MAPK cascade signalling and synaptic plasticity (original) (raw)
Pearson, G. et al. Mitogen-activated protein (MAP) kinase pathways: regulation and physiological functions. Endocr. Rev.22, 153–183 (2001). CASPubMed Google Scholar
Margolis, B. & Skolnik, E. Y. Activation of Ras by receptor tyrosine kinases. J. Am. Soc. Nephrol.5, 1288–1299 (1994). CASPubMed Google Scholar
Nakielny, S., Cohen, P., Wu, J. & Sturgill, T. MAP kinase activator from insulin-stimulated skeletal muscle is a protein threonine/tyrosine kinase. EMBO J.11, 2123–2129 (1992). ArticleCASPubMed CentralPubMed Google Scholar
Alcorta, D. A. et al. Sequence and expression of chicken and mouse rsk: homologs of Xenopus laevis ribosomal S6 kinase. Mol. Cell. Biol.9, 3850–3859 (1989). ArticleCASPubMed CentralPubMed Google Scholar
Deak, M., Clifton, A. D., Lucocq, L. M. & Alessi, D. R. Mitogen- and stress-activated protein kinase-1 (MSK1) is directly activated by MAPK and SAPK2/p38, and may mediate activation of CREB. EMBO J.17, 4426–4441 (1996). Article Google Scholar
Arthur, J. S. & Cohen, P. MSK1 is required for CREB phosphorylation in response to mitogens in mouse embryonic stem cells. FEBS Lett.482, 44–48 (2000). ArticleCASPubMed Google Scholar
Wiggin, G. R. et al. MSK1 and MSK2 are required for the mitogen- and stress-induced phosphorylation of CREB and ATF1 in fibroblasts. Mol. Cell. Biol.22, 2871–2881 (2002). ArticleCASPubMed CentralPubMed Google Scholar
Marshall, C. J. Specificity of receptor tyrosine kinase signaling: transient versus sustained extracellular signal-regulated kinase activation. Cell80, 179–185 (1995). ArticleCASPubMed Google Scholar
Boulton, T. G. et al. ERKs: a family of protein-serine/threonine kinases that are activated and tyrosine phosphorylated in response to insulin and NGF. Cell65, 663–675 (1991). This initial identification and characterization of ERKs reported, intriguingly, high levels of these kinases in adult brain. ArticleCASPubMed Google Scholar
Fiore, R. S., Murphy, T. H., Sanghera, J. S., Pelech, S. L. & Baraban, J. M. Activation of p42 mitogen-activated protein kinase by glutamate receptor stimulation in rat primary cortical cultures. J. Neurochem.61, 1626–1633 (1993). The first report of ERK activation in response to glutamate receptor stimulation and synaptic activity. ArticleCASPubMed Google Scholar
Kurino, M., Fukunaga, K., Ushio, Y. & Miyamoto, E. Activation of mitogen-activated protein kinase in cultured rat hippocampal neurons by stimulation of glutamate receptors. J. Neurochem.65, 1282–1289 (1995). ArticleCASPubMed Google Scholar
Xia, Z., Dudek, H., Miranti, C. K. & Greenberg, M. E. Calcium influx via the NMDA receptor induces immediate early gene transcription by a MAP kinase/ERK-dependent mechanism. J. Neurosci.16, 5425–5436 (1996). ArticleCASPubMed CentralPubMed Google Scholar
Rosen, L. B., Ginty, D. D., Weber, M. J. & Greenberg, M. E. Membrane depolarization and calcium influx stimulate MEK and MAP kinase via activation of Ras. Neuron12, 1207–1221 (1994). ArticleCASPubMed Google Scholar
Yun, H. Y., Dawson, V. L. & Dawson, T. M. Glutamate-stimulated calcium activation of Ras/Erk pathway mediated by nitric oxide. Diabetes Res. Clin. Pract.45, 113–115 (1999). ArticleCASPubMed Google Scholar
Zhu, J. J., Qin, Y., Zhao, M., Van Aelst, L. & Malinow, R. Ras and Rap control AMPA receptor trafficking during synaptic plasticity. Cell110, 443–455 (2002). This study demonstrates a direct link between Ras/ERK activation and AMPAR insertion into synapses, and also implicates p38 MAPK and Rap signalling in AMPAR internalization and LTD. ArticleCASPubMed Google Scholar
Walker, S. A., Cullen, P. J., Taylor, J. A. & Lockyer, P. J. Control of Ras cycling by Ca2+. FEBS Lett.5456, 6–10 (2003). ArticleCAS Google Scholar
Farnsworth, C. L. et al. Calcium activation of Ras mediated by neuronal exchange factor Ras-GRF. Nature376, 524–527 (1995). ArticleCASPubMed Google Scholar
Dudley, D. T., Pang, L., Decker, S. J., Bridges, A. J. & Saltiel, A. R. A synthetic inhibitor of the mitogen-activated protein kinase cascade. Proc. Natl Acad. Sci. USA92, 7686–7689 (1995). ArticleCASPubMed CentralPubMed Google Scholar
Alessi, D. R., Cuenda, A., Cohen, P., Dudley, D. T. & Saltiel, A. R. PD 098059 is a specific inhibitor of the activation of mitogen-activated protein kinase kinase in vitro and in vivo. J. Biol. Chem.270, 27489–27494 (1995). ArticleCASPubMed Google Scholar
Favata, M. F. et al. Identification of a novel inhibitor of mitogen-activated protein kinase kinase. J. Biol. Chem.273, 18623–18632 (1998). ArticleCASPubMed Google Scholar
Davies, S. P., Reddy, H., Caivano, M. & Cohen, P. Specificity and mechanism of action of some commonly used protein kinase inhibitors. Biochem. J.351, 95–105 (2000). ArticleCASPubMed CentralPubMed Google Scholar
Bain, J., McLauchlan, H., Elliott, M. & Cohen, P. The specificities of protein kinase inhibitors: an update. Biochem. J.371, 199–204 (2003). ArticleCASPubMed CentralPubMed Google Scholar
Malenka, R. C. & Nicoll, R. A. Long-term potentiation — a decade of progress? Science285, 1870–1874 (1999). ArticleCASPubMed Google Scholar
English, J. D. & Sweatt, J. D. A requirement for the mitogen-activated protein kinase cascade in hippocampal long term potentiation. J. Biol. Chem.272, 19103–19106 (1997). The first demonstration that ERK activation is required for hippocampal LTP. ArticleCASPubMed Google Scholar
English, J. D. & Sweatt, J. D. Activation of p42 mitogen-activated protein kinase in hippocampal long term potentiation. J. Biol. Chem.271, 24329–24332 (1996). ArticleCASPubMed Google Scholar
Atkins, C. M., Selcher, J. C., Petraitis, J. J., Trzaskos, J. M. & Sweatt, J. D. The MAPK cascade is required for mammalian associative learning. Nature Neurosci.1 602–609 (1998). This study was the first to show a requirement for ERK activation in a mammalian learning model. ArticleCASPubMed Google Scholar
Impey, S. et al. Cross talk between ERK and PKA is required for Ca2+ stimulation of CREB-dependent transcription and ERK nuclear translocation. Neuron21, 869–883 (1998). ArticleCASPubMed Google Scholar
Bolshakov, V. Y., Carboni, L., Cobb, M. H., Siegelbaum, S. A. & Belardetti, F. Dual MAP kinase pathways mediate opposing forms of long-term plasticity at CA3–CA1 synapses. Nature Neurosci.3, 1107–1112 (2000). ArticleCASPubMed Google Scholar
Ohno, M., Frankland, P. W., Chen, A. P., Costa, R. M. & Silva, A. J. Inducible, pharmacogenetic approaches to the study of learning and memory. Nature Neurosci.4, 1238–1243 (2001). ArticleCASPubMed Google Scholar
Patterson, S. L. et al. Some forms of cAMP-mediated long-lasting potentiation are associated with release of BDNF and nuclear translocation of phospho-MAP kinase. Neuron32, 123–140 (2001). ArticleCASPubMed Google Scholar
Selcher, J. C. et al. A role for ERK MAP kinase in physiologic temporal integration in hippocampal area CA1. Learn. Mem.10, 26–39 (2003). ArticlePubMed CentralPubMed Google Scholar
Kanterewicz, B. I. et al. The extracellular signal-regulated kinase cascade is required for NMDA receptor-independent LTP in area CA1 but not area CA3 of the hippocampus. J. Neurosci.20, 3057–3066 (2000). ArticleCASPubMedPubMed Central Google Scholar
Coogan, A. N., O'Leary, D. M. & O'Connor, J. J. P42/44 MAP kinase inhibitor PD98059 attenuates multiple forms of synaptic plasticity in rat dentate gyrus in vitro. J. Neurophysiol.81, 103–110 (1999). ArticleCASPubMed Google Scholar
Huang, Y. Y., Martin, K. C. & Kandel, E. R. Both protein kinase A and mitogen-activated protein kinase are required in the amygdala for the macromolecular synthesis-dependent late phase of long-term potentiation. J. Neurosci.20, 6317–6325 (2000). ArticleCASPubMedPubMed Central Google Scholar
Schafe, G. E. et al. Activation of ERK/MAP kinase in the amygdala is required for memory consolidation of Pavlovian fear conditioning. J. Neurosci.20, 8177–8187 (2000). ArticleCASPubMedPubMed Central Google Scholar
Adams, J. P. & Sweatt, J. D. Molecular psychology: roles for the ERK MAP kinase cascade in memory. Annu. Rev. Pharmacol. Toxicol.42, 135–163 (2002). ArticleCASPubMed Google Scholar
Di Cristo, G. et al. Requirement for ERK activation for visual cortical plasticity. Science292, 2337–2340 (2001). The first demonstration that ERK is required for cortical plasticity. ArticleCASPubMed Google Scholar
Kawasaki, H. et al. Requirement for mitogen-activated protein kinase in cerebellar long-term depression. J. Biol. Chem.274, 13498–13502 (1999). ArticleCASPubMed Google Scholar
Opazo, P., Watabe, A. M., Grant, S. G. & O'Dell, T. J. Phosphatidylinositol 3-kinase regulates the induction of long-term potentiation through extracellular signal-related kinase-independent mechanisms. J. Neurosci.23, 3679–3688 (2003). ArticleCASPubMedPubMed Central Google Scholar
Blum, S., Moore, A. N., Adams, F. & Dash, P. K. A mitogen-activated protein kinase cascade in the CA1/CA2 subfield of the dorsal hippocampus is essential for long-term spatial memory. J. Neurosci.19, 3535–3544 (1999). ArticleCASPubMedPubMed Central Google Scholar
Selcher, J. C., Atkins, C. M., Trzaskos, J. M., Paylor, R. & Sweatt, J. D. A necessity for MAP kinase activation in mammalian spatial learning. Learn. Mem.6, 478–490 (1999). ArticleCASPubMed CentralPubMed Google Scholar
Hebert, A. E. & Dash, P. K. Extracellular signal-regulated kinase activity in the entorhinal cortex is necessary for long-term spatial memory. Learn. Mem.9, 156–166 (2002). ArticlePubMed CentralPubMed Google Scholar
Berman, D. E., Hazvi, S., Rosenblum, K., Seger, R. & Dudai, Y. Specific and differential activation of mitogen-activated protein kinase cascades by unfamiliar taste in the insular cortex of the behaving rat. J. Neurosci.18, 10037–10044 (1998). ArticleCASPubMedPubMed Central Google Scholar
Hayashi, Y. et al. Driving AMPA receptors into synapses by LTP and CaMKII: requirement for GluR1 and PDZ domain interaction. Science287, 2262–2267 (2000). ArticleCASPubMed Google Scholar
Lu, W. et al. Activation of synaptic NMDA receptors induces membrane insertion of new AMPA receptors and LTP in cultured hippocampal neurons. Neuron29, 243–254 (2001). ArticleCASPubMed Google Scholar
Shi, S., Hayashi, Y., Esteban, J. A. & Malinow, R. Subunit-specific rules governing AMPA receptor trafficking to synapses in hippocampal pyramidal neurons. Cell105, 331–343 (2001). ArticleCASPubMed Google Scholar
Engert, F. & Bonhoeffer, T. Dendritic spine changes associated with hippocampal long-term synaptic plasticity. Nature399, 19–21 (1999). Article Google Scholar
Toni, N., Buchs, P. A., Nikonenko, I., Bron, C. R. & Muller, D. LTP promotes formation of multiple spine synapses between a single axon terminal and a dendrite. Nature402, 421–425 (1999). ArticleCASPubMed Google Scholar
Rongo, C. A fresh look at the role of CaMKII in hippocampal synaptic plasticity and memory. Bioessays24, 223–233 (2002). ArticleCASPubMed Google Scholar
Lisman, J., Schulman, H. & Cline, H. The molecular basis of CaMKII function in synaptic and behavioural memory. Nature Rev. Neurosci.3, 175–190 (2002). ArticleCAS Google Scholar
Sanna, P. P. et al. Phosphatidylinositol 3-kinase is required for the expression but not for the induction or the maintenance of long-term potentiation in the hippocampal CA1 region. J. Neurosci.22, 3359–3365 (2002). ArticleCASPubMedPubMed Central Google Scholar
Man, H. Y. et al. Activation of PI3-kinase is required for AMPA receptor insertion during LTP of mEPSCs in cultured hippocampal neurons. Neuron38, 611–624 (2003). ArticleCASPubMed Google Scholar
Wu, G. -Y., Deisseroth, K. & Tsien, R. W. Spaced stimuli stabilize MAPK pathway activation and its effects on dendritic morphology. Nature Neurosci.4, 151–158 (2001). This study demonstrated a requirement for ERK activation for formation of new dendritic spines and filopodia following depolarization of cultured neurons. ArticleCASPubMed Google Scholar
Goldin, M. & Segal, M. Protein kinase C and ERK involvement in dendritic spine plasticity in cultured rodent hippocampal neurons. Eur. J. Neurosci.17, 2529–2539 (2003). ArticlePubMed Google Scholar
Davis, S., Vanhoutte, P., Pages, C., Caboche, J. & Laroche, S. The MAPK/ERK cascade targets both Elk-1 and cAMP response element-binding protein to control long-term potentiation-dependent gene expression in the dentate gyrus in vivo. J. Neurosci20, 4563–4572 (2000). ArticleCASPubMedPubMed Central Google Scholar
Dudek, S. M. & Fields, R. D. Mitogen-activated protein kinase/extracellular signal-regulated kinase activation in somatodendritic compartments: roles of action potentials, frequency, and mode of calcium entry. J. Neurosci.21 RC122 (2001). ArticleCASPubMedPubMed Central Google Scholar
Yuan, L. L., Adams, J. P., Swank, M., Sweatt, J. D. & Johnston, D. Protein kinase modulation of dendritic K+ channels in hippocampus involves a mitogen-activated protein kinase pathway. J. Neurosci, 22, 4860–4868 (2002). ArticleCASPubMedPubMed Central Google Scholar
Rosenblum, K. et al. The role of extracellular regulated kinases I/II in late-phase long-term potentiation. J. Neurosci.22, 5432–5441 (2002). ArticleCASPubMedPubMed Central Google Scholar
Bailey, C. H. et al. Mutation in the phosphorylation sites of MAP kinase blocks learning-related internalization of apCAM in Aplysia sensory neurons. Neuron18, 913–924 (1997). ArticleCASPubMed Google Scholar
Angers, A. et al. Serotonin stimulates phosphorylation of Aplysia synapsin and alters its subcellular distribution in sensory neurons. J. Neurosci.22, 5412–5422 (2002). ArticleCASPubMedPubMed Central Google Scholar
Adams, J. P. et al. The A-type potassium channel KV4.2 is a substrate for the mitogen-activated protein kinase ERK. J. Neurochem.75, 2277–2287 (2000). ArticleCASPubMed Google Scholar
Morozov, A. et al. Rap1 couples cAMP signaling to a distinct pool of p42/44MAPK regulating excitability, synaptic plasticity, learning, and memory. Neuron39, 309–325 (2003). ArticleCASPubMed Google Scholar
Traverse, S., Gomez, N., Paterson, H., Marshall, C. & Cohen, P. Sustained activation of the mitogen-activated protein (MAP) kinase cascade may be required for differentiation of PC12 cells. Comparison of the effects of nerve growth factor and epidermal growth factor. Biochem. J.288, 351–355 (1992). ArticleCASPubMed CentralPubMed Google Scholar
Lenormand, P. et al. Growth factors induce nuclear translocation of MAP kinases (p42MAPK and p44MAPK) but not of their activator MAP kinase kinase (p45MAPKK) in fibroblasts. J. Cell Biol.122, 1079–1088 (1993). ArticleCASPubMed Google Scholar
Sananbenesi, F., Fischer, A., Schrick, C., Spiess, J. & Radulovic, J. Phosphorylation of hippocampal ERK-1/2, Elk-1 and p90-Rsk-1 during contextual fear conditioning: interactions between ERK-1/2 and Elk-1. Mol. Cell. Neurosci.21, 463–476 (2002). ArticleCASPubMed Google Scholar
West, A. E., Griffith, E. C. & Greenberg, M. E. Regulation of transcription factors by neuronal activity. Nature Rev. Neurosci.3, 921–931 (2002). ArticleCAS Google Scholar
Lonze, B. E. & Ginty, D. D. Function and regulation of CREB family transcription factors in the nervous system. Neuron35, 605–623 (2002). ArticleCASPubMed Google Scholar
Balschun, D. et al. Does cAMP response element-binding protein have a pivotal role in hippocampal synaptic plasticity and hippocampus-dependent memory? J. Neurosci.23, 6304–6314 (2003). ArticleCASPubMedPubMed Central Google Scholar
Shaywitz, A. J. & Greenberg, M. E. CREB: a stimulus-induced transcription factor activated by a diverse array of extracellular signals. Annu. Rev. Biochem.68, 821–861 (1999). ArticleCASPubMed Google Scholar
Wu, G. -Y., Deisseroth, K. & Tsien, R. W. Activity-dependent CREB phosphorylation: convergence of a fast calmodulin kinase pathway and a slow, less-sensitive mitogen-activated protein kinase pathway. Proc. Natl Acad. Sci. USA98, 2808–2813 (2001). This study, together with reference 73, reports that prolonged CREB phosphorylation is sensitive to MEK inhibitors in cultured neurons. ArticleCASPubMedPubMed Central Google Scholar
Hardingham, G. E., Arnold, F. J. & Bading, H. A calcium microdomain near NMDA receptors: on switch for ERK-dependent synapse-to-nucleus communication. Nature Neurosci.4 565–566 (2001). ArticleCASPubMed Google Scholar
Xing, J., Kornhauser, J. M., Xia, Z., Thiele, E. A. & Greenberg, M. E. Nerve growth factor activates extracellular signal-regulated kinase and p38 mitogen-activated protein kinase pathways to stimulate CREB serine 133 phosphorylation. Mol. Cell. Biol.18, 1946–1955 (1998). ArticleCASPubMed CentralPubMed Google Scholar
Xing, J., Ginty, D. D. & Greenberg, M. E. Coupling of the RAS-MAPK pathway to gene activation by RSK2, a growth factor-regulated CREB kinase. Science273, 959–963 (1996). ArticleCASPubMed Google Scholar
Dufresne, S. D. et al. Altered extracellular signal-regulated kinase signaling and glycogen metabolism in skeletal muscle from p90 ribosomal S6 kinase 2 knockout mice. Mol. Cell. Biol.21, 81–87 (2001). ArticleCASPubMed CentralPubMed Google Scholar
Trivier, E. et al. Mutations in the kinase Rsk-2 associated with Coffin-Lowry syndrome. Nature384, 567–570 (1996). A human genetic study linking mutations in theRSK2gene to impaired neuronal development and function. ArticleCASPubMed Google Scholar
Zeniou, M., Ding, T., Trivier, E. & Hanauer, A. Expression analysis of RSK gene family members: the RSK2 gene, mutated in Coffin-Lowry syndrome, is prominently expressed in brain structures essential for cognitive function and learning. Human Mol. Genet.11, 2929–2940 (2002). ArticleCAS Google Scholar
Sassone-Corsi, P. et al. Requirement of Rsk-2 for epidermal growth factor-activated phosphorylation of histone H3. Science285, 886–891 (1999). ArticleCASPubMed Google Scholar
Bruning, J. C. et al. Ribosomal subunit kinase-2 is required for growth factor-stimulated transcription of the c-Fos gene. Proc. Natl Acad. Sci. USA97, 2462–2467 (2000). ArticleCASPubMedPubMed Central Google Scholar
Athos, J., Impey, S., Pineda, V. V., Chen, X. & Storm, D. R. Hippocampal CRE-mediated gene expression is required for contextual memory formation. Nature Neurosci.5, 1119–1120 (2002). ArticleCASPubMed Google Scholar
Guzowski, J. F. et al. Inhibition of activity-dependent arc protein expression in the rat hippocampus impairs the maintenance of long-term potentiation and the consolidation of long-term memory. J. Neurosci.20, 3993–4001 (2000). ArticleCASPubMedPubMed Central Google Scholar
Ying, S. -W. et al. Brain-derived neurotrophic factor induces long-term potentiation in intact adult hippocampus: requirement for ERK activation coupled to CREB and upregulation of Arc synthesis. J. Neurosci.22, 1532–1540 (2002). ArticleCASPubMedPubMed Central Google Scholar
Waltereit, R. et al. Arg3.1/Arc mRNA induction by Ca2+ and cAMP requires protein kinase A and mitogen-activated protein kinase/extracellular regulated kinase activation. J. Neurosci.21, 5484–5493 (2001). ArticleCASPubMedPubMed Central Google Scholar
Husi, H., Ward, M. A., Choudhary, J. S., Blackstock, W. P. & Grant, S. G. N. Proteomic analysis of NMDA receptor-adhesion protein signaling complexes. Nature Neurosci.3, 661–669 (2000). An important study demonstrating the presence of many upstream and downstream elements of ERK signalling in NMDAR containing protein complexes. References 82 and 83 are independent complementary studies to this. ArticleCASPubMed Google Scholar
Suzuki, T., Okumura-Noji, K. & Nishida, E. ERK2-type mitogen activated protein kinase (MAPK) and its substrates in postsynaptic density fractions from the rat brain. Neurosci. Res.22, 277–285 (1995). ArticleCASPubMed Google Scholar
Suzuki, T., Mitake, S. & Murata, S. Presence of up-stream and downstream components of a mitogen-activated protein kinase pathway in the PSD of the rat forebrain. Brain Res.840, 36–44 (1999). ArticleCASPubMed Google Scholar
Kim, J. H., Liao, D., Lau, L. F. & Huganir, R. L. SynGAP: a synaptic RasGAP that associates with the PSD-95/SAP90 protein family. Neuron20, 683–691 (1998). ArticleCASPubMed Google Scholar
Chen, H. J., Rojas-Soto, M., Oguni, A. & Kennedy, M. B. A synaptic Ras-GTPase activating protein (p135 SynGAP) inhibited by CaM kinase II. Neuron20, 895–904 (1998). ArticleCASPubMed Google Scholar
Walikonis, R. S. et al. Identification of proteins in the postsynaptic density fraction by mass spectrometry. J. Neurosci.20, 4069–4080 (2000). ArticleCASPubMedPubMed Central Google Scholar
Komiyama, N. H. et al. SynGAP regulates ERK/MAPK signaling, synaptic plasticity, and learning in the complex with postsynaptic density 95 and NMDA receptor. J. Neurosci.22, 9721–9732 (2002). ArticleCASPubMedPubMed Central Google Scholar
Kim, J. H., Lee, H. K., Takamiya, K. & Huganir, R. L. The role of synaptic GTPase-activating protein in neuronal development and synaptic plasticity. J. Neurosci.23, 1119–1124 (2003). ArticleCASPubMedPubMed Central Google Scholar
Han J., Lee, J. D., Bibbs, L. & Ulevitch, R. J. A MAP kinase targeted by endotoxin and hyperosmolarity in mammalian cells. Science265, 808–811 (1994). ArticleCASPubMed Google Scholar
Rouse, J. et al. A novel kinase cascade triggered by stress and heat shock that stimulates MAPKAP kinase-2 and phosphorylation of the small heat shock proteins. Cell78, 1027–1037 (1994). ArticleCASPubMed Google Scholar
Freshney, N. W. et al. Interleukin-1 activates a novel protein kinase cascade that results in the phosphorylation of Hsp27. Cell78, 1039–1049 (1994). ArticleCASPubMed Google Scholar
Tibbles, L. A. & Woodgett, J. R. The stress-activated protein kinase pathways. Cell. Mol. Life Sci.55, 1230–1254 (1999). ArticleCASPubMed Google Scholar
Lee, S. H., Park, J., Che, Y., Han, P. -L. & Lee, J. -K. Constitutive activity and differential localization of p38α and p38β MAPKs in adult mouse brain. J. Neurosci. Res.60, 623–631 (2000). ArticleCASPubMed Google Scholar
Cuenda, A. et al. SB 203580 is a specific inhibitor of a MAP kinase homologue which is stimulated by cellular stresses and interleukin-1. FEBS Lett.364, 229–233 (1995). ArticleCASPubMed Google Scholar
Eyers, P. A., Craxton, M., Morrice, N., Cohen, P. & Goedert, M. Conversion of SB 203580-insensitive MAP kinase family members to drug-sensitive forms by a single amino-acid substitution. Chem. Biol.5, 321–328 (1998). ArticleCASPubMed Google Scholar
Young, P. R. et al. Pyridinyl imidazole inhibitors of p38 mitogen-activated protein kinase bind in the ATP site. J. Biol. Chem.272, 12116–12121 (1997). ArticleCASPubMed Google Scholar
Frantz, B. et al. The activation state of p38 mitogen-activated protein kinase determines the efficiency of ATP competition for pyridinylimidazole inhibitor binding. Biochemistry37, 13846–13453 (1998). ArticleCASPubMed Google Scholar
Kumar, S. et al. Novel homologues of CSBP/p38 MAP kinase: activation, substrate specificity and sensitivity to inhibition by pyridinyl imidazoles. Biochem. Biophys. Res. Commun.235, 533–538 (1997). ArticleCASPubMed Google Scholar
Zhen, X., Du, W., Romano, A. G., Friedman, E. & Harvey, J. A. The p38 mitogen-activated protein kinase is involved in associative learning in rabbits. J. Neurosci.21, 5513–5519 (2001). ArticleCASPubMedPubMed Central Google Scholar
Pak, D. T. S., Yang, S., Rudolph-Correia, S., Kim, E. & Sheng, M. Regulation of dendritic spine morphology by SPAR, a PSD-95-associated RapGAP. Neuron31, 289–303 (2001). A study that implicates Rap signalling in the regulation of dendritic spines. ArticleCASPubMed Google Scholar
Roy, B. C., Kohu, K., Matsuura, H. & Akiyama, T. SPAL, a Rap-specific GTPase activating protein, is present in the NMDA receptor-PSD-95 complex in the hippocampus. Genes Cells7, 607–617 (2002). ArticleCASPubMed Google Scholar
York, R. D. et al. Rap1 mediates sustained MAP kinase activation induced by nerve growth factor. Nature392, 622–626 (1998). ArticleCASPubMed Google Scholar
Grewal, S. S. et al. Neuronal calcium activates a Rap1 and B-Raf signaling pathway via the cyclic adenosine monophosphate-dependent protein kinase. J. Biol. Chem.275, 3722–3728 (2000). ArticleCASPubMed Google Scholar
Grewal, S. S., York, R. D. & Stork, P. J. S. Extracellular-signal-regulated kinase signaling in neurons. Curr. Opin. Neurobiol.9, 544–553 (1999). ArticleCASPubMed Google Scholar
Morice, C. et al. Raf-1 and B-Raf proteins have similar regional distributions but differential subcellular localization in adult rat brain. Eur. J. Neurosci.11, 1995–2006 (1999). ArticleCASPubMed Google Scholar
Manning, B. D. & Cantley, L. C. Hitting the target: emerging technologies in the search for kinase substrates. Sci. STKEPE49 (2002).
Oda, Y., Nagasu, T. & Chait, B. T. Enrichment analysis of phosphorylated proteins as a tool for probing the phosphoproteome. Nature Biotechnol.19, 379–382 (2001). ArticleCAS Google Scholar
Zhou, H., Watts, J. D. & Aebersold, R. A systematic approach to the analysis of protein phosphorylation. Nature Biotechnol.19, 375–378 (2001). ArticleCAS Google Scholar
Goshe, M. B. et al. Phosphoprotein isotope-coded affinity tag approach for isolating and quantitating phosphopeptides in proteome-wide analyses. Anal. Chem.73, 2578–2586 (2001). ArticleCASPubMed Google Scholar
Mann, M. et al. Analysis of protein phosphorylation using mass spectrometry: deciphering the phosphoproteome. Trends Biotechnol.20, 261–268 (2002). ArticleCASPubMed Google Scholar
Erikson, E. & Maller, J. L. Purification and characterization of ribosomal protein S6 kinase I from Xenopus. J. Biol. Chem.266, 5249–5255 (1991). CASPubMed Google Scholar
Harum, K. H., Alemi, L. & Johnston, M. V. Cognitive impairment in Coffin-Lowry syndrome correlates with reduced RSK2 activation. Neurology56, 207–214 (2001). ArticleCASPubMed Google Scholar
Yntema, H. G. et al. A novel Ribosomal S6-kinase (RSK4; RPS6KA6) is commonly deleted in patients with complex X-linked mental retardation. Genomics62, 332–343 (1999). ArticleCASPubMed Google Scholar
Thomas, G. M., Henderson, J. A., Rumbaugh, G. & Huganir, R. L. RSK2 binds and phosphorylates PDZ domain containing proteins. Soc. Neurosci. Abstr. 832.15 (2002).
Garner, C. C., Nash, J. & Huganir, R. L. PDZ domains in synapse assembly and signalling. Trends Cell Biol.10, 274–280 (2000). ArticleCASPubMed Google Scholar
Silva, A. J. et al. A mouse model for the learning and memory deficits associated with neurofibromatosis type I. Nature Genet.15, 281–284 (1997). ArticleCASPubMed Google Scholar
Costa, R. M. et al. Mechanism for the learning deficits in a mouse model of neurofibromatosis type 1. Nature415, 526–530 (2002). ArticleCASPubMed Google Scholar
Krapivinsky, G. et al. The NMDA receptor is coupled to the ERK pathway by a direct interaction between NR2B and RasGRF1. Neuron40, 775–784 (2003). ArticleCASPubMed Google Scholar
Brambilla, R. et al. A role for the Ras signaling pathway in synaptic transmission and long-term memory. Nature390, 281–286 (1997). ArticleCASPubMed Google Scholar
Giese, K. P. et al. Hippocampus-dependent learning and memory is impaired in mice lacking the Ras-guanine nucleotide releasing factor 1 (Ras-GRF1). Neuropharmacology41, 791–800 (2001). ArticleCASPubMed Google Scholar
Lisman, J., Lichtman, J. W. & Sanes, J. R. LTP: perils and progress. Nature Rev. Neurosci.4, 926–929 (2003). ArticleCAS Google Scholar
Sanes, J. R. & Lichtman, J. W. Can molecules explain long-term potentiation? Nature Neurosci.2, 597–604 (1999). ArticleCASPubMed Google Scholar
Kelleher, R. J. III, Govindarajan, A., Jung, H. -Y., Kkang, H. & Tonegawa, S. Translational control by MAPK signaling in long-term synaptic plasticity and memory. Cell116, 467–479 (2004). ArticleCASPubMed Google Scholar