Arnold, A. P. & Gorski, R. A. Gonadal steroid induction of structural sex differences in the CNS. Ann. Rev. Neurosci.7, 413–442 (1984). ArticleCASPubMed Google Scholar
Breedlove, S. M., Cooke, B. M. & Jordan, C. L. Orthodox view of brain sexual differentiation. Brain Behav. Evol.54, 8–14 (1999). ArticleCASPubMed Google Scholar
Vallender, E. J. & Lahn, B. T. How mammalian sex chromosomes acquired their peculiar gene content. BioEssays26, 159–169 (2004). Provides a good review of the reasons for the bias in gene content in the sex chromosomes. ArticleCASPubMed Google Scholar
Rice, W. R. Sex chromosomes and the evolution of sexual dimorphism. Evolution38, 735–742 (1984). ArticlePubMed Google Scholar
Rice, W. R. Sexually antagonistic genes: experimental evidence. Science256, 1436–1439 (1992). ArticleCASPubMed Google Scholar
Lahn, B. T. & Page, D. C. Functional coherence of the human Y chromosome. Science278, 675–680 (1997). ArticleCASPubMed Google Scholar
Skaletsky, H. et al. The male-specific region of the human Y chromosome is a mosaic of discrete sequence classes. Nature423, 825–837 (2003). This first map of the human Y chromosome led to remarkable conclusions about sex chromosome evolution. ArticleCASPubMed Google Scholar
Graves, J. A. M. The origin and function of the mammalian Y chromosome and Y-borne genes — an evolving understanding. BioEssays17, 311–319 (1995). ArticleCASPubMed Google Scholar
Bull, J. J. Evolution of Sex Determining Mechanisms (Benjamin/Cummings, Menlo Park, California, 1983). Google Scholar
Goodfellow, P. N. & Lovell-Badge, R. SRY and sex determination in mammals. Annu. Rev. Genet.27, 71–92 (1993). ArticleCASPubMed Google Scholar
Graves, J. A. From brain determination to testis determination: evolution of the mammalian sex-determining gene. Reprod. Fertil. Dev.13, 665–672 (2001). ArticleCASPubMed Google Scholar
Rice, W. R. Evolution of the Y sex chromosome in animals. BioScience46, 331–343 (1996). Article Google Scholar
Burgoyne, P. S. The role of Y-encoded genes in mammalian spermatogenesis. Cell Dev. Biol.9, 423–432 (1998). ArticleCAS Google Scholar
Charlesworth, B. Genome analysis: more Drosophila Y chromosome genes. Curr. Biol.11, R182–R184 (2001). ArticleCASPubMed Google Scholar
Delbridge, M. L. & Graves, J. A. Mammalian Y chromosome evolution and the male-specific functions of Y chromosome-borne genes. Rev. Reprod.4, 101–109 (1999). ArticleCASPubMed Google Scholar
Jegalian, K. & Page, D. C. A proposed path by which genes common to mammalian X and Y chromosomes evolve to become X inactivated. Nature394, 776–780 (1998). ArticleCASPubMed Google Scholar
Cline, T. W. & Meyer, B. J. Vive la difference: males vs females in flies vs worms. Ann. Rev. Genet.30, 637–702 (1996). ArticleCASPubMed Google Scholar
Tan, S. S. et al. Cell dispersion patterns in different cortical regions studied with an X-inactivated transgenic marker. Dev.121, 1029–1039 (1995). CAS Google Scholar
Bittner, R. E., Popoff, I., Shorny, S., Hoger, H. & Wachtler, F. Dystrophin expression in heterozygous mdx/+ mice indicates imprinting of X chromosome inactivation by parentoforigin, tissue, strain and position-dependent factors. Anat. Embryol. (Berl.)195, 175–182 (1997). ArticleCAS Google Scholar
Lingenfelter, P. A. et al. Escape from X inactivation of Smcx is preceded by silencing during mouse development. Nature Genet.18, 212–213 (1998). ArticleCASPubMed Google Scholar
Carrel, L. & Willard, H. F. Heterogeneous gene expression from the inactive X chromosome: an X-linked gene that escapes X inactivation in some human cell lines but is inactivated in others. Proc. Natl Acad. Sci. USA96, 7364–7369 (1999). ArticleCASPubMedPubMed Central Google Scholar
Carrel, L., Cottle, A. A., Goglin, K. C. & Willard, H. F. A first-generation X-inactivation profile of the human X chromosome. Proc. Natl Acad. Sci. USA96, 14440–14444 (1999). ArticleCASPubMedPubMed Central Google Scholar
Brown, C. J. & Greally, J. M. A stain upon the silence: genes escaping X inactivation. Trends Genet.19, 432–438 (2003). ArticleCASPubMed Google Scholar
Xu, J., Burgoyne, P. S. & Arnold, A. P. Sex differences in sex chromosome gene expression in mouse brain. Hum. Mol. Genet.11, 1409–1419 (2002). ArticleCASPubMed Google Scholar
Gibson, J. R., Chippindale, A. K. & Rice, W. R. The X chromosome is a hot spot for sexually antagonistic fitness variation. Proc. R. Soc. Lond. B269, 499–505 (2002). Article Google Scholar
Wang, P. J., McCarrey, J. R., Yang, F. & Page, D. C. An abundance of X-linked genes expressed in spermatogonia. Nature Genet.27, 422–426 (2001). ArticlePubMedCAS Google Scholar
Zechner, U. et al. A high density of X-linked genes for general cognitive ability: a run-away process shaping human evolution? Trends Genet.17, 697–701 (2001). This paper demonstrates the exceptional density on the X chromosome of genes that are essential for normal brain development, a finding that contributes to the speculation that sex differences in X gene expression could influence the brain. ArticleCASPubMed Google Scholar
Khil, P. P., Smirnova, N. A., Ramanienko, P. J. & Camerini-Otero, R. D. The mouse X chromosome in enriched for sex-biased genes not subject to selection by meiotic sex chromosome inactivation. Nature Genet.36, 642–646 (2004). ArticleCASPubMed Google Scholar
Saifi, G. M. & Chandra, H. S. An apparent excess of sex- and reproduction-related genes on the human X chromosome. Proc. R Soc. Lond. B266, 203–209 (1999). ArticleCAS Google Scholar
Lercher, M. J., Urrutia, A. O. & Hurst, L. D. Evidence that the human X chromosome is enriched for male-specific but not female-specific genes. Mol. Biol. Evol.20, 1113–1116 (2003). ArticleCASPubMed Google Scholar
Reinke, V. et al. A global profile of germline gene expression in C. elegans. Mol. Cell6, 605–616 (2000). ArticleCASPubMed Google Scholar
Arnold, A. P. & Burgoyne, P. S. Are XX and XY brain cells intrinsically different? Trend Endoc. Metab.15, 6–11 (2004). ArticleCAS Google Scholar
Tordjman, S. et al. Linkage between brain serotonin concentration and the sex-specific part of the Y-chromosome in mice. Neurosci. Lett.183, 190–192 (1995). ArticleCASPubMed Google Scholar
Jutley, J. K. & Stewart, A. D. Genetic analysis of the Y-chromosome of the mouse: evidence for two loci affecting androgen metabolism. Genet. Res.47, 29–34 (1986). ArticleCASPubMed Google Scholar
Maxson, S. C. Searching for candidate genes with effects on an agonistic behavior, offense, in mice. Behav. Genet.26, 471–476 (1996). ArticleCASPubMed Google Scholar
Sluyter, F., Van Oortmerssen, G. A., De Ruiter, A. J. H. & Koolhaas, J. M. Aggression in wild house mice: current state of affairs. Behav. Genet.26, 489–496 (1996). ArticleCASPubMed Google Scholar
Selmanoff, M. K., Goldman, B. D. & Ginsburg, B. E. Serum testosterone, agonistic behavior, and dominance in inbred strains of mice. Horm. Behav.8, 107–119 (1977). ArticleCASPubMed Google Scholar
Selmanoff, M. K., Goldman, B. D., Maxson, S. C. & Ginsburg, B. E. Correlated effects of the Y-chromosome of mice on developmental changes in testosterone levels and intermale aggression. Life Sci.20, 359–365 (1977). ArticleCASPubMed Google Scholar
Selmanoff, M. K., Goldman, B. D. & Ginsburg, B. E. Developmental changes in serum luteinizing hormone, follicle stimulating hormone and androgen levels in males of two inbred mouse strains. Endocrinol.100, 122–127 (1977). ArticleCAS Google Scholar
Lahr, G. et al. Transcription of the Y chromosomal gene, Sry, in adult mouse brain. Mol. Brain Res.33, 179–182 (1995). ArticleCASPubMed Google Scholar
Mayer, A., Mosler, G., Just, W., Pilgrim, C. & Reisert, I. Developmental profile of Sry transcripts in mouse brain. Neurogenet.3, 25–30 (2000). ArticleCAS Google Scholar
Mayer, A., Lahr, G., Swaab, D. F., Pilgrim, C. & Reisert, I. The Y-chromosomal genes SRY and ZFY are transcribed in adult human brain. Neurogenetics1, 281–288 (1998). ArticleCASPubMed Google Scholar
Harry, J., Koopman, P., Brennan, F., Graves, J. & Renfree, M. B. Widespread expression of the testis-determining gene SRY in a marsupial. Nature Genet.11, 347–349 (1995). ArticleCASPubMed Google Scholar
Watanabe, M., Zinn, A. R., Page, D. C. & Nishimoto, T. Functional equivalence of human X- and Y-encoded isoforms of ribosomal protein S4 consistent with a role in Turner syndrome. Nature Genet.4, 268–271 (1993). ArticleCASPubMed Google Scholar
Graves, J. A., Disteche, C. M. & Toder, R. Gene dosage in the evolution and function of mammalian sex chromosomes. Cytogenet. Cell Genet.80, 94–103 (1998). ArticleCASPubMed Google Scholar
Agate, R. J., Choe, M. & Arnold, A. P. Sex differences in structure and expression of the sex chromosome genes CHD1Z and CHD1W in zebra finches. Mol. Biol. Evol.21, 384–396 (2004). ArticleCASPubMed Google Scholar
Jacobs, G. H. A perspective on color vision in platyrrhine monkeys. Vision Res.38, 3307–3313 (1998). ArticleCASPubMed Google Scholar
Hunt, D. M. et al. Molecular evolution of trichromacy in primates. Vision Res.38, 3299–3306 (1998). ArticleCASPubMed Google Scholar
Morgan, M. J., Adam, A. & Mollon, J. D. Dichromats detect colour-camouflaged objects that are not detected by trichromats. Proc. R. Soc. Lond. B248, 291–295 (1992). ArticleCAS Google Scholar
Dulai, K. S., von Dornum, M., Mollon, J. D. & Hunt, D. M. The evolution of trichromatic color vision by opsin gene duplication in New World and Old World primates. Genome Res.9, 629–638 (1999). CASPubMed Google Scholar
Surridge, A. K. & Mundy, N. I. Trans-specific evolution of opsin alleles and the maintenance of trichromatic colour vision in Callitrichine primates. Mol. Ecol.11, 2157–2169 (2002). ArticleCASPubMed Google Scholar
Smallwood, P. M. et al. Genetically engineered mice with an additional class of cone photoreceptors: implications for the evolution of color vision. Proc. Natl Acad. Sci. USA100, 11706–11711 (2003). ArticleCASPubMedPubMed Central Google Scholar
Jameson, K. A., Highnote, S. M. & Wasserman, L. M. Richer color experience in observers with multiple photopigment opsin genes. Psychonom. Bull. Rev.8, 244–261 (2001). This paper provides evidence for a sex difference in colour perception in humans, caused by retinal mosaicism of X-linked photopigment genes. ArticleCAS Google Scholar
Hedges, L. V. & Nowell, A. Sex differences in mental test scores, variability, and numbers of high-scoring individuals. Science269, 41–45 (1995). ArticleCASPubMed Google Scholar
Dragich, J., Houwink-Manville, I. & Schanen, C. Rett syndrome: a surprising result of mutation in MECP2. Hum. Mol. Genet.9, 2365–2375 (2000). ArticleCASPubMed Google Scholar
Thornhill, A. R. & Burgoyne, P. S. A paternally imprinted X chromosome retards the development of the early mouse embryo. Development118, 171–174 (1993). CASPubMed Google Scholar
Arnold, A. P. in Hormones, Brain, and Behavior (eds Pfaff, D. W., Arnold, A. P., Etgen, A., Fahrbach, S. & Rubin, R.) 105–135 (Academic, San Diego, 2002). Book Google Scholar
Cooke, B., Hegstrom, C. D., Villeneuve, L. S. & Breedlove, S. M. Sexual differentiation of the vertebrate brain: principles and mechanisms. Front. Neuroendocrinol.19, 323–362 (1998). ArticleCASPubMed Google Scholar
Forger, N. G., Hodges, L. L., Roberts, S. L. & Breedlove, S. M. Regulation of motoneuron death in the spinal nucleus of the bulbocavernosus. J. Neurobiol.23, 1192–1203 (1992). ArticleCASPubMed Google Scholar
Burgoyne, P. S. A Y-chromosomal effect on blastocyst cell number in mice. Development117, 341–345 (1993). CASPubMed Google Scholar
Burgoyne, P. S. et al. The genetic basis of XX–XY differences present before gonadal sex differentiation in the mouse. Phil. Trans. R. Soc. Lond. B350, 253–260 (1995). ArticleCAS Google Scholar
Renfree, M. B. & Short, R. V. Sex determination in marsupials: evidence for a marsupial-eutherian dichotomy. Phil. Trans. R. Soc. Lond. B322, 41–53 (1988). This classic review and reference 70 highlight one of the most striking examples of a sexual dimorphism that is probably caused by dosage differences in X-linked genes. ArticleCAS Google Scholar
Shaw, G., Harry, J. L., Whitworth, D. J. & Renfree, M. B. in Marsupial Biology Recent Research, New Perspectives (eds Saunders, N. & Hinds, L.) 132–141 (University of New South Wales Press Ltd, Sydney, Australia, 1997). Google Scholar
Dewing, P., Shi, T., Horvath, S. & Vilain, E. Sexually dimorphic gene expression in mouse brain precedes gonadal differentiation. Brain Res. Mol. Brain Res.118, 82–90 (2003). ArticleCASPubMed Google Scholar
Pilgrim, Ch. & Reisert, I. Differences between male and female brains: developmental mechanisms and implications. Horm. Metab. Res.24, 353–359 (1992). ArticleCASPubMed Google Scholar
Reisert, I. & Pilgrim, C. Sexual differentiation of monoaminergic neurons — genetic or epigenetic. Trends Neurosci.14, 467–473 (1991). Article Google Scholar
Sah, V. P. et al. A subset of p53-deficient embryos exhibit exencephaly. Nature Genet.10, 175–180 (1995). ArticleCASPubMed Google Scholar
Armstrong, J. F., Kaufman, M. H., Harrison, D. J. & Clarke, A. R. High-frequency developmental abnormalities in p53-deficient mice. Curr. Biol.5, 931–936 (1995). ArticleCASPubMed Google Scholar
Cranston, A. et al. Female embryonic lethality in mice nullizygous for both Msh2 and p53. Nature Genet.17, 114–118 (1997). ArticleCASPubMed Google Scholar
Juriloff, D. M. & Harris, M. J. Mouse models for neural tube closure defects. Hum. Mol. Genet.9, 993–1000 (2000). ArticleCASPubMed Google Scholar
Lovell-Badge, R. & Robertson, E. XY female mice resulting from a heritable mutation in the primary testis-determining gene, Tdy. Development109, 635–646 (1990). CASPubMed Google Scholar
Mahadevaiah, S. K. et al. Mouse homologues of the human AZF candidate gene RBM are expressed in spermatogonia and spermatids, and map to a Y chromosome deletion interval associated with a high incidence of sperm abnormalities. Hum. Mol. Genet.7, 715–727 (1998). ArticleCASPubMed Google Scholar
De Vries, G. J. et al. A model system for study of sex chromosome effects on sexually dimorphic neural and behavioral traits. J. Neurosci.22, 9005–9014 (2002). This paper provides evidence that confirms the importance of gonadal secretions in sexual differentiation of the brain, but describes a mouse model system in which the complement of sex chromosomes is made independent of the type of gonad, so that the role of each on brain phenotypes can be studied. ArticleCASPubMedPubMed Central Google Scholar
Markham, J. A. et al. Sex differences in mouse cortical thickness are independent of the complement of sex chromosomes. Neuroscience116, 71–75 (2003). ArticleCASPubMed Google Scholar
Wagner, C. K. et al. Neonatal mice possessing an Sry transgene show a masculinized pattern of progesterone receptor expression in the brain independent of sex chromosome status. Endocrinology145, 1046–1049 (2004). ArticleCASPubMed Google Scholar
Carruth, L. L., Reisert, I. & Arnold, A. P. Sex chromosome genes directly affect brain sexual differentiation. Nature Neurosci.5, 933–934 (2002). ArticleCASPubMed Google Scholar
Isles, A. R., Davies, W., Burrmann, D., Burgoyne, P. S. & Wilkinson, L. S. Effects on fear reactivity in XO mice are due to haploinsufficiency of a non-PAR X gene: implications for emotional function in Turner's syndrome. Hum. Mol. Genet. 6 July 2004 [epub ahead of print].
Smith, C. A. & Sinclair, A. H. Sex determination: insights from the chicken. BioEssays26, 120–132 (2004). ArticleCASPubMed Google Scholar
Hori, T., Asakawa, S., Itoh, Y., Shimizu, N. & Mizuno, S. Wpkci, encoding an altered form of PKCI, is conserved widely on the avian W chromosome and expressed in early female embryos: implication of its role in female sex determination. Mol. Biol. Cell11, 3645–3660 (2000). ArticleCASPubMedPubMed Central Google Scholar
O'Neill, M. et al. ASW: a gene with conserved avian W-linkage and female specific expression in chick embryonic gonad. Devel. Genes Evol.210, 243–249 (2000). ArticleCAS Google Scholar
Reed, K. J. & Sinclair, A. H. FET-1: a novel W-linked, female specific gene up-regulated in the embryonic chicken ovary. Gene Expr. Patterns2, 83–86 (2002). ArticleCASPubMed Google Scholar
Ceplitis, H. & Ellegren, H. Adaptive molecular evolution of HINTW, a female-specific gene in birds. Mol. Biol. Evol.21, 249–254 (2004). ArticleCASPubMed Google Scholar
Smith, C. A., Katz, M. & Sinclair, A. H. DMRT1 is upregulated in the gonads during female-to-male sex reversal in ZW chicken embryos. Biol. Reprod.68, 560–570 (2003). ArticleCASPubMed Google Scholar
Graves, J. A. Sex and death in birds: a model of dosage compensation that predicts lethality of sex chromosome aneuploids. Cytogenet. Genome Res.101, 278–282 (2003). ArticleCASPubMed Google Scholar
Teranishi, M. et al. Transcripts of the MHM region on the chicken Z chromosome accumulate as non-coding RNA in the nucleus of female cells adjacent to the DMRT1 locus. Chrom. Res.9, 147–165 (2001). ArticleCASPubMed Google Scholar
McQueen, H. A., McBride, D., Miele, G., Bird, A. P. & Clinton, M. Dosage compensation in birds. Curr. Biol.11, 253–257 (2001). ArticleCASPubMed Google Scholar
Agate, R. J. et al. Neural not gonadal origin of brain sex differences in a gynandromorphic finch. Proc. Natl Acad. Sci. USA100, 4873–4878 (2003). ArticleCASPubMedPubMed Central Google Scholar
Wade, J. Zebra finch sexual differentiation: the aromatization hypothesis revisited. Microsc. Res. Tech.54, 354–363 (2001). ArticleCASPubMed Google Scholar
Arnold, A. P. Sexual differentiation of the Zebra Finch song system: positive evidence, negative evidence, null hypotheses, and a paradigm shift. J. Neurobiol.33, 572–584 (1997). ArticleCASPubMed Google Scholar
Arnold, A. P. The gender of the voice within: the neural origin of sex differences in the brain. Curr. Opin. Neurobiol.13, 759–764 (2003). ArticleCASPubMed Google Scholar
Holloway, C. C. & Clayton, D. F. Estrogen synthesis in the male brain triggers development of the avian song control pathway in vitro. Nature Neurosci.4, 1–7 (2001). This paper provides important evidence for a sex difference inde novooestrogen synthesis in the forebrain of the developing zebra finch, a difference that contributes to further sexual differentiation of the brain. Article Google Scholar
Dittrich, F., Feng, Y., Metzdorf, R. & Gahr, M. Estrogen-inducible, sex-specific expression of brain-derived neurotrophic factor mRNA in a forebrain song control nucleus of the juvenile zebra finch. Proc. Natl Acad. Sci. USA96, 7986–7991 (1999). Article Google Scholar
Kim, Y. H., Perlman, W. R. & Arnold, A. P. Expression of androgen receptor mRNA in zebra finch song system: Developmental regulation by estrogen. J. Comp. Neurol.469, 535–547 (2004). ArticleCASPubMed Google Scholar
Wade, J. & Arnold, A. P. Functional testicular tissue does not masculinize development of the zebra finch song system. Proc. Natl Acad. Sci. USA93, 5264–5268 (1996). ArticleCASPubMedPubMed Central Google Scholar
Schlinger, B. A., Soma, K. K. & London, S. Neurosteroids and brain sexual differentiation. Trends Neurosci.24, 429–431 (2001). An interesting review of the evidence for neural origin of hormones that contribute to sexual differentiation of the neural song circuit. ArticleCASPubMed Google Scholar
Amateau, S. K., Alt, J. J., Stamps, C. L. & McCarthy, M. M. Brain estradiol content in newborn rats: sex differences, regional heterogeneity, and possible de novo synthesis by the female telencephalon. Endocrinology145, 2906–2917 (2004). This paper provides evidence that the postnatal male rat hippocampus has a higher level of oestradiol than the female hippocampus, possibly because of a sex difference in local synthesis of oestradiol, rather than sex differences in gonadal secretions. ArticleCASPubMed Google Scholar
Krets, O. et al. Hippocampal synapses depend on hippocampal estrogen synthesis. J. Neurosci.24, 5913–5921 (2004). ArticleCAS Google Scholar
Hojo, Y. et al. Adult male rat hippocampus synthesizes estradiol from pregnenolone by cytochromes P45017 alpha and P450 aromatase localized in neurons. Proc. Natl Acad. Sci. USA101, 865–870 (2004). ArticleCASPubMed Google Scholar
Fester, L. et al. Hippocampal synapse formation depends on hippocampal estrogen synthesis. Acta Neuropathol.106, 390 (2003). Google Scholar
De Vries, G. J. Sex differences in adult and developing brains: compensation, compensation, compensation. Endocrinology145, 1063–1068 (2004). ArticleCASPubMed Google Scholar