Expression and functions of neuronal gap junctions (original) (raw)
Bennett, M. V. L. in Handbook of Physiology Sect. I Vol. 1 (ed. Kandel, E. R.) 357–416 (Williams and Wilkins, Baltimore, Maryland, 1977). Google Scholar
Kumar, N. M. & Gilula, N. B. The gap junction communication channel. Cell84, 381–388 (1996). CASPubMed Google Scholar
Söhl, G. & Willecke, K. An update on connexin genes and their nomenclature in mouse and man. Cell Commun. Adhes.10, 173–180 (2003). PubMed Google Scholar
Söhl, G., Odermatt, B., Maxeiner, S., Degen, J. & Willecke, K. New insights into the expression and function of neural connexins with transgenic mouse mutant. Brain Res. Brain Res. Rev.47, 245–259 (2004). PubMed Google Scholar
Evans, W. H. & Martin, P. E. Gap junctions: structure and function (Review). Mol. Membr. Biol.19, 121–136 (2002). CASPubMed Google Scholar
Lampe, P. D. & Lau, A. F. Regulation of gap junctions by phosphorylation of connexins. Arch. Biochem. Biophys.384, 205–215 (2000). CASPubMed Google Scholar
Lampe, P. D. & Lau, A. F. The effects of connexin phosphorylation on gap junctional communication. Int. J. Biochem. Cell Biol.36, 1171–1186 (2004). CASPubMedPubMed Central Google Scholar
Nagy, J. I., Dudek, F. E. & Rash, J. E. Update on connexins and gap junctions in neurons and glia in the mammalian nervous system. Brain Res. Brain Res. Rev.47, 191–215 (2004). CASPubMed Google Scholar
Furshpan, E. J. & Potter, D. D. Transmission at the giant motor synapses of the crayfish. J. Physiol. (Lond.)145, 289–325 (1959). CAS Google Scholar
Korn, H., Sotelo, C. & Crepel, F. Electronic coupling between neurons in the rat lateral vestibular nucleus. Exp. Brain Res.16, 255–275 (1973). CASPubMed Google Scholar
Connors, B. W. & Long, M. A. Electrical synapses in the mammalian brain. Annu. Rev. Neurosci.27, 393–418 (2004). CASPubMed Google Scholar
Bennett, M. V. & Zukin, R. S. Electrical coupling and neuronal synchronization in the mammalian brain. Neuron41, 495–511 (2004). Provides a comprehensive explanation and definition of low-pass filter characteristics. CASPubMed Google Scholar
Hormuzdi, S. G., Filippov, M. A., Mitropoulou, G., Monyer, H. & Bruzzone, R. Electrical synapses: a dynamic signaling system that shapes the activity of neuronal networks. Biochim. Biophys. Acta1662, 113–137 (2004). CASPubMed Google Scholar
Alvarez-Maubecin, V., Garcia-Hernandez, F., Williams, J. T. & Van Bockstaele, E. J. Functional coupling between neurons and glia. J. Neurosci.20, 4091–4098 (2000). CASPubMedPubMed Central Google Scholar
Pakhotin, P. & Verkhratsky, A. Electrical synapses between Bergmann glia cells and Purkinje neurons in rat cerebellar slices. Mol. Cell. Neurosci.28, 79–84 (2005). PubMed Google Scholar
Gibson, J. R., Beierlein, M. & Connors, B. W. Functional properties of electrical synapses between inhibitory interneurons of neocortical layer 4. J. Neurophysiol.93, 467–480 (2005). PubMed Google Scholar
Buzsaki, G. & Chrobak, J. J. Temporal structure in spatially organized neuronal ensembles: a role for interneuronal networks. Curr. Opin. Neurobiol.5, 504–510 (1995). CASPubMed Google Scholar
Fricker, D. & Miles, R. Interneurons, spike timing, and perception. Neuron32, 771–774 (2001). CASPubMed Google Scholar
Smith, M. & Pereda, A. E. Chemical synaptic activity modulates nearby electrical synapses. Proc. Natl Acad. Sci. USA100, 4849–4854 (2003). CASPubMedPubMed Central Google Scholar
Pereda, A. E., Rash, J. E., Nagy, J. I. & Bennett, M. V. Dynamics of electrical transmission at club endings on the Mauthner cells. Brain Res. Brain Res. Rev.47, 227–244 (2004). CASPubMed Google Scholar
Iacobas, D. A. et al. Sensitivity of the brain transcriptome to connexin ablation. Biochem. Biophys. Acta 22 Dec 2004 (10.1016/j.bbamem.2004.12.002).
Filippov, M. A., Hormuzdi, S. G., Fuchs, E. C. & Monyer, H. A reporter allele for investigating connexin 26 gene expression in the mouse brain. Eur. J. Neurosci.18, 3183–3192 (2003). PubMed Google Scholar
Söhl, G., Güldenagel, M., Traub, O. & Willecke, K. Connexin expression in the retina. Brain Res. Brain Res. Rev.32, 138–145 (2000). PubMed Google Scholar
Dermietzel, R. et al. Differential expression of three gap junction proteins in developing and mature brain tissues. Proc. Natl Acad. Sci. USA86, 10148–10152 (1989). CASPubMedPubMed Central Google Scholar
Condorelli, D. F. et al. Cloning of a new gap junction gene (Cx36) highly expressed in mammalian brain neurons. Eur. J. Neurosci.10, 1202–1208 (1998). CASPubMed Google Scholar
Söhl, G., Degen, J., Teubner, B. & Willecke, K. The murine gap junction gene connexin36 is highly expressed in mouse retina and regulated during brain development. FEBS Lett.428, 27–31 (1998). PubMed Google Scholar
Maxeiner, S. et al. Spatiotemporal transcription of connexin45 during brain development results in neuronal expression in adult mice. Neuroscience119, 689–700 (2003). CASPubMed Google Scholar
Maxeiner, S. & Dedek, K. et al. Deletion of connexin45 in mouse retinal neurons disrupts rod/cone signaling pathway between AII amacrine and ON cone bipolar cells and leads to impaired visual transmission. J. Neurosci.25, 566–576 (2005). This study reports results that are similar to those obtained from CX36-deficient mice (see reference 35). Both CX36- and CX45-knockout studies indicate that CX36 and CX45 form heterotypic electrical synapses between AII amacrine and ON cone bipolar cells. CASPubMedPubMed Central Google Scholar
Hombach, S. et al. Functional expression of connexin57 in horizontal cells of the mouse retina. Eur. J. Neurosci.19, 2633–2640 (2004). PubMed Google Scholar
Bruzzone, R., Hormuzdi, S. G., Barbe, M. T., Herb, A. & Monyer, H. Pannexins, a family of gap junction proteins expressed in brain. Proc. Natl Acad. Sci. USA100, 13644–13649 (2003). CASPubMedPubMed Central Google Scholar
Condorelli, D. F., Belluardo, N., Trovato-Salinaro, A. & Mudo, G. Expression of Cx36 in mammalian neurons. Brain Res. Brain Res. Rev.32, 72–85 (2000). CASPubMed Google Scholar
Belluardo, N. et al. Expression of connexin36 in the adult and developing rat brain. Brain Res.865, 121–138 (2000). CASPubMed Google Scholar
Teubner, B. et al. Functional expression of the murine connexin36 gene coding for a neuron-specific gap junctional protein. J. Membr. Biol.176, 249–262 (2000). CASPubMedPubMed Central Google Scholar
Deans, M. R., Gibson, J. R., Sellitto, C., Connors, B. W. & Paul, D. L. Synchronous activity of inhibitory networks in neocortex requires electrical synapses containing connexin36. Neuron31, 477–485 (2001). Shows that rhythmic inhibitory potentials generated by low-threshold spiking interneurons of the neocortex could be induced, but show weak synchrony. CASPubMed Google Scholar
Güldenagel, M. et al. Visual transmission deficits in mice with targeted disruption of the gap junction gene connexin36. J. Neurosci.21, 6036–6044 (2001). In this study, the disruption of theCx36gene led to a reduction of the b-wave and indicated that the heterologous gap junction coupling between AII amacrine cells and ON cone bipolar cells is impaired in CX36-impaired mice. PubMedPubMed Central Google Scholar
Hormuzdi, S. G. et al. Impaired electrical signaling disrupts gamma frequency oscillations in connexin 36-deficient mice. Neuron31, 487–495 (2001). According to this report, targeted deletion ofCx36does not abolish the gamma network oscillations but does reduce their synchrony and overall power. CASPubMed Google Scholar
Degen, J. et al. Expression pattern of lacZ reporter gene representing connexin36 in transgenic mice. J. Comp. Neurol.473, 511–525 (2004). CASPubMed Google Scholar
Long, M. A., Deans, M. R., Paul, D. L. & Connors, B. W. Rhythmicity without synchrony in the electrically uncoupled inferior olive. J. Neurosci.22, 10898–10905 (2002). CASPubMedPubMed Central Google Scholar
Kistler W. M. et al. Analysis of Cx36 knockout does not support tenet that olivary gap junctions are required for complex spike synchronization and normal motor performance. Ann. NY Acad. Sci.978, 391–404 (2002). CASPubMed Google Scholar
De Zeeuw, C. I. et al. Deformation of network connectivity in the inferior olive of connexin 36-deficient mice is compensated by morphological and electrophysiological changes at the single neuron level. J. Neurosci.23, 4700–4711 (2003). CASPubMedPubMed Central Google Scholar
Frisch, C. et al. Memory impairment but no changes in brain cholinergic and monoaminergic levels after deletion of the neuronal gap junction protein connexin36 in mice. Behav. Brain Res.157, 177–185 (2005). CASPubMed Google Scholar
Kistler, W. M. & De Zeeuw, C. I. Dynamical working memory and timed responses: the role of reverberating loops in the olivo-cerebellar system. Neural Comput.14, 2597–2626 (2002). PubMed Google Scholar
Placantonakis, D. G., Bukovsky, A. A., Zeng, X. H., Kiem, H. P. & Welsh, J. P. Fundamental role of inferior olive connexin 36 in muscle coherence during tremor. Proc. Natl Acad. Sci. USA101, 7164–7169 (2004). CASPubMedPubMed Central Google Scholar
Mann-Metzer, P. & Yarom, Y. Electrotonic coupling interacts with intrinsic properties to generate synchronized activity in cerebellar networks of inhibitory interneurons. J. Neurosci.19, 3298–3306 (1999). CASPubMedPubMed Central Google Scholar
Cheron, G. et al. Inactivation of calcium-binding protein genes induces 160 Hz oscillations in the cerebellar cortex of alert mice. J. Neurosci.24, 434–441 (2004). CASPubMedPubMed Central Google Scholar
Suzuki, W. A. Episodic memory signals in the rat hippocampus. Neuron40, 1055–1056 (2003). CASPubMed Google Scholar
Dash, P. K., Hebert, A. E. & Runyan, J. D. A unified theory for systems and cellular memory consolidation. Brain Res. Brain Res. Rev.45, 30–37 (2004). PubMed Google Scholar
Buzsaki, G., Buhl, D. L., Harris, K. D., Csicsvari, J., Czeh, B. & Morozov, A. Hippocampal network patterns of activity in the mouse. Neuroscience116, 201–211 (2003). CASPubMed Google Scholar
Venance, L. et al. Connexin expression in electrically coupled postnatal rat brain neurons. Proc. Natl Acad. Sci. USA97, 10260–10265 (2000). CASPubMedPubMed Central Google Scholar
Buhl, D. L., Harris, K. D., Hormuzdi, S. G., Monyer, H. & Buzsaki, G. Selective impairment of hippocampal gamma oscillations in connexin-36 knock-out mouse in vivo. J. Neurosci.23, 1013–1018 (2003). CASPubMedPubMed Central Google Scholar
Maier, N. et al. Reduction of high-frequency network oscillations (ripples) and pathological network discharges in hippocampal slices from connexin 36-deficient mice. J. Physiol (Lond.).541, 521–528 (2002). CAS Google Scholar
Condorelli, D. F., Trovato-Salinaro, A., Mudo, G., Mirone, M. B. & Belluardo, N. Cellular expression of connexins in the rat brain: neuronal localization, effects of kainate-induced seizures and expression in apoptotic neuronal cells. Eur. J. Neurosci.18, 1807–1827 (2003). PubMed Google Scholar
Panchin, Y. et al. A ubiquitous family of putative gap junction molecules. Curr. Biol.10, R473–R474 (2000). CASPubMed Google Scholar
Bao, L., Locovei, S. & Dahl, G. Pannexin membrane channels are mechanosensitive conduits for ATP. FEBS Lett.572, 65–68 (2004). CASPubMed Google Scholar
Traub, R. D. & Bibbig, A. A model of high-frequency ripples in the hippocampus based on synaptic coupling plus axon-axon gap junctions between pyramidal neurons. J. Neurosci.20, 2086–2093 (2000). CASPubMedPubMed Central Google Scholar
Traub, R. D. et al. Axonal gap junctions between principal neurons: a novel source of network oscillations, and perhaps epileptogenesis. Rev. Neurosci.13, 1–30 (2002). PubMed Google Scholar
Traub, R. D., Bibbig, A., LeBeau, F. E., Buhl, E. H. & Whittington, M. A. Cellular mechanisms of neuronal population oscillations in the hippocampus in vitro. Annu. Rev. Neurosci.27, 247–278 (2004). CASPubMed Google Scholar
Draguhn, A., Traub, R. D., Schmitz, D. & Jefferys, J. G. Electrical coupling underlies high-frequency oscillations in the hippocampus in vitro. Nature394, 189–192 (1998). CASPubMed Google Scholar
Schmitz, D. et al. Axo–axonal coupling. A novel mechanism for ultrafast neuronal communication. Neuron31, 831–840 (2001). Reports dye coupling between putative axons of principal cells, as shown by confocal laser scanning micoscropy. CASPubMed Google Scholar
Spruston N. Axonal gap junctions send ripples through the hippocampus. Neuron31, 669–671 (2001). CASPubMed Google Scholar
Maier, N., Nimmrich, V. & Draguhn, A. Cellular and network mechanisms underlying spontaneous sharp wave–ripple complexes in mouse hippocampal slices. J. Physiol. (Lond.)550, 873–887 (2003). CAS Google Scholar
Towers, S. K. et al. Fast network oscillations in the rat dentate gyrus in vitro. J. Neurophysiol.87, 1165–1168 (2002). PubMed Google Scholar
LeBeau, F. E., Towers, S. K., Traub, R. D., Whittington, M. A. & Buhl, E. H. Fast network oscillations induced by potassium transients in the rat hippocampus in vitro. J. Physiol. (Lond.)542, 167–179 (2002). CAS Google Scholar
Pais, I. et al. Sharp-wave like activity in hippocampus in vitro in mice lacking the gap junction protein connexin 36. J. Neurophysiol.89, 2046–2054 (2003). CASPubMed Google Scholar
Gillies, M. J. et al. A model of atropine-resistant theta oscillations in rat hippocampal area CA1. J. Physiol. (Lond.)543, 779–793 (2002). CAS Google Scholar
Blatow, M. et al. A novel network of multipolar bursting interneurons generates theta frequency oscillations in neocortex. Neuron38, 805–817 (2003). CASPubMed Google Scholar
Montoro, R. J. & Yuste, R. Gap junctions in developing neocortex: a review. Brain Res. Brain Res. Rev.47, 216–226 (2004). CASPubMed Google Scholar
Galarreta, M. & Hestrin, S. Spike transmission and synchrony detection in networks of GABAergic interneurons. Science292, 2295–2299 (2001). CASPubMed Google Scholar
Fukuda, T. & Kosaka, T. Ultrastructural study of gap junctions between dendrites of parvalbumin-containing GABAergic neurons in various neocortical areas of the adult rat. Neuroscience120, 5–20 (2003). CASPubMed Google Scholar
Beierlein, M., Gibson, J. R. & Connors, B. W. A network of electrically coupled interneurons drives synchronized inhibition in neocortex. Nature Neurosci.3, 904–910 (2000). CASPubMed Google Scholar
Szabadics, J., Lorincz, A. & Tamas, G. Beta and gamma frequency synchronization by dendritic GABAergic synapses and gap junctions in a network of cortical interneurons. J. Neurosci.21, 5824–5831 (2001). CASPubMedPubMed Central Google Scholar
Liu, X. B. & Jones, E. G. Fine structural localization of connexin-36 immunoreactivity in mouse cerebral cortex and thalamus. J. Comp. Neurol.466, 457–467 (2003). PubMed Google Scholar
Long, M. A., Landisman, C. E. & Connors, B. W. Small clusters of electrically coupled neurons generate synchronous rhythms in the thalamic reticular nucleus. J. Neurosci.24, 341–349 (2004). CASPubMedPubMed Central Google Scholar
Usrey, W. M. Spike timing and visual processing in the retinogeniculocortical pathway. Philos. Trans. R. Soc. Lond. B357, 1729–1737 (2002). Google Scholar
Hughes, S. W. et al. Synchronized oscillations at alpha and theta frequencies in the lateral geniculate nucleus. Neuron42, 253–268 (2004). Showed that high-threshold bursts or burstlets are groups of spikelets with properties of electrotonically transmitted action potentials that are accompanied by dye coupling and abolished by the gap junction blocker CBX. CASPubMed Google Scholar
Cook, J. D. & Becker, E. L. Gap junctions in the vertebrate retina. Microsc. Res. Tech.31, 408–419 (1995). CASPubMed Google Scholar
Feigenspan, A., Teubner, B., Willecke, K. & Weiler, R. Expression of neuronal connexin36 in AII amacrine cells of the mammalian retina. J. Neurosci.21, 230–239 (2001). CASPubMedPubMed Central Google Scholar
Mills, S. L., O'Brien, J. J., Li, W., O'Brien, J. & Massey, S. C. Rod pathways in the mammalian retina use connexin 36. J. Comp. Neurol.436, 336–350 (2001). CASPubMedPubMed Central Google Scholar
Lee, E. J. et al. The immunocytochemical localization of connexin 36 at rod and cone gap junctions in the guinea pig retina. Eur. J. Neurosci.18, 2925–2934 (2003). PubMed Google Scholar
Feigenspan, A. et al. Expression of connexin36 in cone pedicles and OFF-cone bipolar cells of the mouse retina. J. Neurosci.24, 3325–3334 (2004). CASPubMedPubMed Central Google Scholar
Hidaka, S., Akahori, Y. & Kurosawa, Y. Dendrodendritic electrical synapses between mammalian retinal ganglion cells. J. Neurosci.24, 10553–10567 (2004). CASPubMedPubMed Central Google Scholar
Deans, M. R., Volgyi, B., Goodenough, D. A., Bloomfield, S. A. & Paul, D. L. Connexin36 is essential for transmission of rod-mediated visual signals in the mammalian retina. Neuron36, 703–712 (2002). CASPubMedPubMed Central Google Scholar
Schubert, T. et al. Connexin36 mediates coupling of α-ganglion cells in mouse retina. J. Comp. Neurol. (in the press).
Deans, M. R. & Paul, D. L. Mouse horizontal cells do not express connexin26 or connexin36. Cell Commun. Adhes.8, 361–366 (2001). CASPubMedPubMed Central Google Scholar
Dang, L. et al. Connexin 36 in photoreceptor cells: studies on transgenic rod-less and cone-less mouse retinas. Mol. Vis.10, 323–327 (2004). CASPubMed Google Scholar
Demb, J. B. & Pugh, E. N. Connexin36 forms synapses essential for night vision. Neuron36, 551–553 (2002). CASPubMed Google Scholar
Massey, S. C. et al. Multiple neuronal connexins in the mammalian retina. Cell Commun. Adhes.10, 425–430 (2003). CASPubMed Google Scholar
DeVries, S. H., Qi, X., Smith, R., Makous, W. & Sterling, P. Electrical coupling between mammalian cones. Curr. Biol.12, 1900–1907 (2002). CASPubMed Google Scholar
Laughlin, S. B. Retinal function: coupling cones clarifies vision. Curr. Biol.12, R833–R834 (2002). CASPubMed Google Scholar
Veruki, M. L. & Hartveit, E. AII (rod) amacrine cells form a network of electrically coupled interneurons in the mammalian retina. Neuron33, 935–946 (2002). CASPubMed Google Scholar
Hornstein, E. P., Verweij, J. & Schnapf, J. L. Electrical coupling between red and green cones in primate retina. Nature Neurosci.7, 745–750 (2004). CASPubMed Google Scholar
Li, W. & DeVries, S. H. Separate blue and green cone networks in the mammalian retina. Nature Neurosci.7, 751–756 (2004). CASPubMed Google Scholar
Tsukamoto, Y., Morigiwa, K., Ueda, M. & Sterling, P. Microcircuits for night vision in mouse retina. J. Neurosci.21, 8616–8623 (2001). CASPubMedPubMed Central Google Scholar
Li, W., Keung, J. W. & Massey, S. C. Direct synaptic connections between rods and OFF cone bipolar cells in the rabbit retina. J. Comp. Neurol.474, 1–12 (2004). PubMed Google Scholar
Kamermans, M. & Fahrenfort, I. Ephaptic interactions within a chemical synapse: hemichannel-mediated ephaptic inhibition in the retina. Curr. Opin. Neurobiol.14, 531–541 (2004). CASPubMed Google Scholar
He, S., Weiler, R. & Vaney, D. I. Endogenous dopaminergic regulation of horizontal cell coupling in the mammalian retina. J. Comp. Neurol.418, 33–40 (2000). CASPubMed Google Scholar
Janssen-Bienhold, U. et al. Identification and localization of connexin26 within the photoreceptor-horizontal cell synaptic complex. Vis. Neurosci.18, 169–178 (2001). CASPubMed Google Scholar
Kamermans, M. et al. Hemichannel-mediated inhibition in the outer retina. Science292, 1178–1180 (2001). CASPubMed Google Scholar
Pottek, M. et al. Contribution of connexin26 to electrical feedback inhibition in the turtle retina. J. Comp. Neurol.466, 468–477 (2003). CASPubMed Google Scholar
Güldenagel, M. et al. Expression patterns of connexin genes in mouse retina. J. Comp. Neurol.425, 193–201 (2000). PubMed Google Scholar
Bloomfield, S. A., Xin, D. & Osborne, T. Light-induced modulation of coupling between AII amacrine cells in the rabbit retina. Vis. Neurosci.14 565–576 (1997). CASPubMed Google Scholar
Bloomfield, S. A. & Volgyi, B. Function and plasticity of homologous coupling between AII amacrine cells. Vision Res.44, 3297–3306 (2004). CASPubMed Google Scholar
Veruki, M. L. & Hartveit, E. Electrical synapses mediate signal transmission in the rod pathway of the mammalian retina. J. Neurosci.22, 10558–10566 (2002). CASPubMedPubMed Central Google Scholar
Mas, C. et al. Association of the connexin36 gene with juvenile myoclonic epilepsy. J. Med. Genet.41, e93 (2004). CASPubMedPubMed Central Google Scholar
Krüger, O. et al. Defective vascular development in connexin 45-deficient mice. Development127, 4179–4193 (2000). PubMed Google Scholar
Srinivas, M. et al. Functional properties of channels formed by the neuronal gap junction protein connexin36. J. Neurosci.19, 9848–9855 (1999). CASPubMedPubMed Central Google Scholar
Moreno, A. P., Laing, J. G., Beyer, E. C. & Spray, D. C. Properties of gap junction channels formed of connexin 45 endogenously expressed in human hepatoma (SKHep1) cells. Am. J. Physiol.268, C356–C365 (1995). CASPubMed Google Scholar
Martinez, A. D., Hayrapetyan, V., Moreno, A. P. & Beyer, E. C. A carboxyl terminal domain of connexin43 is critical for gap junction plaque formation but not for homo- or hetero-oligomerization. Cell Commun. Adhes.10, 323–328 (2003). CASPubMedPubMed Central Google Scholar