Pain and emotion interactions in subregions of the cingulate gyrus (original) (raw)

References

  1. Aggleton, J. P. The Amygdala (Oxford Univ. Press, New York, USA, 2001).
    Google Scholar
  2. Davidson, R. J., Scherer, K. R. & Goldsmith, H. H. Handbook of Affective Sciences (Oxford Univ. Press, New York, USA, 2003).
    Google Scholar
  3. Melzack, R. & Casey, K. L. in The Skin Senses (ed. Kenshalo, D. R.) 423–439 (Thomas, Springfield, Illinois, 1968).
    Google Scholar
  4. Derbyshire, S. W. G. Exploring the pain neuromatrix. Curr. Rev. Pain 6, 467–477 (2000).
    Article Google Scholar
  5. Peyron, R., Laurent, B. & Garcia-Larrea, L. Functional imaging of brain responses to pain: a review and meta-analysis. Neurophysiol. Clin. 30, 263–288 (2000).
    Article CAS PubMed Google Scholar
  6. Vogt, B. A., Sikes, R. W. & Vogt, L. J. in Neurobiology of Cingulate Cortex and Limbic Thalamus (eds Vogt, B. A. & Gabriel, M.) 19–70, 313–344 (Birkhäuser Boston, Massachusetts, USA, 1993). This review provides the first definition of the medial pain system from nociceptors to the cerebral cortex through the MITN, including circuits, neurophysiology and opioid-receptor binding. Previous efforts emphasized the importance of the thalamus for the two systems because the projections of nociceptive thalamic nuclei were not fully understood. Chapter 1 of this book reports, for the first time, the logical and factual basis of the midcingulate region in monkey and rabbit brains.
    Book Google Scholar
  7. MacLean, P. The Triune Brain in Evolution; Role in Paleocerebral Functions (Plenum, New York, USA, 1990).
    Google Scholar
  8. Bush, G. et al. Dorsal anterior cingulate cortex: a role in reward-based decision-making. Proc. Natl Acad. Sci. USA 99, 523–528 (2002).
    Article CAS PubMed Google Scholar
  9. Rolls, E. T. et al. Representations of pleasant and painful touch in the human orbitofrontal and cingulate cortices. Cereb. Cortex 13, 308–317 (2003).
    Article CAS PubMed Google Scholar
  10. Bartels, A. & Zeki, S. The neural basis of romantic love. Neuroreport 11, 3829–3834 (2000).
    Article CAS PubMed Google Scholar
  11. Craig, A. D. Pain mechanisms: labeled lines versus convergence in central processing. Annu. Rev. Neurosci. 26, 1–30 (2003).
    Article CAS PubMed Google Scholar
  12. Neafsey, E. J., Terreberry, R. R., Hurley, K. M., Ruit, K. G. & Frysztak, R. J. in Neurobiology of Cingulate Cortex and Limbic Thalamus (eds Vogt, B. A. & Gabriel, M.) 206–223 (Birkhäuser Boston, Massachusetts, USA, 1993). Reviews the evidence for the concept that area 25 is a visceromotor control region, based on electrical stimulation and connection studies, mainly in rodents. Unravelling the mechanism of autonomic regulation by the sACC is pivotal to understanding the subdivisions of the ACC into its subgenual and pregenual parts.
    Book Google Scholar
  13. Buchanan, S. L. & Powell, D. A. in Neurobiology of Cingulate Cortex and Limbic Thalamus (eds Vogt, B. A. & Gabriel, M.) 206–223 (Birkhäuser Boston, Massachusetts, USA, 1993).
    Google Scholar
  14. Sikes, R. W. & Vogt, B. A. Nociceptive neurons in area 24 of rabbit cingulate cortex. J. Neurophsyiol. 68, 1720–1731 (1992).
    Article CAS Google Scholar
  15. Vogt, B. A., Vogt, L. J., Nimchinsky, E. A. & Hof, P. R. in Handbook of Chemical Neuroanatomy (eds Bloom, F. E., Björkund, A. & Hökfelt, T.) 455–528 (Elsevier, San Diego, 1997).
    Google Scholar
  16. Vogt, B. A., Hof, P. R. & Vogt, L. J. in The Human Nervous System 2nd edn (eds Paxinos, G. & Mai, J. K.) 915–949 (Academic, 2004).
    Book Google Scholar
  17. Vogt, B. A., Berger, G. R. & Derbyshire, S. W. J. Structural and functional dichotomy of human midcingulate cortex. Eur. J. Neurosci. 18, 3134–3144 (2003).
    Article PubMed PubMed Central Google Scholar
  18. Vogt, B. A., Vogt, L., Farber, N. B. & Bush, G. Architecture and neurocytology of monkey cingulate gyrus. J. Comp. Neurol. 485, 218–239 (2005).
    Article PubMed PubMed Central Google Scholar
  19. George, M. S. et al. Brain activity during transient sadness and happiness in healthy women. Am. J. Psychiatry 152, 341–351 (1995). One of the first demonstrations of where in the cingulate gyrus memories with negative valences are localized — in the sACC. This subregion provides a substrate for vulnerability to major depression.
    Article CAS PubMed Google Scholar
  20. Ploner, M., Gross, J., Timmermann, L. & Schnitzler, A. Cortical representation of first and second pain sensation in humans. Proc. Natl Acad. Sci. 99, 12444–12448 (2002).
    Article CAS PubMed PubMed Central Google Scholar
  21. Dum, R. P. & Strick, P. L. The origin of corticospinal projections from the premotor areas in the frontal lobe. J. Neurosci. 11, 667–689 (1991).
    Article CAS PubMed PubMed Central Google Scholar
  22. Morecraft, R. J. & Van Hoesen, G. W. Cingulate input to the primary and supplementary motor cortices in the rhesus monkey: evidence for somatotopy in areas 24c and 23c. J. Comp. Neurol. 322, 471–489 (1992).
    Article CAS PubMed Google Scholar
  23. Shima, K. et al. Two movement-related foci in the primate cingulate cortex observed in signal-triggered and self-paced forelimb movements. J. Neurophysiol. 65, 188–202 (1991). This study provides the neurophysiological characterization of the two cingulate motor areas. These motor areas are key outputs from the cingulate gyrus for mediating skeletomotor functions, they are pivotal to the subregional differentiation of the MCC into two parts, and they suggest that there are different mechanisms for somatic pain responses. The functions of the cingulate gyrus cannot be understood outside the context of these two motor areas.
    Article CAS PubMed Google Scholar
  24. Büchel, C. et al. Dissociable neural responses related to pain intensity, stimulus intensity, and stimulus awareness within the anterior cingulate cortex: a parametric single-trial laser functional magnetic resonance imaging study. J. Neurosci. 22, 970–976 (2002).
    Article PubMed PubMed Central Google Scholar
  25. Ballantine, H. T., Cassidy, W. L., Flanagan, N. B. & Marino, R. Jr. Stereotaxic anterior cingulotomy for neuropsychiatric illness and intractable pain. J. Neurosurg. 26, 488–495 (1967).
    Article PubMed Google Scholar
  26. Gabriel, M. in Neurobiology of Cingulate Cortex and Limbic Thalamus (eds Vogt, B. A. & Gabriel, M.) 478–523 (Birkhäuser Boston, Massachusetts, USA, 1993).
    Book Google Scholar
  27. Ploner, M., Freund, H. -J. & Schnitzler, A. Pain affect without pain sensation in a patient with a postcentral lesion. Pain 81, 211–214 (1999).
    Article CAS PubMed Google Scholar
  28. Vogt, B. A., Rosene, D. L. & Pandya, D. N. Thalamic and cortical afferents differentiate anterior from posterior cingulate cortex in the monkey. Science 204, 205–207 (1979). The first demonstration of MITN projections to the cingulate cortex. These nuclei were later shown to project to many limbic areas in the primate cerebral cortex, including the anterior insula and orbitofrontal cortex, as well as the amygdala, and this projection system might be a network integrator for the limbic/medial parts of the pain neuromatrix.
    Article CAS PubMed Google Scholar
  29. Casey, K. L. Unit analysis of nociceptive mechanisms in the thalamus of the awake squirrel monkey. J. Neurophysiol. 29, 727–750 (1966).
    Article CAS PubMed Google Scholar
  30. Dong, W. K., Ryu, H. & Wagman, I. H. Nociceptive responses of neurons in medial thalamus and their relationship to spinothalamic pathways. J. Neurophysiol. 41, 1592–1613 (1978).
    Article CAS PubMed Google Scholar
  31. Lenz, F. A. et al. Painful stimuli evoke potentials recorded over the human anterior cingulate gyrus. J. Neurophysiol. 79, 2231–2234 (1998).
    Article CAS PubMed Google Scholar
  32. Kulkarni, B. et al. Attention to pain localization and unpleasantness discriminate the functions of the medial and lateral pain systems. Eur. J. Neurosci. (in the press).
  33. Vogt, B. A., Derbyshire, S. W. J. & Jones, A. K. P. Pain processing in four regions of human cingulate cortex localized with coregistered PET and MR imaging. Eur. J. Neurosci. 8, 1461–1473 (1996).
    Article CAS PubMed Google Scholar
  34. Derbyshire, S. W. G., Jones, A. K. P. & Gyulai, F. Pain processing during three levels of noxious stimulation produces differential patterns of cerebral activity. Pain 73, 431–445 (1997).
    Article CAS PubMed Google Scholar
  35. Coghill, R. C., Sang, C. N., Maisog, J. M. & Iadarola, M. J. Pain intensity processing within the human brain: a bilateral, distributed mechanism. J. Neurophysiol. 82, 1934–1943 (1999).
    Article CAS PubMed Google Scholar
  36. Strigo, I. A., Duncan, G. H., Boivin, M. & Bushnell, M. C. Differentiation of visceral and cutaneous pain in the human brain. J. Neurophysiol. 89, 3294–3303 (2003).
    Article PubMed Google Scholar
  37. Binkofski, F. et al. Somatic and limbic cortex activation in esophageal distension: a functional magnetic resonance imaging study. Ann. Neurol. 44, 811–815 (1998).
    Article CAS PubMed Google Scholar
  38. Denton, D. et al. Correlation of regional cerebral blood flow and change of plasma sodium concentration during genesis and satiation of thirst. Proc. Natl Acad. Sci. USA 96, 2532–2537 (1999).
    Article CAS PubMed PubMed Central Google Scholar
  39. Matsuura, S. et al. Human brain region response to distention or cold stimulation of the bladder: a positron emission tomography study. J. Urol 168, 2035–2039 (2002).
    Article PubMed Google Scholar
  40. Mertz, H. et al. Regional cerebral activation in irritable bowel syndrome and control subjects with painful and nonpainful rectal distension. Gastroenterology 118, 842–848 (2000).
    Article CAS PubMed Google Scholar
  41. Naliboff, B. D. et al. Cerebral activation in patients with irritable bowel syndrome and control subjects during rectosigmoid stimulation. Psychosom. Med. 63, 365–375 (2001).
    Article CAS PubMed Google Scholar
  42. Zald, D. H., Lee, J. T., Fluegel, K. W. & Pardo, J. V. Aversive gustatory stimulation activates limbic circuits in human. Brain 121, 1143–1154 (1998).
    Article PubMed Google Scholar
  43. Svensson, P., Minoshima, S., Beydoun, A., Morrow, T. J. & Casey, K. L. Cerebral processing of acute skin and muscle pain in humans. J. Neurophysiol. 78, 450–460 (1997).
    Article CAS PubMed Google Scholar
  44. Villanueva, L., Cliffer, K. D., Sorkin, L. S., Le Bars, D. & Willis, W. D. Jr. Convergence of heterotopic nociceptive information onto neurons of caudal medullary reticular formation in monkey (Macacca fascicularis). J. Neurophysiol. 63, 1118–1127 (1990). The first demonstration of the functional properties of neurons in the pronociceptive SRD nucleus in the monkey. As this nucleus projects to the parafascicular nucleus in the thalamus, it is a pivotal source of nociceptive input to the cingulate gyrus and partially explains the large receptive fields of nociceptive neurons in the cingulate gyrus.
    Article CAS PubMed Google Scholar
  45. Villanueva, L., Debois, C., Le Bars, D. & Bernard, J. -F. Organization of diencephalic projections from the medullary subnucleus reticularis dorsalis: a retrograde and anterograde tracer study in the rat. J. Comp. Neurol. 390, 133–160 (1998).
    Article CAS PubMed Google Scholar
  46. Bester, H., Bourgeais, L., Villanueva, L., Besson, J. -M. & Bernard, J. -F. Differential projections to the intralaminar and gustatory thalamus from the parabrachial area: a PHA-L study in the rat. J. Comp. Neurol. 405, 421–449 (1999).
    Article CAS PubMed Google Scholar
  47. Saper, C. B. Pain as a visceral sensation. Prog. Brain Res. 122, 237–243 (2000).
    Article CAS PubMed Google Scholar
  48. Hatanka, N. et al. Thalamocortical and intracortical connections of monkey cingulate motor areas. J. Comp. Neurol. 462, 121–138 (2003).
    Article Google Scholar
  49. Schlereth, T., Baumgärtner, U., Magerl, W., Stoeter, P. & Treede, R. -D. Left-hemisphere dominance in early nociceptive processing in the human parasylvian cortex. Neuroimage 20, 441–454 (2003).
    Article PubMed Google Scholar
  50. Bentley, D. E., Derbyshire, S. W. G., Youell, P. D. & Jones, A. K. P. Caudal cingulate cortex involvement in pain processing: an inter-individual laser evoked potential source localization study using realistic head models. Pain 102, 265–271 (2003).
    Article PubMed Google Scholar
  51. Niddam, D. M., Chen, L. -F., Yu-Te, W. & Hsieh, J. -C. Spatiotemporal brain dynamics in response to muscle stimulation. Neuroimage 25, 942–951 (2005).
    Article PubMed Google Scholar
  52. Huang, M. -X., Harrington, D. L., Paulson, K. M., Weisend, M. P. & Lee, R. R. Temporal dynamics of ipsilateral and contralateral motor activity during voluntary finger movement. Hum. Brain Mapp. 23, 26–39 (2004).
    Article PubMed PubMed Central Google Scholar
  53. Phan, K. L., Wager, T., Taylor, S. F. & Liberzon, I. Functional neuroanatomy of emotion: a meta-analysis of emotion activation studies in PET and fMRI. Neuroimage 16, 331–348 (2002).
    Article PubMed Google Scholar
  54. Vogt, B. A. & Pandya, D. N. Cingulate cortex of rhesus monkey. II. Cortical afferents. J. Comp. Neurol. 262, 271–289 (1987).
    Article CAS PubMed Google Scholar
  55. Whalen, P. J. et al. Masked presentations of emotional facial expressions modulate amygdala activity without explicit knowledge. J. Neurosci. 18, 411–418 (1998).
    Article CAS PubMed PubMed Central Google Scholar
  56. Bernard, J. F., Huang, G. F. & Besson, J. M. Nucleus centralis of the amygdala and the globus pallidus ventralis: electrophysiological evidence for an involvement in pain processes. J. Neurophysiol. 68, 551–569 (1992).
    Article CAS PubMed Google Scholar
  57. Simpson, J. R., Drevets, W. C., Snyder, A. Z., Gusnard, D. A. & Raichle, M. E. Emotion-induced changes in human medial prefrontal cortex: II. During anticipatory anxiety. Proc. Natl Acad. Sci. USA 98, 688–693 (2001).
    Article CAS PubMed PubMed Central Google Scholar
  58. Porro, C. A. et al. Does anticipation of pain affect cortical nociceptive systems? J. Neurosci. 22, 3206–3214 (2002).
    Article CAS PubMed PubMed Central Google Scholar
  59. Faymonville, M. -E. et al. Neural mechanisms of antinociceptive effects of hypnosis. Anesthesiology 92, 1257–1267 (2000).
    Article CAS PubMed Google Scholar
  60. Rainville, P., Duncan, G. H. & Price, D. D. Pain affect encoded in human anterior cingulate but not somatosensory cortex. Science 277, 968–971 (1997).
    Article CAS PubMed Google Scholar
  61. Vogt, B. A., Watanabe, H., Grootoonk, S. & Jones, A. K. P. Topography of diprenorphine binding in human cingulate gyrus and adjacent cortex derived from PET and MR images. Hum. Brain Mapp. 3, 1–12 (1995).
    Article Google Scholar
  62. Petrovic, P., Kalso, E., Petersson, K. M. & Ingvar, M. Placebo and opioid analgesia — imaging a shared neuronal network. Science 295, 1737–1740 (2002). The first study to show colocalization of opioid binding and the opioid placebo in the cingulate cortex.
    Article CAS PubMed Google Scholar
  63. Zubieta, J. -K. et al. Regulation of human affective responses by anterior cingulate and limbic μ-opioid neurotransmission. Arch. Gen. Psychiatry 60, 1145–1153 (2003).
    Article CAS PubMed Google Scholar
  64. Pariente, J., White, P., Frackowiak, R. S. J. & Lewith, G. Expectancy and belief modulate the neuronal substrates of pain treated by acupuncture. Neuroimage 25, 1161–1167 (2005).
    Article PubMed Google Scholar
  65. Adler, L. J. et al. Regional brain activity associated with fentanyl analgesia elucidated by positron emission tomography. Anesth. Analg. 84, 120–126 (1997).
    Article CAS PubMed Google Scholar
  66. Bantick, S. J. et al. Imaging how attention modulates pain in humans using functional MRI. Brain 125, 310–319 (2002).
    Article PubMed Google Scholar
  67. Becerra, L. R. et al. Human brain activation under controlled thermal stimulation and habituation to noxious heat: an fMRI study. Magn. Reson. Med. 41, 1044–1057 (1999).
    Article CAS PubMed Google Scholar
  68. Bornhovd, K. et al. Painful stimuli evoke different stimulus-response functions in the amygdala, prefrontal, insula and somatosensory cortex: a single-trial fMRI study. Brain 125, 1326–1336 (2002).
    Article CAS PubMed Google Scholar
  69. Brooks, J. C. W., Nurmikko, T. J., Bimson, W. E., Singh, K. D. & Roberts, N. fMRI of thermal pain: effects of stimulus laterality and attention. Neuroimage 15, 293–301 (2002).
    Article PubMed Google Scholar
  70. Casey, K. L., Morrow, T. J., Lorenz, J. & Minoshima, S. Temporal and spatial dynamics of human forebrain activity during heat pain: analysis by positron emission tomography. J. Neurophysiol. 85, 951–959 (2001).
    Article CAS PubMed Google Scholar
  71. Casey, K. L., Minoshima, S., Morrow, T. J. & Koeppe, R. A. Comparison of human cerebral activation patterns during cutaneous warmth, heat pain, and deep cold pain. J. Neurophysiol. 76, 571–581 (1996).
    Article CAS PubMed Google Scholar
  72. Coghill, R. C. et al. Distributed processing of pain and vibration by the human brain. J. Neurosci. 14, 4095–4108 (1994).
    Article CAS PubMed PubMed Central Google Scholar
  73. Craig, A. D., Reiman, E. M., Evans, A. & Bushnell, M. C. Functional imaging of an illusion of pain. Nature 384, 258–260 (1996).
    Article CAS PubMed Google Scholar
  74. Davis, K. D., Kwan, C. L., Crawley, A. P. & Mikulis, D. J. Functional MRI study of thalamic and cortical activations evoked by cutaneous heat, cold and tactile stimuli. J. Neurophysiol. 80, 1533–1546 (1998).
    Article CAS PubMed Google Scholar
  75. Derbyshire, S. W. G. & Jones, A. K. P. Cerebral responses to a continual tonic pain stimulus measured using positron emission tomography. Pain 76, 127–135 (1998).
    Article CAS PubMed Google Scholar
  76. Derbyshire, S. W. G. et al. Cerebral responses to noxious thermal stimulation in chronic low back pain patients and normal controls. Neuroimage 16, 158–168 (2002).
    Article CAS PubMed Google Scholar
  77. Derbyshire, S. W. G. et al. Cerebral responses to pain in patients with atypical facial pain measured by positron emission tomography. J. Neurol. Neurosurg. Psychiatry 57, 1166–1172 (1994).
    Article CAS PubMed PubMed Central Google Scholar
  78. Gelnar, P. A., Krauss, B. R., Sheehe, P. R., Szeverenyi, N. M. & Apkarian, A. V. A comparative fMRI study of cortical representations for thermal painful, vibrotactile, and motor performance tasks. Neuroimage 10, 460–482 (1999).
    Article CAS PubMed Google Scholar
  79. Hofbauer, R. K., Rainville, P., Duncan, G. H. & Bushnell, M. C. Cortical representation of the sensory dimension of pain. J. Neurophysiol. 86, 402–411 (2001).
    Article CAS PubMed Google Scholar
  80. Jones, A. K. P., Brown, W. D., Friston, K. J., Qi, L. Y. & Frackowiak, R. S. J. Cortical and subcortical localization of response to pain in man using positron emission tomography. Proc. R. Soc. Lond. 244, 39–44 (1991).
    Article CAS Google Scholar
  81. Kwan, C. L., Crawley, A. P., Mikulis, D. J. & Davis, K. D. An fMRI study of the anterior cingulate cortex and surrounding medial wall activations evoked by noxious cutaneous heat and cold stimuli. Pain 85, 359–374 (2000).
    Article CAS PubMed Google Scholar
  82. Kurata, J., Thulborn, K. R., Gyulai, F. E. & Firestone, L. L. Early decay of pain-related cerebral activation in functional magnetic resonance imaging. Anesthesiology 96, 35–44 (2002).
    Article PubMed Google Scholar
  83. Paulson, P. M., Minoshima, S., Morrow, T. J. & Casey, K. L. Gender differences in pain perception and patterns of cerebral activation during noxious heat stimulation in humans. Pain 76, 223–229 (1998).
    Article CAS PubMed PubMed Central Google Scholar
  84. Peyron, R. et al. Parietal and cingulate processes in central pain. A combined positron emission tomography (PET) and functional magnetic resonance imaging (fMRI) study of an unusual case. Pain 84, 77–87 (2000).
    Article CAS PubMed Google Scholar
  85. Ploghaus, A. et al. Dissociating pain from its anticipation in the human brain. Science 284, 1979–1981 (1999).
    Article CAS PubMed Google Scholar
  86. Svensson, P. et al. Cerebral blood-flow changes evoked by two levels of painful heat stimulation: a positron emission tomography study in humans. Eur. J. Pain 2, 95–107 (1998).
    Article CAS PubMed Google Scholar
  87. Talbot, J. D. et al. Multiple representations of pain in human cerebral cortex. Science 251, 1355–1358 (1991).
    Article CAS PubMed Google Scholar
  88. Tolle, T. R. et al. Region-specific encoding of sensory and affective components of pain in the human brain: a positron emission tomography correlation analysis. Ann. Neurol. 45, 40–47 (1999).
    Article CAS PubMed Google Scholar
  89. Tracey, I. et al. Noxious hot and cold stimulation produce common patterns of brain activation in humans: a functional magnetic resonance imaging study. Neurosci. Lett. 288, 159–162 (2000).
    Article CAS PubMed Google Scholar
  90. Xu, X. et al. Functional localization of pain perception in the human brain studied by PET. Neuroreport 8, 555–559 (1997).
    Article CAS PubMed Google Scholar
  91. Alexander, G. E. et al. Individual differences in PET activation of object perception and attention systems predict face matching accuracy. Neuroreport 10, 1965–1971 (1999).
    Article CAS PubMed Google Scholar
  92. Bernstein, L. J., Beig, S., Siegenthaler, A. L. & Grady, C. L. The effect of encoding strategy on the neural correlates of memory for faces. Neuropsychologia 40, 86–89 (2002).
    Article PubMed Google Scholar
  93. Damasio, A. R. et al. Subcortical and cortical brain activity during the feeling of self-generated emotions. Nature Neurosci. 3, 1049–1056 (2000).
    Article CAS PubMed Google Scholar
  94. Dolan, R. J., Morris, J. S. & de Gelder, B. Crossmodal binding of fear in voice and face. Proc. Natl Acad. Sci. USA 98, 10006–10010 (2001).
    Article CAS PubMed PubMed Central Google Scholar
  95. Dougherty, D. D. et al. Anger in healthy men: a PET study using script-driven imagery. Biol. Psychiatry 46, 466–472 (1999).
    Article CAS PubMed Google Scholar
  96. Druzgal, T. J. & D'Esposito, M. A neural network reflecting decisions about human faces. Neuron 32, 947–955 (2001).
    Article CAS PubMed Google Scholar
  97. Fink, G. R. et al. Cerebral representation of one's own past: neural networks involved in autobiographical memory. J. Neurosci. 16, 4275–4282 (1996).
    Article CAS PubMed PubMed Central Google Scholar
  98. Gemar, M. C., Kapur, S., Segal, Z. V., Brown, G. M. & Houle, S. Effects of self-generated sad mood on regional cerebral activity: a PET study in normal subjects. Depression 4, 81–88 (1996).
    Article CAS PubMed Google Scholar
  99. George, M. S., Ketter, T. A., Parekh, P. I., Herscovitch, P. & Post, R. M. Gender differences in regional cerebral blood flow during transient self-induced sadness or happiness. Biol. Psychiatry 40, 859–871 (1996).
    Article CAS PubMed Google Scholar
  100. Izard, C. E. et al. The ontogeny and significance of infants' facial expressions in the first 9 months of life. Dev. Psychol. 31, 997–1013 (1995).
    Article Google Scholar
  101. Kesler-West, M. L. et al. Neural substrate of facial emotion processing using fMRI. Brain Res. Cogn. Brain Res. 11, 213–226 (2001).
    Article CAS PubMed Google Scholar
  102. Liotti, M. et al. Differential limbic-cortical correlates of sadness and anxiety in healthy subjects: implications for affective disorders. Biol. Psychiatry 48, 30–42 (2000).
    Article CAS PubMed Google Scholar
  103. Maddock, R. J., Garrett, A. S. & Buonocore, M. H. Remembering familiar people: the posterior cingulate cortex and autobiographical memory retrieval. Neuroscience 104, 667–676 (2001).
    Article CAS PubMed Google Scholar
  104. Maguire, E. A. & Mummery, C. J. Differential modulation of a common memory retrieval network revealed by positron emission tomography. Hippocampus 9, 54–61 (1999).
    Article CAS PubMed Google Scholar
  105. Mayberg, H. S. et al. Reciprocal limbic-cortical function and negative mood; converging findings in depression and normal sadness. Am. J. Psychiatry 156, 675–682 (1999).
    CAS PubMed Google Scholar
  106. Morris, J. S. et al. A differential neural response in the human amygdala to fearful and happy facial expressions. Nature 383, 812–815 (1996).
    Article CAS PubMed Google Scholar
  107. Morris, J. S. et al. A neuromodulatory role for the human amygdala in processing emotional facial expressions. Brain 121, 47–57 (1998).
    Article PubMed Google Scholar
  108. Phillips, M. L. et al. Investigation of facial recognition memory and happy and sad facial expression perception: an fMRI study. Psychiatry Res. 83, 127–138 (1998).
    Article CAS PubMed Google Scholar
  109. Pietrini, P., Guazzelli, M., Baso, G., Jaffe, K. & Grafman, J. Neural correlates of imaginal aggressive behavior assessed by positron emission tomography in healthy subjects. Am. J. Psychiatry 157, 1772–1781 (2000).
    Article CAS PubMed Google Scholar
  110. Shah, N. J. et al. The neural correlates of person familiarity: a functional magnetic resonance imaging study with clinical implications. Brain 124, 804–815 (2001).
    Article CAS PubMed Google Scholar
  111. Sprengelmeyer, R., Rausch, M., Eysel, U. T. & Przuntek, H. Neural structures associated with recognition of facial expressions of basic emotions. Proc. R. Soc. Lond. B 265, 1927–1931 (1998).
    Article CAS Google Scholar
  112. Williams, L. M. et al. Arousal dissociates amygdala and hippocampal fear responses: evidence from simultaneous fMRI and skin conductance recording. Neuroimage 14, 1070–1079 (2001).
    Article CAS PubMed Google Scholar

Download references