Anterior prefrontal cortex: insights into function from anatomy and neuroimaging (original) (raw)

References

  1. Brett, M., Johnsrude, I. S. & Owen, A. M. The problem of functional localization in the human brain. Nature Rev. Neurosci. 3, 243–249 (2002).
    Article CAS Google Scholar
  2. Goldman-Rakic, P. S. Working memory dysfunction in schizophrenia. J. Neuropsychiatry Clin. Neurosci. 6, 348–357 (1994).
    Article CAS PubMed Google Scholar
  3. Jonides, J. et al. Spatial working memory in humans as revealed by PET. Nature 363, 623–625 (1993).
    Article CAS PubMed Google Scholar
  4. Courtney, S. M., Petit, L., Haxby, J. V. & Ungerleider, L. G. The role of prefrontal cortex in working memory: examining the contents of consciousness. Philos. Trans. R. Soc. Lond. B 353, 1819–1828 (1998).
    Article CAS Google Scholar
  5. Owen, A. M. The functional organization of working memory processes within human lateral frontal cortex: the contribution of functional neuroimaging. Eur. J. Neurosci. 9, 1329–1339 (1997).
    Article CAS PubMed Google Scholar
  6. Petrides, M. Frontal lobes and behaviour. Curr. Opin. Neurobiol. 4, 207–211 (1994).
    Article CAS PubMed Google Scholar
  7. Rowe, J. B., Toni, I., Josephs, O., Frackowiak, R. S. & Passingham, R. E. The prefrontal cortex: response selection or maintenance within working memory? Science 288, 1656–1660 (2000).
    Article CAS PubMed Google Scholar
  8. Bor, D., Duncan, J., Wiseman, R. J. & Owen, A. M. Encoding strategies dissociate prefrontal activity from working memory demand. Neuron 37, 361–367 (2003).
    Article CAS PubMed Google Scholar
  9. Fletcher, P. C., Shallice, T. & Dolan, R. J. The functional roles of prefrontal cortex in episodic memory. I. Encoding. Brain 121, 1239–1248 (1998).
    Article PubMed Google Scholar
  10. Dobbins, I. G., Foley, H., Schacter, D. L. & Wagner, A. D. Executive control during episodic retrieval: multiple prefrontal processes subserve source memory. Neuron 35, 989–996 (2002).
    Article CAS PubMed Google Scholar
  11. Rugg, M. D. et al. Neural correlates of memory retrieval during recognition memory and cued recall. Neuroimage 8, 262–273 (1998).
    Article CAS PubMed Google Scholar
  12. Courtney, S. M., Ungerleider, L. G., Keil, K. & Haxby, J. V. Transient and sustained activity in a distributed neural system for human working memory. Nature 386, 608–611 (1997).
    Article CAS PubMed Google Scholar
  13. Dove, A., Pollmann, S., Schubert, T., Wiggins, C. J. & von Cramon, D. Y. Prefrontal cortex activation in task switching: an event-related fMRI study. Brain Res. Cogn. Brain Res. 9, 103–109 (2000).
    Article CAS PubMed Google Scholar
  14. Cools, R., Clark, L., Owen, A. M. & Robbins, T. W. Defining the neural mechanisms of probabilistic reversal learning using event-related functional magnetic resonance imaging. J. Neurosci. 22, 4563–4567 (2002).
    Article CAS PubMed PubMed Central Google Scholar
  15. Rushworth, M. F., Nixon, P. D., Eacott, M. J. & Passingham, R. E. Ventral prefrontal cortex is not essential for working memory. J. Neurosci. 17, 4829–4838 (1997).
    Article CAS PubMed PubMed Central Google Scholar
  16. Henson, R. N., Shallice, T. & Dolan, R. J. Right prefrontal cortex and episodic memory retrieval: a functional MRI test of the monitoring hypothesis. Brain 122, 1367–1381 (1999).
    Article PubMed Google Scholar
  17. Wagner, A. D. et al. Building memories: remembering and forgetting of verbal experiences as predicted by brain activity. Science 281, 1188–1191 (1998).
    Article CAS PubMed Google Scholar
  18. Tataranni, P. A. et al. Neuroanatomical correlates of hunger and satiation in humans using positron emission tomography. Proc. Natl Acad. Sci. USA 96, 4569–4574 (1999).
    Article CAS PubMed PubMed Central Google Scholar
  19. Gottfried, J. A., O'Doherty, J. & Dolan, R. J. Appetitive and aversive olfactory learning in humans studied using event-related functional magnetic resonance imaging. J. Neurosci. 22, 10829–10837 (2002).
    Article CAS PubMed PubMed Central Google Scholar
  20. Rolls, E. T. The orbitofrontal cortex and reward. Cereb. Cortex 10, 284–294 (2000).
    Article CAS PubMed Google Scholar
  21. Rolls, E. T., Critchley, H. D., Browning, A. & Hernadi, I. The neurophysiology of taste and olfaction in primates, and umami flavor. Ann. NY Acad. Sci. 855, 426–437 (1998).
    Article CAS PubMed Google Scholar
  22. Tremblay, L. & Schultz, W. Relative reward preference in primate orbitofrontal cortex. Nature 398, 704–708 (1999).
    Article CAS PubMed Google Scholar
  23. Roberts, A. C. & Wallis, J. D. Inhibitory control and affective processing in the prefrontal cortex: neuropsychological studies in the common marmoset. Cereb. Cortex 10, 252–262 (2000).
    Article CAS PubMed Google Scholar
  24. Montague, P. R. & Berns, G. S. Neural economics and the biological substrates of valuation. Neuron 36, 265–284 (2002).
    Article CAS PubMed Google Scholar
  25. Elliott, R., Friston, K. J. & Dolan, R. J. Dissociable neural responses in human reward systems. J. Neurosci. 20, 6159–6165 (2000).
    Article CAS PubMed PubMed Central Google Scholar
  26. Dias, R., Robbins, T. W. & Roberts, A. C. Dissociation in prefrontal cortex of affective and attentional shifts. Nature 380, 69–72 (1996).
    Article CAS PubMed Google Scholar
  27. Duncan, J. & Owen, A. M. Common regions of the human frontal lobe recruited by diverse cognitive demands. Trends Neurosci. 23, 475–483 (2000).
    Article CAS PubMed Google Scholar
  28. Ongur, D., Ferry, A. T. & Price, J. L. Architectonic subdivision of the human orbital and medial prefrontal cortex. J. Comp. Neurol. 460, 425–449 (2003). This paper describes the cytoarchitecture of the medial and orbital PFC. The results are particularly striking because they indicate that BA 10 is larger than all other prefrontal areas in the human brain.
    Article PubMed Google Scholar
  29. Semendeferi, K., Armstrong, E., Schleicher, A., Zilles, K. & van Hoesen, G. W. Prefrontal cortex in humans and apes: a comparative study of area 10. Am. J. Phys. Anthropol. 114, 224–241 (2001). This is the only anatomical study to comprehensively examine the comparative cytoarchitecture of BA 10 in the brains of several primate species, including humans.
    Article CAS PubMed Google Scholar
  30. Brodmann, K. Vergleichende Lokalisationlehre der Grosshirnrinde in ihren Prinzipien Dargestellt auf Grund des Zellenbaues (Barth, Leipzig, Germany, 1909).
    Google Scholar
  31. Petrides, M. & Pandya, D. N. Comparative cytoarchitectonic analysis of the human and the macaque ventrolateral prefrontal cortex and corticocortical connection patterns in the monkey. Eur. J. Neurosci. 16, 291–310 (2002).
    Article CAS PubMed Google Scholar
  32. Jacobs, B. et al. Regional dendritic and spine variation in human cerebral cortex: a quantitative golgi study. Cereb. Cortex 11, 558–571 (2001).
    Article CAS PubMed Google Scholar
  33. Passingham, R. E. The Frontal Lobes and Voluntary Action (Oxford Univ. Press, Oxford, 1995).
    Google Scholar
  34. Petrides, M. & Pandya, D. N. Dorsolateral prefrontal cortex: comparative cytoarchitectonic analysis in the human and the macaque brain and corticocortical connection patterns. Eur. J. Neurosci. 11, 1011–1036 (1999).
    Article CAS PubMed Google Scholar
  35. McGuire, P. K., Bates, J. F. & Goldman-Rakic, P. S. Interhemispheric integration: I. Symmetry and convergence of the corticocortical connections of the left and the right principal sulcus (PS) and the left and the right supplementary motor area (SMA) in the rhesus monkey. Cereb. Cortex 1, 390–407 (1991).
    Article CAS PubMed Google Scholar
  36. Barbas, H. & Pandya, D. N. Architecture and intrinsic connections of the prefrontal cortex in the rhesus monkey. J. Comp. Neurol. 286, 353–375 (1989).
    Article CAS PubMed Google Scholar
  37. Bachevalier, J., Meunier, M., Lu, M. X. & Ungerleider, L. G. Thalamic and temporal cortex input to medial prefrontal cortex in rhesus monkeys. Exp. Brain Res. 115, 430–444 (1997).
    Article CAS PubMed Google Scholar
  38. Andersen, R. A., Asanuma, C. & Cowan, W. M. Callosal and prefrontal associational projecting cell populations in area 7A of the macaque monkey: a study using retrogradely transported fluorescent dyes. J. Comp. Neurol. 232, 443–455 (1985).
    Article CAS PubMed Google Scholar
  39. Moran, M. A., Mufson, E. J. & Mesulam, M. M. Neural inputs into the temporopolar cortex of the rhesus monkey. J. Comp. Neurol. 256, 88–103 (1987).
    Article CAS PubMed Google Scholar
  40. Amaral, D. G. & Price, J. L. Amygdalo-cortical projections in the monkey (Macaca fascicularis). J. Comp. Neurol. 230, 465–496 (1984).
    Article CAS PubMed Google Scholar
  41. Morecraft, R. J. & Van Hoesen, G. W. Frontal granular cortex input to the cingulate (M3), supplementary (M2) and primary (M1) motor cortices in the rhesus monkey. J. Comp. Neurol. 337, 669–689 (1993).
    Article CAS PubMed Google Scholar
  42. Arikuni, T., Sako, H. & Murata, A. Ipsilateral connections of the anterior cingulate cortex with the frontal and medial temporal cortices in the macaque monkey. Neurosci. Res. 21, 19–39 (1994).
    Article CAS PubMed Google Scholar
  43. Passingham, R. E., Stephan, K. E. & Kotter, R. The anatomical basis of functional localization in the cortex. Nature Rev. Neurosci. 3, 606–616 (2002).
    Article CAS Google Scholar
  44. Christoff, K. & Gabrieli, J. D. E. The frontopolar cortex and human cognition: evidence for a rostrocaudal heirarchical organisation within the human prefrontal cortex. Psychobiology 28, 168–186 (2000). In this comprehensive review of functional neuroimaging studies of reasoning and episodic memory, Christoff and Gabrieli set out their arguments that BA 10 might be specialized for the explicit processing of internal states.
    Google Scholar
  45. Buckner, R. L., Raichle, M. E., Miezin, F. M. & Petersen, S. E. Functional anatomic studies of memory retrieval for auditory words and visual pictures. J. Neurosci. 16, 6219–6235 (1996).
    Article CAS PubMed Central PubMed Google Scholar
  46. Shallice, T. Specific impairments of planning. Philos. Trans. R Soc. Lond. B 298, 199–209 (1982).
    Article CAS Google Scholar
  47. Baker, S. C. et al. Neural systems engaged by planning: a PET study of the Tower of London task. Neuropsychologia 34, 515–526 (1996).
    Article CAS PubMed Google Scholar
  48. Owen, A. M., Downes, J. J., Sahakian, B. J., Polkey, C. E. & Robbins, T. W. Planning and spatial working memory following frontal lobe lesions in man. Neuropsychologia 28, 1021–1034 (1990).
    Article CAS PubMed Google Scholar
  49. Owen, A. M., Sahakian, B. J., Semple, J., Polkey, C. E. & Robbins, T. W. Visuo-spatial short-term recognition memory and learning after temporal lobe excisions, frontal lobe excisions or amygdalo-hippocampectomy in man. Neuropsychologia 33, 1–24 (1995).
    Article CAS PubMed Google Scholar
  50. Lee, A. C., Robbins, T. W. & Owen, A. M. Episodic memory meets working memory in the frontal lobe: functional neuroimaging studies of encoding and retrieval. Crit. Rev. Neurobiol. 14, 165–197 (2000).
    Article CAS PubMed Google Scholar
  51. Tulving, E. Elements of Episodic Memory (Clarendon, Oxford, 1983).
    Google Scholar
  52. Cabeza, R. et al. Age-related differences in neural activity during memory encoding and retrieval: a positron emission tomography study. J. Neurosci. 17, 391–400 (1997).
    Article CAS PubMed PubMed Central Google Scholar
  53. Duzel, E. et al. Task-related and item-related brain processes of memory retrieval. Proc. Natl Acad. Sci. USA 96, 1794–1799 (1999).
    Article CAS PubMed PubMed Central Google Scholar
  54. Kapur, S. et al. Functional role of the prefrontal cortex in retrieval of memories: a PET study. Neuroreport 6, 1880–1884 (1995).
    Article CAS PubMed Google Scholar
  55. Nyberg, L. et al. Functional brain maps of retrieval mode and recovery of episodic information. Neuroreport 7, 249–252 (1995).
    Article CAS PubMed Google Scholar
  56. Rugg, M. D., Schloerscheidt, A. M., Doyle, M. C., Cox, C. J. & Patching, G. R. Event-related potentials and the recollection of associative information. Brain Res. Cogn. Brain Res. 4, 297–304 (1996).
    Article CAS PubMed Google Scholar
  57. Wagner, A. D., Desmond, J. E., Glover, G. H. & Gabrieli, J. D. Prefrontal cortex and recognition memory. Functional-MRI evidence for context-dependent retrieval processes. Brain 121, 1985–2002 (1998).
    Article PubMed Google Scholar
  58. Velanova, K. et al. Functional-anatomic correlates of sustained and transient processing components engaged during controlled retrieval. J. Neurosci. 23, 8460–8470 (2003).
    Article CAS PubMed PubMed Central Google Scholar
  59. Lepage, M., Ghaffar, O., Nyberg, L. & Tulving, E. Prefrontal cortex and episodic memory retrieval mode. Proc. Natl Acad. Sci. USA 97, 506–511 (2000).
    Article CAS PubMed PubMed Central Google Scholar
  60. MacLeod, A. K., Buckner, R. L., Miezin, F. M., Petersen, S. E. & Raichle, M. E. Right anterior prefrontal cortex activation during semantic monitoring and working memory. Neuroimage 7, 41–48 (1998).
    Article CAS PubMed Google Scholar
  61. Ranganath, C., Johnson, M. K. & D'Esposito, M. Left anterior prefrontal activation increases with demands to recall specific perceptual information. J. Neurosci. 20, RC108 (2000).
    Article CAS PubMed PubMed Central Google Scholar
  62. Ranganath, C. & Paller, K. A. Neural correlates of memory retrieval and evaluation. Brain Res. Cogn. Brain Res. 9, 209–222 (2000).
    Article CAS PubMed Google Scholar
  63. Raye, C. L., Johnson, M. K., Mitchell, K. J., Nolde, S. F. & D'Esposito, M. fMRI investigations of left and right prefrontal contribtions to episodic remembering. Psychobiology 28, 197–206 (2000).
    Google Scholar
  64. Ranganath, C. & Paller, K. A. Frontal brain activity during episodic and semantic retrieval: insights from event-related potentials. J. Cogn. Neurosci. 11, 598–609 (1999).
    Article CAS PubMed Google Scholar
  65. Ranganath, C. & Paller, K. A. Frontal brain potentials during recognition are modulated by requirements to retrieve perceptual detail. Neuron 22, 605–613 (1999).
    Article CAS PubMed Google Scholar
  66. Nolde, S. F., Johnson, M. K. & D'Esposito, M. Left prefrontal activation during episodic remembering: an event-related fMRI study. Neuroreport 9, 3509–3514 (1998).
    Article CAS PubMed Google Scholar
  67. Nyberg, L. et al. General and specific brain regions involved in encoding and retrieval of events: what, where, and when. Proc. Natl Acad. Sci. USA 93, 11280–11285 (1996).
    Article CAS PubMed PubMed Central Google Scholar
  68. Janowsky, J. S., Shimamura, A. P. & Squire, L. R. Source memory impairment in patients with frontal lobe lesions. Neuropsychologia 27, 1043–1056 (1989).
    Article CAS PubMed Google Scholar
  69. Thaiss, L. & Petrides, M. Source versus content memory in patients with a unilateral frontal cortex or a temporal lobe excision. Brain 126, 1112–1126 (2003).
    Article PubMed Google Scholar
  70. Burgess, P. W., Quayle, A. & Frith, C. D. Brain regions involved in prospective memory as determined by positron emission tomography. Neuropsychologia 39, 545–555 (2001).
    Article CAS PubMed Google Scholar
  71. Burgess, P. W., Veitch, E., de Lacy Costello, A. & Shallice, T. The cognitive and neuroanatomical correlates of multitasking. Neuropsychologia 38, 848–863 (2000).
    Article CAS PubMed Google Scholar
  72. Okuda, J. et al. Participation of the prefrontal cortices in prospective memory: evidence from a PET study in humans. Neurosci. Lett. 253, 127–130 (1998).
    Article CAS PubMed Google Scholar
  73. Coull, J. T., Frith, C. D., Frackowiak, R. S. & Grasby, P. M. A fronto-parietal network for rapid visual information processing: a PET study of sustained attention and working memory. Neuropsychologia 34, 1085–1095 (1996).
    Article CAS PubMed Google Scholar
  74. Koechlin, E., Basso, G., Pietrini, P., Panzer, S. & Grafman, J. The role of the anterior prefrontal cortex in human cognition. Nature 399, 148–151 (1999). We have suggested that the aPFC is required for integrating the outcomes of two or more separate cognitive processes. It is necessary to test for super-additive effects in functional neuroimaging studies to demonstrate a relationship between such a process and brain activity. Reference 74 elegantly demonstrates a highly specific super-additive effect in the aPFC when subjects held in mind goals while at the same time they processed secondary goals.
    Article CAS PubMed Google Scholar
  75. Koechlin, E., Corrado, G., Pietrini, P. & Grafman, J. Dissociating the role of the medial and lateral anterior prefrontal cortex in human planning. Proc. Natl Acad. Sci. USA 97, 7651–7656 (2000).
    Article CAS PubMed PubMed Central Google Scholar
  76. Braver, T. S. & Bongiolatti, S. R. The role of frontopolar cortex in subgoal processing during working memory. Neuroimage 15, 523–536 (2002).
    Article PubMed Google Scholar
  77. Owen, A. M., Doyon, J., Petrides, M. & Evans, A. C. Planning and spatial working memory: a positron emission tomography study in humans. Eur. J. Neurosci. 8, 353–364 (1996).
    Article CAS PubMed Google Scholar
  78. Pollmann, S., Weidner, R., Muller, H. J. & von Cramon, D. Y. A fronto-posterior network involved in visual dimension changes. J. Cogn. Neurosci. 12, 480–494 (2000).
    Article CAS PubMed Google Scholar
  79. Pollmann, S. Switching between dimensions, locations, and responses: the role of the left frontopolar cortex. Neuroimage 14, S118–124 (2001).
    Article CAS PubMed Google Scholar
  80. Owen, A. M., Roberts, A. C., Polkey, C. E., Sahakian, B. J. & Robbins, T. W. Extradimensional versus intradimensional set shifting performance following frontal lobe excisions, temporal lobe excisions or amygdalohippocampectomy in man. Neuropsychologia 29, 993–1006 (1991).
    Article CAS PubMed Google Scholar
  81. Owen, A. M. et al. Contrasting mechanisms of impaired attentional set-shifting in patients with frontal lobe damage or Parkinson's disease. Brain 116, 1159–1175 (1993).
    Article PubMed Google Scholar
  82. Kroger, J. K. et al. Recruitment of anterior dorsolateral prefrontal cortex in human reasoning: a parametric study of relational complexity. Cereb. Cortex 12, 477–485 (2002).
    Article PubMed Google Scholar
  83. Christoff, K. et al. Rostrolateral prefrontal cortex involvement in relational integration during reasoning. Neuroimage 14, 1136–1149 (2001).
    Article CAS PubMed Google Scholar
  84. Robin, N. & Holyoak, K. J. in The Cognitive Neurosciences (ed. Gazzaniga, M. S.) 987–997 (MIT Press, Cambridge, Massachusetts, 1995).
    Google Scholar
  85. Raven, J. C. Standardization of progressive matrices. Br. J. Med. Psychol. 19, 137–170 (1938, 1941).
    Article Google Scholar
  86. Carpenter, P. A., Just, M. A. & Shell, P. What one intelligence test measures: a theoretical account of the processing in the Raven Progressive Matrices Test. Psychol. Rev. 97, 404–431 (1990).
    Article CAS PubMed Google Scholar
  87. Waltz, J. A. et al. A system for relational reasoning in human prefrontal cortex. Psychol. Sci. 10, 119–125 (1999).
    Article Google Scholar
  88. Duncan, J., Burgess, P. & Emslie, H. Fluid intelligence after frontal lobe lesions. Neuropsychologia 33, 261–268 (1995).
    Article CAS PubMed Google Scholar
  89. Ramnani, N. & Passingham, R. -E. Changes in the human brain during rhythm learning. J. Cogn. Neurosci. 13, 1–15 (2001).
    Article Google Scholar
  90. Sakai, K., Ramnani, N. & Passingham, R. E. Learning of sequences of finger movements and timing: frontal lobe and action-oriented representation. J. Neurophysiol. 88, 2035–2046 (2002).
    Article PubMed Google Scholar
  91. Rogers, R. D. et al. Choosing between small, likely rewards and large, unlikely rewards activates inferior and orbital prefrontal cortex. J. Neurosci. 19, 9029–9038 (1999).
    Article CAS PubMed PubMed Central Google Scholar
  92. Ramnani, N. & Miall, C. Instructed delay activity in the human prefrontal cortex is modulated by monetary reward expectation. Cereb. Cortex 13, 318–327 (2003).
    Article CAS PubMed Google Scholar
  93. Braver, T. S., Reynolds, J. R. & Donaldson, D. I. Neural mechanisms of transient and sustained cognitive control during task switching. Neuron 39, 713–726 (2003).
    Article CAS PubMed Google Scholar
  94. Ramnani, N. & Passingham, R. E. Changes in the human brain during rhythm learning. J. Cogn. Neurosci. 13, 952–966 (2001).
    Article CAS PubMed Google Scholar
  95. Zeki, S. & Shipp, S. The functional logic of cortical connections. Nature 335, 311–317 (1988).
    Article CAS PubMed Google Scholar
  96. Ungerleider, L. G. & Mishkin, M. in Analysis of Visual Behavior (ed. Mansfield, R. J. W.) 549–586 (MIT Press, Cambridge, Massachusetts, 1982).
    Google Scholar
  97. Haxby, J. V. et al. Dissociation of object and spatial visual processing pathways in human extrastriate cortex. Proc. Natl Acad. Sci. USA 88, 1621–1625 (1991).
    Article CAS PubMed PubMed Central Google Scholar
  98. Ettlinger, G. 'Object vision' and 'spatial vision': the neuropsychological evidence for the distinction. Cortex 26, 319–341 (1990).
    Article CAS PubMed Google Scholar
  99. Passingham, R. E. & Toni, I. Contrasting the dorsal and ventral visual systems: guidance of movement versus decision making. Neuroimage 14, S125–131 (2001).
    Article CAS PubMed Google Scholar
  100. Nobre, A. C., Coull, J. T., Frith, C. D. & Mesulam, M. M. Orbitofrontal cortex is activated during breaches of expectation in tasks of visual attention. Nature Neurosci. 2, 11–12 (1999).
    Article CAS PubMed Google Scholar
  101. Schultz, W., Tremblay, L. & Hollerman, J. R. Reward processing in primate orbitofrontal cortex and basal ganglia. Cereb. Cortex 10, 272–284 (2000).
    Article CAS PubMed Google Scholar
  102. Lu, T., Preston, J. B. & Strick, P. L. Interconnections between the prefrontal cortex and the premotor areas in the frontal lobe. J. Comp. Neurol. 341, 375–392 (1994).
    Article CAS PubMed Google Scholar
  103. Hadland, K. A., Rushworth, M. F., Passingham, R. E., Jahanshahi, M. & Rothwell, J. C. Interference with performance of a response selection task that has no working memory component: an rTMS comparison of the dorsolateral prefrontal and medial frontal cortex. J. Cogn. Neurosci. 13, 1097–1108 (2001).
    Article CAS PubMed Google Scholar
  104. Ramnani, N., Toni, I., Passingham, R. E. & Haggard, P. The cerebellum and parietal cortex play a specific role in coordination: a PET study. Neuroimage 14, 899–911 (2001).
    Article CAS PubMed Google Scholar
  105. Sarkissov, S. A., Filimonoff, I. N., Kononowa, E. P., Preopraschenskaja, I. S. & Kukuew, L. A. Atlas of the Cytoarchitectonics of the Human Cerebral Cortex (Medgiz, Moscow, 1955).
    Google Scholar
  106. Petrides, M. & Pandya, D. N. in Handbook of Neuropsychology, Vol. 9 (ed. Grafman, J.) 17–58 (Elsevier, Amsterdam, 1994).
    Google Scholar

Download references