The role of receptor diffusion in the organization of the postsynaptic membrane (original) (raw)
Peters, A., Palay, S. L. & Webster, H. D. F. The Fine Structure of the Nervous System (Saunders, Philadelphia, Pennsylvania, 1976). Google Scholar
Craig, A. M. & Boudin, H. Molecular heterogeneity of central synapses: afferent and target regulation. Nature Neurosci.4, 569–578 (2001). CASPubMed Google Scholar
Nusser, Z. AMPA and NMDA receptors: similarities and differences in their synaptic distribution. Curr. Opin. Neurobiol.10, 337–341 (2000). CASPubMed Google Scholar
Kennedy, M. B. Signal-processing machines at the postsynaptic density. Science290, 750–754 (2000). CASPubMed Google Scholar
Sheng, M. & Kim, E. Ion channel associated proteins. Curr. Opin. Neurobiol.6, 602–608 (1996). CASPubMed Google Scholar
Kornau, H. C., Seeburg, P. H. & Kennedy, M. B. Interaction of ion channels and receptors with PDZ domain proteins. Curr. Opin. Neurobiol.7, 368–373 (1997). CASPubMed Google Scholar
Craven, S. E. & Bredt, D. S. PDZ proteins organize synaptic signaling pathways. Cell93, 495–498 (1998). CASPubMed Google Scholar
Sheng, M. & Sala, C. PDZ domains and the organization of supramolecular complexes. Annu. Rev. Neurosci.24, 1–29 (2001). CASPubMed Google Scholar
Garner, C. C., Nash, J. & Huganir, R. L. PDZ domains in synapse assembly and signalling. Trends Cell Biol.10, 274–280 (2000). CASPubMed Google Scholar
Scannevin, R. H. & Huganir, R. L. Postsynaptic organization and regulation of excitatory synapses. Nature Rev. Neurosci.1, 133–141 (2000). CAS Google Scholar
Moss, S. J. & Smart, T. G. Constructing inhibitory synapses. Nature Rev. Neurosci.2, 240–250 (2001). CAS Google Scholar
Dingledine, R., Borges, K., Bowie, D. & Traynelis, S. F. The glutamate receptor ion channels. Pharmacol. Rev.51, 7–61 (1999). CASPubMed Google Scholar
Pin, J. -P. & Duvoisin, R. The metabotropic glutamate receptors: structure and functions. Neuropharmacology34, 1–26 (1995). CASPubMed Google Scholar
Baude, A. et al. The metabotropic glutamate receptors (mGluR1α) is concentrated at perisynaptic membrane of neuronal subpopulations as detected by immunogold reaction. Neuron11, 771–787 (1993). CASPubMed Google Scholar
Walikonis, R. S. et al. Identification of proteins in the postsynaptic density fraction by mass spectrometry. J. Neurosci.20, 4069–4080 (2000). CASPubMedPubMed Central Google Scholar
Husi, H., Ward, M. A., Choudhary, J. S., Blackstock, W. P. & Grant, S. G. Proteomic analysis of NMDA receptor-adhesion protein signaling complexes. Nature Neurosci.3, 661–669 (2000). CASPubMed Google Scholar
Usui, S. et al. Synaptic targeting of PSD-Zip45 (homer 1c) and its involvement in the synaptic accumulation of F-actin. J. Biol. Chem.278, 10619 - 10628 (2003). CASPubMed Google Scholar
Xia, J., Zhang, X., Staudinger, J. & Huganir, R. L. Clustering of AMPA receptors by the synaptic PDZ domain-containing protein PICK1. Neuron22, 179–187 (1999). CASPubMed Google Scholar
Kim, C. H., Chung, H. J., Lee, H. K. & Huganir, R. L. Interaction of the AMPA receptor subunit GluR2/3 with PDZ domains regulates hippocampal long-term depression. Proc. Natl Acad. Sci. USA98, 11725–11730 (2001). CASPubMedPubMed Central Google Scholar
Schnell, E. et al. Direct interactions between PSD-95 and stargazin control synaptic AMPA receptor number. Proc. Natl Acad. Sci. USA99, 13902–13907 (2002). CASPubMedPubMed Central Google Scholar
Scheiffele, P., Fan, J., Choih, J., Fetter, R. & Serafini, T. Neuroligin expressed in nonneuronal cells triggers presynaptic development in contacting axons. Cell101, 657–669 (2000). CASPubMed Google Scholar
Biederer, T. et al. SynCAM, a synaptic adhesion molecule that drives synapse assembly. Science297, 1525–1531 (2002). CASPubMed Google Scholar
Yamagata, M., Weiner, J. A. & Sanes, J. R. Sidekicks: synaptic adhesion molecules that promote lamina-specific connectivity in the retina. Cell110, 649–660 (2002). CASPubMed Google Scholar
Fannon, A. M. & Colman, D. R. A model for central synaptic junctional complex formation based on the differential adhesive specificities of the cadherins. Neuron17, 423–434 (1996). CASPubMed Google Scholar
Song, J. Y., Ichtchenko, K., Sudhof, T. C. & Brose, N. Neuroligin 1 is a postsynaptic cell-adhesion molecule of excitatory synapses. Proc. Natl Acad. Sci. USA96, 1100–1105 (1999). CASPubMedPubMed Central Google Scholar
Irie, M. et al. Binding of neuroligins to PSD-95. Science277, 1511–1515 (1997). Evidence that adhesion proteins might be involved in the molecular organization of the PSD at glutamatergic synapses. CASPubMed Google Scholar
Uchida, N., Honjo, Y., Johnson, K. R., Wheelock, M. J. & Takeicji, M. The catenin/cadherin adhesion system is localized in synaptic junctions bordering transmitter release zones. J. Cell Biol.135, 767–779 (1996). CASPubMed Google Scholar
Coussen, F. et al. Recruitment of the kainate receptor subunit glutamate receptor 6 by cadherin/catenin complexes. J. Neurosci.22, 6426–6436 (2002). CASPubMedPubMed Central Google Scholar
Togashi, H. et al. Cadherin regulates dendritic spine morphogenesis. Neuron35, 77–89 (2002). CASPubMed Google Scholar
Dalva, M. et al. EphB receptors interact with NMDA receptors and regulate excitatory synapse formation. Cell103, 945–956 (2000). CASPubMed Google Scholar
Allison, D. W., Chervin, A. S., Gelfand, V. I. & Craig, A. M. Postsynaptic scaffolds of excitatory and inhibitory synapses in hippocampal neurons: maintenance of core components independent of actin filaments and microtubules. J. Neurosci.20, 4545–4554 (2000). CASPubMedPubMed Central Google Scholar
Allison, D. W., Gelfand, V. I., Spector, I. & Craig, A. M. Role of actin in anchoring postsynaptic receptors in cultured hippocampal neurons: differential attachment of NMDA versus AMPA receptors. J. Neurosci.18, 2423–2436 (1998). CASPubMedPubMed Central Google Scholar
Valtschanoff, J. G. & Weinberg, R. J. Laminar organization of the NMDA receptor complex within the postsynaptic density. J. Neurosci.21, 1211–1217 (2001). CASPubMedPubMed Central Google Scholar
Triller, A., Cluzeaud, F., Pfeiffer, F., Betz, H. & Korn, H. Distribution of glycine receptors at central synapses: an immunoelectron microscopy study. J. Cell Biol.101, 683–688 (1985). The first morphological evidence, using immunocytochemistry and electron microscopy, of the postsynaptic accumulation of a receptor for neurotransmitters in the CNS. CASPubMed Google Scholar
Xiang, S., Nichols, J., Rajagopalan, K. V. & Schindelin, H. The crystal structure of Escherichia coli MoeA and its relationship to the multifunctional protein gephyrin. Structure (Camb.)9, 299–310 (2001). CAS Google Scholar
Sola, M., Kneussel, M., Heck, I. S., Betz, H. & Weissenhorn, W. X-ray crystal structure of the trimeric N-terminal domain of gephyrin. J. Biol. Chem.276, 25294–25301 (2001). CASPubMed Google Scholar
Kneussel, M. & Betz, H. Clustering of inhibitory neurotransmitter receptors at developing postsynaptic sites: the membrane activation model. Trends Neurosci.23, 429–435 (2000). CASPubMed Google Scholar
Colin, I., Rostaing, P., Augustin, A. & Triller, A. Localization of components of glycinergic synapses during rat spinal cord development. J. Comp. Neurol.398, 359–372 (1998). CASPubMed Google Scholar
Legendre, P. The glycinergic inhibitory synapse. Cell. Mol. Life Sci.58, 760–793 (2001). CASPubMed Google Scholar
Fuhrmann, J. et al. Gephyrin interacts with Dynein light chains 1 and 2, components of motor protein complexes. J. Neurosci.22, 5393–5402 (2002). CASPubMedPubMed Central Google Scholar
Racca, C., Gardiol, A. & Triller, A. Dendritic postsynaptic localization of glycine receptor α subunit mRNAs. J. Neurosci.17, 1691–1700 (1997). CASPubMedPubMed Central Google Scholar
Gardiol, A., Racca, C. & Triller, A. Dendritic and postsynaptic protein synthetic machinery. J. Neurosci.19, 168–179 (1999). CASPubMedPubMed Central Google Scholar
Benson, D. L. & Tanaka, H. N-cadherin redistribution during synaptogenesis in hippocampal neurons. J. Neurosci.18, 6892–6904 (1998). CASPubMedPubMed Central Google Scholar
Kirsch, J. & Betz, H. The postsynaptic localization of the glycine receptor-associated protein gephyrin is regulated by the cytoskeleton. J. Neurosci.15, 4148–4156 (1995). CASPubMedPubMed Central Google Scholar
McGee, A. W. et al. PSD-93 knock-out mice reveal that neuronal MAGUKs are not required for development or function of parallel fiber synapses in cerebellum. J. Neurosci.21, 3085–3091 (2001). CASPubMedPubMed Central Google Scholar
Kneussel, M. et al. Gephyrin-independent clustering of postsynaptic GABAA receptor subtypes. Mol. Cell. Neurosci.17, 973–982 (2001). CASPubMed Google Scholar
Axelrod, D. et al. Lateral motion of fluorescently labeled acetylcholine receptors in membranes of developing muscle fibers. Proc. Natl Acad. Sci. USA73, 4594–4598 (1976). The first use of FRAP to demonstrate that a membrane receptor, AChR, can be mobile or immobile in the cell plasma membrane. CASPubMedPubMed Central Google Scholar
Young, S. H. & Poo, M. M. Rapid lateral diffusion of extrajunctional acetylcholine receptors in the developing muscle membrane of Xenopus tadpole. J. Neurosci.3, 225–231 (1983). The initial proposal that acetylcholine receptors could aggregate at neuromuscular junctions by diffusing from perijunctional to junctional zones through a 'diffusion-trap' mechanism. CASPubMedPubMed Central Google Scholar
Rao, A., Kim, E., Sheng, M. & Craig, A. M. Heterogeneity in the molecular composition of excitatory postsynaptic sites during development of hippocampal neurons in culture. J. Neurosci.18, 1217–1229 (1998). CASPubMedPubMed Central Google Scholar
Rousselet, A., Cartaud, J., Devaux, P. F. & Changeux, J. P. The rotational diffusion of the acetylcholine receptor in Torpeda marmorata membrane fragments studied with a spin-labelled α-toxin: importance of the 43 000 protein(s). Embo J.1, 439–445 (1982). CASPubMedPubMed Central Google Scholar
Garner, C. C., Zhai, R. G., Gundelfinger, E. D. & Ziv, N. E. Molecular mechanisms of CNS synaptogenesis. Trends Neurosci.25, 243–251 (2002). CASPubMed Google Scholar
Mammen, A. L., Huganir, R. L. & O'Brien, R. J. Redistribution and stabilization of cell surface glutamate receptors during synapse formation. J. Neurosci.17, 7351–7358 (1997). CASPubMedPubMed Central Google Scholar
Cottrell, J. R., Dube, G. R., Egles, C. & Liu, G. Distribution, density, and clustering of functional glutamate receptors before and after synaptogenesis in hippocampal neurons. J. Neurophysiol.84, 1573–1587 (2000). CASPubMed Google Scholar
Washbourne, P., Bennett, J. E. & McAllister, A. K. Rapid recruitment of NMDA receptor transport packets to nascent synapses. Nature Neurosci.5, 751–759 (2002). CASPubMed Google Scholar
O'Brien, R. J. et al. Synaptic clustering of AMPA receptors by the extracellular immediate-early gene product Narp. Neuron23, 309–323 (1999). CASPubMed Google Scholar
Kirsch, J., Wolters, I., Triller, A. & Betz, H. Gephyrin antisense oligonucleotides prevent glycine receptor clustering in spinal neurons. Nature366, 745–748 (1993). CASPubMed Google Scholar
Kirsch, J. & Betz, H. Glycine-receptor activation is required for receptor clustering in spinal neurons. Nature392, 717–720 (1998). CASPubMed Google Scholar
Lévi, S., Vannier, C. & Triller, A. Strychnine-sensitive stabilization of postsynaptic glycine receptor clusters. J. Cell Sci.111, 335–345 (1998). References 57 and 58 establish, using a competitive antagonist, that the activation of the glycine receptor is necessary for its postsynaptic accumulation during development. PubMed Google Scholar
Rasmussen, H., Rasmussen, T., Triller, A. & Vannier, C. Strychnine-blocked glycine receptor is removed from synapses by a shift in insertion/degradation equilibrium. Mol. Cell. Neurosci.19, 201–215 (2002). CASPubMed Google Scholar
Grutzendler, J., Kasthuri, N. & Gan, W. Long-term dendritic spine stability in the adult cortex. Nature420, 812–816 (2002). CASPubMed Google Scholar
Trachtenberg, J. T. et al. Long-term in vivo imaging of experience-dependent synaptic plasticity in adult cortex. Nature420, 788–794 (2002). CASPubMed Google Scholar
Akaaboune, M., Culican, S. M., Turney, S. G. & Lichtman, J. W. Rapid and reversible effects of activity on acetylcholine receptor density at the neuromuscular junction in vivo. Science286, 503–507 (1999). CASPubMed Google Scholar
Akaaboune, M., Grady, R. M., Turney, S., Sanes, J. R. & Lichtman, J. W. Neurotransmitter receptor dynamics studied in vivo by reversible photo-unbinding of fluorescent ligands. Neuron34, 865–876 (2002). A very elegant study (with reference 62) using quantitative fluorescence imagingin vivoto demonstrate that receptors are lost rapidly from the neuromuscular postsynaptic junctional area when synaptic activity is blocked, and that this effect is reversible when neurotransmission is restored. CASPubMed Google Scholar
Carroll, R. C., Beattie, E. C., von Zastrow, M. & Malenka, R. C. Role of ampa receptor endocytosis in synaptic plasticity. Nature Rev. Neurosci.2, 315–324 (2001). CAS Google Scholar
Barry, M. F. & Ziff, E. B. Receptor trafficking and the plasticity of excitatory synapses. Curr. Opin. Neurobiol.12, 279–286 (2002). CASPubMed Google Scholar
Malinow, R. & Malenka, R. C. AMPA receptor trafficking and synaptic plasticity. Annu. Rev. Neurosci.25, 103–126 (2002). CASPubMed Google Scholar
Ehlers, M. D. Reinsertion or degradation of AMPA receptors determined by activity-dependent endocytic sorting. Neuron28, 511–525 (2000). CASPubMed Google Scholar
Lin, J. W. et al. Distinct molecular mechanisms and divergent endocytotic pathways of AMPA receptor internalization. Nature Neurosci.3, 1282–1290 (2000). CASPubMed Google Scholar
Noel, J. et al. Surface expression of AMPA receptors in hippocampal neurons is regulated by an NSF-dependent mechanism. Neuron23, 365–376 (1999). CASPubMed Google Scholar
Nishimune, A. et al. NSF binding to GluR2 regulates synaptic transmission. Neuron21, 87–97 (1998). CASPubMed Google Scholar
Song, I. et al. Interaction of the N-ethylmaleimide-sensitive factor with AMPA receptors. Neuron21, 393–400 (1998). CASPubMed Google Scholar
Lee, S. H., Liu, L., Wang, Y. T. & Sheng, M. Clathrin adaptor AP2 and NSF interact with overlapping sites of GluR2 and play distinct roles in AMPA receptor trafficking and hippocampal LTD. Neuron36, 661–674 (2002). CASPubMed Google Scholar
Okabe, S., Kim, H. D., Miwa, A., Kuriu, T. & Okado, H. Continual remodeling of postsynaptic density and its regulation by synaptic activity. Nature Neurosci.2, 804–811 (1999). CASPubMed Google Scholar
Barnes, E. M. Jr. Intracellular trafficking of GABAA receptors. Life Sci.66, 1063–1070 (2000). CASPubMed Google Scholar
Blanpied, T. A., Scott, D. B. & Ehlers, M. D. Dynamics and regulation of clathrin coats at specialized endocytic zones of dendrites and spines. Neuron36, 435–449 (2002). A study that established that endocytosis occurs at the edge of postsynaptic densities or further away at the extrasynaptic plasma membrane. CASPubMed Google Scholar
Rosenberg, M., Meier, J., Triller, A. & Vannier, C. Dynamics of glycine receptor insertion in the neuronal plasma membrane. J. Neurosci.21, 5036–5044 (2001). CASPubMedPubMed Central Google Scholar
Passafaro, M., Piech, V. & Sheng, M. Subunit-specific temporal and spatial patterns of AMPA receptor exocytosis in hippocampal neurons. Nature Neurosci.4, 917–926 (2001). In references 76 and 77, cleavable tags were used to monitor insertion and diffusion of receptors in the plasma membrane. Reference 76 demonstrated that glycine receptors are inserted at extrasynaptic sites and diffuse in the membrane prior to their accumulation at synapses. Reference 77 established that the rate of accumulation of AMPA receptors at synapses depends on their subunit composition. CASPubMed Google Scholar
Carroll, R. C. & Zukin, R. S. NMDA-receptor trafficking and targeting: implications for synaptic transmission and plasticity. Trends Neurosci.25, 571–577 (2002). CASPubMed Google Scholar
Tovar, K. R. & Westbrook, G. L. Mobile NMDA receptors at hippocampal synapses. Neuron34, 255–264 (2002). An elegant electrophysiological and pharmacological study indicating that NMDARs move laterally between synaptic and extrasynaptic pools, and providing evidence for a dynamic organization of NMDARs in the postsynaptic membrane. CASPubMed Google Scholar
Sheng, M. & Kim, M. J. Postsynaptic signaling and plasticity mechanisms. Science298, 776–780 (2002). CASPubMed Google Scholar
Barria, A., Muller, D., Derkach, V., Griffith, L. C. & Soderling, T. R. Regulatory phosphorylation of AMPA-type glutamate receptors by CaM-KII during long-term potentiation. Science276, 2042–2045 (1997). CASPubMed Google Scholar
Kameyama, K., Lee, H. K., Bear, M. F. & Huganir, R. L. Involvement of a postsynaptic protein kinase A substrate in the expression of homosynaptic long-term depression. Neuron21, 1163–1175 (1998). CASPubMed Google Scholar
Luthi, A. et al. Hippocampal LTD expression involves a pool of AMPARs regulated by the NSF–GluR2 interaction. Neuron24, 389–399 (1999). CASPubMed Google Scholar
Wang, Y. T. & Linden, D. J. Expression of cerebellar long-term depression requires postsynaptic clathrin-mediated endocytosis. Neuron25, 635–647 (2000). CASPubMed Google Scholar
Carroll, R. C., Lissin, D. V., von Zastrow, M., Nicoll, R. A. & Malenka, R. C. Rapid redistribution of glutamate receptors contributes to long-term depression in hippocampal cultures. Nature Neurosci.2, 454–460 (1999). CASPubMed Google Scholar
Zhou, Q., Xiao, M. & Nicoll, R. A. Contribution of cytoskeleton to the internalization of AMPA receptors. Proc. Natl Acad. Sci. USA98, 1261–1266 (2001). CASPubMedPubMed Central Google Scholar
Chen, L. et al. Stargazin regulates synaptic targeting of AMPA receptors by two distinct mechanisms. Nature408, 936–943 (2000). Physiological, morphological and biochemical evidence that stargazin, a protein that interacts with both AMPAR subunits and the synaptic PDZ protein (PSD-95), is essential for delivering functional AMPARs to synapses. This phenomenon probably occurs through lateral diffusion (see reference 20); disrupting the stargazin–PSD-95 interaction decreases the amount of synaptic AMPARs and increases extrasynaptic AMPARs. CASPubMed Google Scholar
El-Husseini Ael, D. et al. Synaptic strength regulated by palmitate cycling on PSD-95. Cell108, 849–863 (2002). Google Scholar
Singer, S. J. & Nicolson, G. L. The fluid mosaic model of the structure of cell membranes. Science175, 720–731 (1972). The seminal paper proposing that biological membranes are a two-dimensional oriented solution of integral proteins embedded in a viscous phospholipid bilayer. CASPubMed Google Scholar
Frye, L. D. & Edidin, M. The rapid intermixing of cell surface antigens after formation of mouse–human heterokaryons. J. Cell Sci.7, 319–335 (1970). CASPubMed Google Scholar
Axelrod, D., Koppel, D. E., Schlessinger, J., Elson, E. & Webb, W. W. Mobility measurement by analysis of fluorescence photobleaching recovery kinetics. Biophys. J.16, 1055–1069 (1976). CASPubMedPubMed Central Google Scholar
Saxton, M. J. & Jacobson, K. Single-particle tracking: applications to membrane dynamics. Annu. Rev. Biophys. Biomol. Struct.26, 373–399 (1997). CASPubMed Google Scholar
Jacobson, K., Sheets, E. D. & Simson, R. Revisiting the fluid mosaic model of membranes. Science268, 1441–1442 (1995). CASPubMed Google Scholar
Simson, R. et al. Structural mosaicism on the submicron scale in the plasma membrane. Biophys. J.74, 297–308 (1998). CASPubMedPubMed Central Google Scholar
Edidin, M., Kuo, S. C. & Sheetz, M. P. Lateral movements of membrane glycoproteins restricted by dynamic cytoplasmic barriers. Science254, 1379–1382 (1991). CASPubMed Google Scholar
Sako, Y. & Kusumi, A. Barriers for lateral diffusion of transferrin receptor in the plasma membrane as characterized by receptor dragging by laser tweezers: fence versus tether. J. Cell Biol.129, 1559–1574 (1995). CASPubMed Google Scholar
Salome, L., Cazeils, J. L., Lopez, A. & Tocanne, J. F. Characterization of membrane domains by FRAP experiments at variable observation areas. Eur. Biophys. J.27, 391–402 (1998). CASPubMed Google Scholar
Edidin, M., Zuniga, M. C. & Sheetz, M. P. Truncation mutants define and locate cytoplasmic barriers to lateral mobility of membrane glycoproteins. Proc. Natl Acad. Sci. USA91, 3378–3382 (1994). CASPubMedPubMed Central Google Scholar
Kusumi, A., Sako, Y. & Yamamoto, M. Confined lateral diffusion of membrane receptors as studied by single particle tracking (nanovid microscopy). Effects of calcium-induced differentiation in cultured epithelial cells. Biophys. J.65, 2021–2040 (1993). Using single particle tracking, references 96 and 99 established that the movements of some membrane proteins are confined within submicrometre-sized domains by the lattice of membrane-associated cytoskeleton, leading to the proposal of the cytoskeleton-fence model. CASPubMedPubMed Central Google Scholar
Kusumi, A. & Sako, Y. Cell surface organization by the membrane skeleton. Curr. Opin. Cell Biol.8, 566–574 (1996). CASPubMed Google Scholar
Edidin, M. Shrinking patches and slippery rafts: scales of domains in the plasma membrane. Trends Cell Biol.11, 492–496 (2001). CASPubMed Google Scholar
Fujiwara, T., Ritchie, K., Murakoshi, H., Jacobson, K. & Kusumi, A. Phospholipids undergo hop diffusion in compartmentalized cell membrane. J. Cell Biol.157, 1071–1081 (2002). CASPubMedPubMed Central Google Scholar
Sheets, E. D., Lee, G. M., Simson, R. & Jacobson, K. Transient confinement of a glycosylphosphatidylinositol-anchored protein in the plasma membrane. Biochemistry36, 12449–12458 (1997). CASPubMed Google Scholar
Vrljic, M., Nishimura, S. Y., Brasselet, S., Moerner, W. E. & McConnell, H. M. Translational diffusion of individual class II MHC membrane proteins in cells. Biophys. J.83, 2681–2692 (2002). CASPubMedPubMed Central Google Scholar
Daumas, F. et al. Confined diffusion without fences of a G protein coupled receptor as revealed by single particle tracking. Biophys. J.84, 356–366 (2003). CASPubMedPubMed Central Google Scholar
Simons, K. & Ikonen, E. Functional rafts in cell membranes. Nature387, 569–572 (1997). CASPubMed Google Scholar
Pralle, A., Keller, P., Florin, E. L., Simons, K. & Horber, J. K. Sphingolipid-cholesterol rafts diffuse as small entities in the plasma membrane of mammalian cells. J. Cell Biol.148, 997–1008 (2000). CASPubMedPubMed Central Google Scholar
Dietrich, C., Yang, B., Fujiwara, T., Kusumi, A. & Jacobson, K. Relationship of lipid rafts to transient confinement zones detected by single particle tracking. Biophys. J.82, 274–284 (2002). CASPubMedPubMed Central Google Scholar
Sonnleitner, A., Schutz, G. J. & Schmidt, T. Free brownian motion of individual lipid molecules in biomembranes. Biophys. J.77, 2638–2642 (1999). CASPubMedPubMed Central Google Scholar
Schmidt, T., Schutz, G. J., Baumgartner, W., Gruber, H. J. & Schindler, H. Imaging of single molecule diffusion. Proc. Natl Acad. Sci. USA93, 2926–2929 (1996). CASPubMedPubMed Central Google Scholar
Winckler, B., Forscher, P. & Mellman, I. A diffusion barrier maintains distribution of membrane proteins in polarized neurons. Nature397, 698–701 (1999). The demonstration that in neurons, the axon hillock is a specialized domain restricting the diffusion of certain membrane proteins. The authors propose that this barrier contributes to the polarized distribution of membrane proteins between the axonal and the somatodendritic compartments. CASPubMed Google Scholar
Garrido, J. J. et al. Identification of an axonal determinant in the C-terminus of the sodium channel Nav1. 2. Embo J.20, 5950–5961 (2001). CASPubMedPubMed Central Google Scholar
el-Husseini Ael, D. & Bredt, D. S. Protein palmitoylation: a regulator of neuronal development and function. Nature Rev. Neurosci.3, 791–802 (2002). Google Scholar
Suzuki, T. et al. Biochemical evidence for localization of AMPA-type glutamate receptor subunits in the dendritic raft. Brain Res. Mol. Brain Res.89, 20–28 (2001). CASPubMed Google Scholar
Bruses, J. L., Chauvet, N. & Rutishauser, U. Membrane lipid rafts are necessary for the maintenance of the α7 nicotinic acetylcholine receptor in somatic spines of ciliary neurons. J. Neurosci.21, 504–512 (2001). CASPubMedPubMed Central Google Scholar
Lippincott-Schwartz, J., Snapp, E. & Kenworthy, A. Studying protein dynamics in living cells. Nature Rev. Mol. Cell Biol.2, 444–456 (2001). CAS Google Scholar
Kornau, H. C., Schenker, L. T., Kennedy, M. B. & Seeburg, P. H. Domain interaction between NMDA receptor subunits and the postsynaptic density protein PSD-95. Science269, 1737–1740 (1995). CASPubMed Google Scholar
Naisbitt, S. et al. Shank, a novel family of postsynaptic density proteins that binds to the NMDA receptor/PSD-95/GKAP complex and cortactin. Neuron23, 569–582 (1999). CASPubMed Google Scholar
Sergé, A., Fourgeaud, L., Hémar, A. & Choquet, D. Receptor activation and homer differentially control the lateral mobility of mGluR5 in the neuronal membrane. J. Neurosci.22, 3910–3920 (2002). PubMedPubMed Central Google Scholar
Meier, J., Meunier-Durmort, C., Forest, C., Triller, A. & Vannier, C. Formation of glycine receptor clusters and their accumulation at synapses. J. Cell Sci.113, 2783–2795 (2000). CASPubMed Google Scholar
Borgdorff, A. & Choquet, D. Regulation of AMPA receptor lateral movement. Nature417, 649–653 (2002). CASPubMed Google Scholar
Meier, J., Vannier, C., Sergé, A., Triller, A. & Choquet, D. Fast and reversible trapping of surface glycine receptors by gephyrin. Nature Neurosci.4, 253–260 (2001). Real-time receptor movements were visualized and analyzed for the first time in references 123 and 122 for AMPA and glycine receptors, respectively. It was established that interactions of receptors with scaffolding proteins are reversible. Furthermore, basal neuronal activity and intracellular calcium levels in synaptically connected neurons could also control AMPA receptor movement. CASPubMed Google Scholar
Kucik, D. F., Elson, E. L. & Sheetz, M. P. Weak dependence of mobility of membrane protein aggregates on aggregate size supports a viscous model of retardation of diffusion. Biophys. J.76, 314–322 (1999). CASPubMedPubMed Central Google Scholar
Anderson, R. G. & Jacobson, K. A role for lipid shells in targeting proteins to caveolae, rafts, and other lipid domains. Science296, 1821–1825 (2002). CASPubMed Google Scholar
Saffman, P. G. & Delbruck, M. Brownian motion in biological membranes. Proc. Natl Acad. Sci. USA72, 3111–3113 (1975). A theoretical calculation of the dependence of diffusion coefficients on object size in biological membranes. CASPubMedPubMed Central Google Scholar
Patterson, G. H. & Lippincott-Schwartz, J. A photoactivatable GFP for selective photolabeling of proteins and cells. Science297, 1873–1877 (2002). CASPubMed Google Scholar
Schnapp, B. J., Gelles, J. & Sheetz, M. P. Nanometer-scale measurements using video light microscopy. Cell Motil. Cytoskeleton10, 47–53 (1988). CASPubMed Google Scholar
Geerts, H. et al. Nanovid tracking: a new automatic method for the study of mobility in living cells based on colloidal gold and video microscopy. Biophys. J.52, 775–782 (1987). CASPubMedPubMed Central Google Scholar
Boyer, D., Tamarat, P., Maali, A., Lounis, B. & Orrit, M. Photothermal imaging of nanometer-sized metal particles among scatterers. Science297, 1160–1163 (2002). CASPubMed Google Scholar