and distal intestine. Inflamm. Bowel Dis.17, 1398–1408 (2010). ArticlePubMed Google Scholar