Pain and emotion interactions in subregions of the cingulate gyrus (original) (raw)
References
Aggleton, J. P. The Amygdala (Oxford Univ. Press, New York, USA, 2001). Google Scholar
Davidson, R. J., Scherer, K. R. & Goldsmith, H. H. Handbook of Affective Sciences (Oxford Univ. Press, New York, USA, 2003). Google Scholar
Melzack, R. & Casey, K. L. in The Skin Senses (ed. Kenshalo, D. R.) 423–439 (Thomas, Springfield, Illinois, 1968). Google Scholar
Derbyshire, S. W. G. Exploring the pain neuromatrix. Curr. Rev. Pain6, 467–477 (2000). Article Google Scholar
Peyron, R., Laurent, B. & Garcia-Larrea, L. Functional imaging of brain responses to pain: a review and meta-analysis. Neurophysiol. Clin.30, 263–288 (2000). ArticleCASPubMed Google Scholar
Vogt, B. A., Sikes, R. W. & Vogt, L. J. in Neurobiology of Cingulate Cortex and Limbic Thalamus (eds Vogt, B. A. & Gabriel, M.) 19–70, 313–344 (Birkhäuser Boston, Massachusetts, USA, 1993). This review provides the first definition of the medial pain system from nociceptors to the cerebral cortex through the MITN, including circuits, neurophysiology and opioid-receptor binding. Previous efforts emphasized the importance of the thalamus for the two systems because the projections of nociceptive thalamic nuclei were not fully understood. Chapter 1 of this book reports, for the first time, the logical and factual basis of the midcingulate region in monkey and rabbit brains. Book Google Scholar
MacLean, P. The Triune Brain in Evolution; Role in Paleocerebral Functions (Plenum, New York, USA, 1990). Google Scholar
Bush, G. et al. Dorsal anterior cingulate cortex: a role in reward-based decision-making. Proc. Natl Acad. Sci. USA99, 523–528 (2002). ArticleCASPubMed Google Scholar
Rolls, E. T. et al. Representations of pleasant and painful touch in the human orbitofrontal and cingulate cortices. Cereb. Cortex13, 308–317 (2003). ArticleCASPubMed Google Scholar
Craig, A. D. Pain mechanisms: labeled lines versus convergence in central processing. Annu. Rev. Neurosci.26, 1–30 (2003). ArticleCASPubMed Google Scholar
Neafsey, E. J., Terreberry, R. R., Hurley, K. M., Ruit, K. G. & Frysztak, R. J. in Neurobiology of Cingulate Cortex and Limbic Thalamus (eds Vogt, B. A. & Gabriel, M.) 206–223 (Birkhäuser Boston, Massachusetts, USA, 1993). Reviews the evidence for the concept that area 25 is a visceromotor control region, based on electrical stimulation and connection studies, mainly in rodents. Unravelling the mechanism of autonomic regulation by the sACC is pivotal to understanding the subdivisions of the ACC into its subgenual and pregenual parts. Book Google Scholar
Buchanan, S. L. & Powell, D. A. in Neurobiology of Cingulate Cortex and Limbic Thalamus (eds Vogt, B. A. & Gabriel, M.) 206–223 (Birkhäuser Boston, Massachusetts, USA, 1993). Google Scholar
Sikes, R. W. & Vogt, B. A. Nociceptive neurons in area 24 of rabbit cingulate cortex. J. Neurophsyiol.68, 1720–1731 (1992). ArticleCAS Google Scholar
Vogt, B. A., Vogt, L. J., Nimchinsky, E. A. & Hof, P. R. in Handbook of Chemical Neuroanatomy (eds Bloom, F. E., Björkund, A. & Hökfelt, T.) 455–528 (Elsevier, San Diego, 1997). Google Scholar
Vogt, B. A., Hof, P. R. & Vogt, L. J. in The Human Nervous System 2nd edn (eds Paxinos, G. & Mai, J. K.) 915–949 (Academic, 2004). Book Google Scholar
Vogt, B. A., Berger, G. R. & Derbyshire, S. W. J. Structural and functional dichotomy of human midcingulate cortex. Eur. J. Neurosci.18, 3134–3144 (2003). ArticlePubMedPubMed Central Google Scholar
Vogt, B. A., Vogt, L., Farber, N. B. & Bush, G. Architecture and neurocytology of monkey cingulate gyrus. J. Comp. Neurol.485, 218–239 (2005). ArticlePubMedPubMed Central Google Scholar
George, M. S. et al. Brain activity during transient sadness and happiness in healthy women. Am. J. Psychiatry152, 341–351 (1995). One of the first demonstrations of where in the cingulate gyrus memories with negative valences are localized — in the sACC. This subregion provides a substrate for vulnerability to major depression. ArticleCASPubMed Google Scholar
Ploner, M., Gross, J., Timmermann, L. & Schnitzler, A. Cortical representation of first and second pain sensation in humans. Proc. Natl Acad. Sci.99, 12444–12448 (2002). ArticleCASPubMedPubMed Central Google Scholar
Dum, R. P. & Strick, P. L. The origin of corticospinal projections from the premotor areas in the frontal lobe. J. Neurosci.11, 667–689 (1991). ArticleCASPubMedPubMed Central Google Scholar
Morecraft, R. J. & Van Hoesen, G. W. Cingulate input to the primary and supplementary motor cortices in the rhesus monkey: evidence for somatotopy in areas 24c and 23c. J. Comp. Neurol.322, 471–489 (1992). ArticleCASPubMed Google Scholar
Shima, K. et al. Two movement-related foci in the primate cingulate cortex observed in signal-triggered and self-paced forelimb movements. J. Neurophysiol.65, 188–202 (1991). This study provides the neurophysiological characterization of the two cingulate motor areas. These motor areas are key outputs from the cingulate gyrus for mediating skeletomotor functions, they are pivotal to the subregional differentiation of the MCC into two parts, and they suggest that there are different mechanisms for somatic pain responses. The functions of the cingulate gyrus cannot be understood outside the context of these two motor areas. ArticleCASPubMed Google Scholar
Büchel, C. et al. Dissociable neural responses related to pain intensity, stimulus intensity, and stimulus awareness within the anterior cingulate cortex: a parametric single-trial laser functional magnetic resonance imaging study. J. Neurosci.22, 970–976 (2002). ArticlePubMedPubMed Central Google Scholar
Ballantine, H. T., Cassidy, W. L., Flanagan, N. B. & Marino, R. Jr. Stereotaxic anterior cingulotomy for neuropsychiatric illness and intractable pain. J. Neurosurg.26, 488–495 (1967). ArticlePubMed Google Scholar
Gabriel, M. in Neurobiology of Cingulate Cortex and Limbic Thalamus (eds Vogt, B. A. & Gabriel, M.) 478–523 (Birkhäuser Boston, Massachusetts, USA, 1993). Book Google Scholar
Ploner, M., Freund, H. -J. & Schnitzler, A. Pain affect without pain sensation in a patient with a postcentral lesion. Pain81, 211–214 (1999). ArticleCASPubMed Google Scholar
Vogt, B. A., Rosene, D. L. & Pandya, D. N. Thalamic and cortical afferents differentiate anterior from posterior cingulate cortex in the monkey. Science204, 205–207 (1979). The first demonstration of MITN projections to the cingulate cortex. These nuclei were later shown to project to many limbic areas in the primate cerebral cortex, including the anterior insula and orbitofrontal cortex, as well as the amygdala, and this projection system might be a network integrator for the limbic/medial parts of the pain neuromatrix. ArticleCASPubMed Google Scholar
Casey, K. L. Unit analysis of nociceptive mechanisms in the thalamus of the awake squirrel monkey. J. Neurophysiol.29, 727–750 (1966). ArticleCASPubMed Google Scholar
Dong, W. K., Ryu, H. & Wagman, I. H. Nociceptive responses of neurons in medial thalamus and their relationship to spinothalamic pathways. J. Neurophysiol.41, 1592–1613 (1978). ArticleCASPubMed Google Scholar
Lenz, F. A. et al. Painful stimuli evoke potentials recorded over the human anterior cingulate gyrus. J. Neurophysiol.79, 2231–2234 (1998). ArticleCASPubMed Google Scholar
Kulkarni, B. et al. Attention to pain localization and unpleasantness discriminate the functions of the medial and lateral pain systems. Eur. J. Neurosci. (in the press).
Vogt, B. A., Derbyshire, S. W. J. & Jones, A. K. P. Pain processing in four regions of human cingulate cortex localized with coregistered PET and MR imaging. Eur. J. Neurosci.8, 1461–1473 (1996). ArticleCASPubMed Google Scholar
Derbyshire, S. W. G., Jones, A. K. P. & Gyulai, F. Pain processing during three levels of noxious stimulation produces differential patterns of cerebral activity. Pain73, 431–445 (1997). ArticleCASPubMed Google Scholar
Coghill, R. C., Sang, C. N., Maisog, J. M. & Iadarola, M. J. Pain intensity processing within the human brain: a bilateral, distributed mechanism. J. Neurophysiol.82, 1934–1943 (1999). ArticleCASPubMed Google Scholar
Strigo, I. A., Duncan, G. H., Boivin, M. & Bushnell, M. C. Differentiation of visceral and cutaneous pain in the human brain. J. Neurophysiol.89, 3294–3303 (2003). ArticlePubMed Google Scholar
Binkofski, F. et al. Somatic and limbic cortex activation in esophageal distension: a functional magnetic resonance imaging study. Ann. Neurol.44, 811–815 (1998). ArticleCASPubMed Google Scholar
Denton, D. et al. Correlation of regional cerebral blood flow and change of plasma sodium concentration during genesis and satiation of thirst. Proc. Natl Acad. Sci. USA96, 2532–2537 (1999). ArticleCASPubMedPubMed Central Google Scholar
Matsuura, S. et al. Human brain region response to distention or cold stimulation of the bladder: a positron emission tomography study. J. Urol168, 2035–2039 (2002). ArticlePubMed Google Scholar
Mertz, H. et al. Regional cerebral activation in irritable bowel syndrome and control subjects with painful and nonpainful rectal distension. Gastroenterology118, 842–848 (2000). ArticleCASPubMed Google Scholar
Naliboff, B. D. et al. Cerebral activation in patients with irritable bowel syndrome and control subjects during rectosigmoid stimulation. Psychosom. Med.63, 365–375 (2001). ArticleCASPubMed Google Scholar
Zald, D. H., Lee, J. T., Fluegel, K. W. & Pardo, J. V. Aversive gustatory stimulation activates limbic circuits in human. Brain121, 1143–1154 (1998). ArticlePubMed Google Scholar
Svensson, P., Minoshima, S., Beydoun, A., Morrow, T. J. & Casey, K. L. Cerebral processing of acute skin and muscle pain in humans. J. Neurophysiol.78, 450–460 (1997). ArticleCASPubMed Google Scholar
Villanueva, L., Cliffer, K. D., Sorkin, L. S., Le Bars, D. & Willis, W. D. Jr. Convergence of heterotopic nociceptive information onto neurons of caudal medullary reticular formation in monkey (Macacca fascicularis). J. Neurophysiol.63, 1118–1127 (1990). The first demonstration of the functional properties of neurons in the pronociceptive SRD nucleus in the monkey. As this nucleus projects to the parafascicular nucleus in the thalamus, it is a pivotal source of nociceptive input to the cingulate gyrus and partially explains the large receptive fields of nociceptive neurons in the cingulate gyrus. ArticleCASPubMed Google Scholar
Villanueva, L., Debois, C., Le Bars, D. & Bernard, J. -F. Organization of diencephalic projections from the medullary subnucleus reticularis dorsalis: a retrograde and anterograde tracer study in the rat. J. Comp. Neurol.390, 133–160 (1998). ArticleCASPubMed Google Scholar
Bester, H., Bourgeais, L., Villanueva, L., Besson, J. -M. & Bernard, J. -F. Differential projections to the intralaminar and gustatory thalamus from the parabrachial area: a PHA-L study in the rat. J. Comp. Neurol.405, 421–449 (1999). ArticleCASPubMed Google Scholar
Hatanka, N. et al. Thalamocortical and intracortical connections of monkey cingulate motor areas. J. Comp. Neurol.462, 121–138 (2003). Article Google Scholar
Schlereth, T., Baumgärtner, U., Magerl, W., Stoeter, P. & Treede, R. -D. Left-hemisphere dominance in early nociceptive processing in the human parasylvian cortex. Neuroimage20, 441–454 (2003). ArticlePubMed Google Scholar
Bentley, D. E., Derbyshire, S. W. G., Youell, P. D. & Jones, A. K. P. Caudal cingulate cortex involvement in pain processing: an inter-individual laser evoked potential source localization study using realistic head models. Pain102, 265–271 (2003). ArticlePubMed Google Scholar
Niddam, D. M., Chen, L. -F., Yu-Te, W. & Hsieh, J. -C. Spatiotemporal brain dynamics in response to muscle stimulation. Neuroimage25, 942–951 (2005). ArticlePubMed Google Scholar
Huang, M. -X., Harrington, D. L., Paulson, K. M., Weisend, M. P. & Lee, R. R. Temporal dynamics of ipsilateral and contralateral motor activity during voluntary finger movement. Hum. Brain Mapp.23, 26–39 (2004). ArticlePubMedPubMed Central Google Scholar
Phan, K. L., Wager, T., Taylor, S. F. & Liberzon, I. Functional neuroanatomy of emotion: a meta-analysis of emotion activation studies in PET and fMRI. Neuroimage16, 331–348 (2002). ArticlePubMed Google Scholar
Vogt, B. A. & Pandya, D. N. Cingulate cortex of rhesus monkey. II. Cortical afferents. J. Comp. Neurol.262, 271–289 (1987). ArticleCASPubMed Google Scholar
Whalen, P. J. et al. Masked presentations of emotional facial expressions modulate amygdala activity without explicit knowledge. J. Neurosci.18, 411–418 (1998). ArticleCASPubMedPubMed Central Google Scholar
Bernard, J. F., Huang, G. F. & Besson, J. M. Nucleus centralis of the amygdala and the globus pallidus ventralis: electrophysiological evidence for an involvement in pain processes. J. Neurophysiol.68, 551–569 (1992). ArticleCASPubMed Google Scholar
Simpson, J. R., Drevets, W. C., Snyder, A. Z., Gusnard, D. A. & Raichle, M. E. Emotion-induced changes in human medial prefrontal cortex: II. During anticipatory anxiety. Proc. Natl Acad. Sci. USA98, 688–693 (2001). ArticleCASPubMedPubMed Central Google Scholar
Faymonville, M. -E. et al. Neural mechanisms of antinociceptive effects of hypnosis. Anesthesiology92, 1257–1267 (2000). ArticleCASPubMed Google Scholar
Rainville, P., Duncan, G. H. & Price, D. D. Pain affect encoded in human anterior cingulate but not somatosensory cortex. Science277, 968–971 (1997). ArticleCASPubMed Google Scholar
Vogt, B. A., Watanabe, H., Grootoonk, S. & Jones, A. K. P. Topography of diprenorphine binding in human cingulate gyrus and adjacent cortex derived from PET and MR images. Hum. Brain Mapp.3, 1–12 (1995). Article Google Scholar
Petrovic, P., Kalso, E., Petersson, K. M. & Ingvar, M. Placebo and opioid analgesia — imaging a shared neuronal network. Science295, 1737–1740 (2002). The first study to show colocalization of opioid binding and the opioid placebo in the cingulate cortex. ArticleCASPubMed Google Scholar
Zubieta, J. -K. et al. Regulation of human affective responses by anterior cingulate and limbic μ-opioid neurotransmission. Arch. Gen. Psychiatry60, 1145–1153 (2003). ArticleCASPubMed Google Scholar
Pariente, J., White, P., Frackowiak, R. S. J. & Lewith, G. Expectancy and belief modulate the neuronal substrates of pain treated by acupuncture. Neuroimage25, 1161–1167 (2005). ArticlePubMed Google Scholar
Adler, L. J. et al. Regional brain activity associated with fentanyl analgesia elucidated by positron emission tomography. Anesth. Analg.84, 120–126 (1997). ArticleCASPubMed Google Scholar
Bantick, S. J. et al. Imaging how attention modulates pain in humans using functional MRI. Brain125, 310–319 (2002). ArticlePubMed Google Scholar
Becerra, L. R. et al. Human brain activation under controlled thermal stimulation and habituation to noxious heat: an fMRI study. Magn. Reson. Med.41, 1044–1057 (1999). ArticleCASPubMed Google Scholar
Bornhovd, K. et al. Painful stimuli evoke different stimulus-response functions in the amygdala, prefrontal, insula and somatosensory cortex: a single-trial fMRI study. Brain125, 1326–1336 (2002). ArticleCASPubMed Google Scholar
Brooks, J. C. W., Nurmikko, T. J., Bimson, W. E., Singh, K. D. & Roberts, N. fMRI of thermal pain: effects of stimulus laterality and attention. Neuroimage15, 293–301 (2002). ArticlePubMed Google Scholar
Casey, K. L., Morrow, T. J., Lorenz, J. & Minoshima, S. Temporal and spatial dynamics of human forebrain activity during heat pain: analysis by positron emission tomography. J. Neurophysiol.85, 951–959 (2001). ArticleCASPubMed Google Scholar
Casey, K. L., Minoshima, S., Morrow, T. J. & Koeppe, R. A. Comparison of human cerebral activation patterns during cutaneous warmth, heat pain, and deep cold pain. J. Neurophysiol.76, 571–581 (1996). ArticleCASPubMed Google Scholar
Craig, A. D., Reiman, E. M., Evans, A. & Bushnell, M. C. Functional imaging of an illusion of pain. Nature384, 258–260 (1996). ArticleCASPubMed Google Scholar
Davis, K. D., Kwan, C. L., Crawley, A. P. & Mikulis, D. J. Functional MRI study of thalamic and cortical activations evoked by cutaneous heat, cold and tactile stimuli. J. Neurophysiol.80, 1533–1546 (1998). ArticleCASPubMed Google Scholar
Derbyshire, S. W. G. & Jones, A. K. P. Cerebral responses to a continual tonic pain stimulus measured using positron emission tomography. Pain76, 127–135 (1998). ArticleCASPubMed Google Scholar
Derbyshire, S. W. G. et al. Cerebral responses to noxious thermal stimulation in chronic low back pain patients and normal controls. Neuroimage16, 158–168 (2002). ArticleCASPubMed Google Scholar
Derbyshire, S. W. G. et al. Cerebral responses to pain in patients with atypical facial pain measured by positron emission tomography. J. Neurol. Neurosurg. Psychiatry57, 1166–1172 (1994). ArticleCASPubMedPubMed Central Google Scholar
Gelnar, P. A., Krauss, B. R., Sheehe, P. R., Szeverenyi, N. M. & Apkarian, A. V. A comparative fMRI study of cortical representations for thermal painful, vibrotactile, and motor performance tasks. Neuroimage10, 460–482 (1999). ArticleCASPubMed Google Scholar
Hofbauer, R. K., Rainville, P., Duncan, G. H. & Bushnell, M. C. Cortical representation of the sensory dimension of pain. J. Neurophysiol.86, 402–411 (2001). ArticleCASPubMed Google Scholar
Jones, A. K. P., Brown, W. D., Friston, K. J., Qi, L. Y. & Frackowiak, R. S. J. Cortical and subcortical localization of response to pain in man using positron emission tomography. Proc. R. Soc. Lond.244, 39–44 (1991). ArticleCAS Google Scholar
Kwan, C. L., Crawley, A. P., Mikulis, D. J. & Davis, K. D. An fMRI study of the anterior cingulate cortex and surrounding medial wall activations evoked by noxious cutaneous heat and cold stimuli. Pain85, 359–374 (2000). ArticleCASPubMed Google Scholar
Kurata, J., Thulborn, K. R., Gyulai, F. E. & Firestone, L. L. Early decay of pain-related cerebral activation in functional magnetic resonance imaging. Anesthesiology96, 35–44 (2002). ArticlePubMed Google Scholar
Paulson, P. M., Minoshima, S., Morrow, T. J. & Casey, K. L. Gender differences in pain perception and patterns of cerebral activation during noxious heat stimulation in humans. Pain76, 223–229 (1998). ArticleCASPubMedPubMed Central Google Scholar
Peyron, R. et al. Parietal and cingulate processes in central pain. A combined positron emission tomography (PET) and functional magnetic resonance imaging (fMRI) study of an unusual case. Pain84, 77–87 (2000). ArticleCASPubMed Google Scholar
Ploghaus, A. et al. Dissociating pain from its anticipation in the human brain. Science284, 1979–1981 (1999). ArticleCASPubMed Google Scholar
Svensson, P. et al. Cerebral blood-flow changes evoked by two levels of painful heat stimulation: a positron emission tomography study in humans. Eur. J. Pain2, 95–107 (1998). ArticleCASPubMed Google Scholar
Talbot, J. D. et al. Multiple representations of pain in human cerebral cortex. Science251, 1355–1358 (1991). ArticleCASPubMed Google Scholar
Tolle, T. R. et al. Region-specific encoding of sensory and affective components of pain in the human brain: a positron emission tomography correlation analysis. Ann. Neurol.45, 40–47 (1999). ArticleCASPubMed Google Scholar
Tracey, I. et al. Noxious hot and cold stimulation produce common patterns of brain activation in humans: a functional magnetic resonance imaging study. Neurosci. Lett.288, 159–162 (2000). ArticleCASPubMed Google Scholar
Xu, X. et al. Functional localization of pain perception in the human brain studied by PET. Neuroreport8, 555–559 (1997). ArticleCASPubMed Google Scholar
Alexander, G. E. et al. Individual differences in PET activation of object perception and attention systems predict face matching accuracy. Neuroreport10, 1965–1971 (1999). ArticleCASPubMed Google Scholar
Bernstein, L. J., Beig, S., Siegenthaler, A. L. & Grady, C. L. The effect of encoding strategy on the neural correlates of memory for faces. Neuropsychologia40, 86–89 (2002). ArticlePubMed Google Scholar
Damasio, A. R. et al. Subcortical and cortical brain activity during the feeling of self-generated emotions. Nature Neurosci.3, 1049–1056 (2000). ArticleCASPubMed Google Scholar
Dolan, R. J., Morris, J. S. & de Gelder, B. Crossmodal binding of fear in voice and face. Proc. Natl Acad. Sci. USA98, 10006–10010 (2001). ArticleCASPubMedPubMed Central Google Scholar
Dougherty, D. D. et al. Anger in healthy men: a PET study using script-driven imagery. Biol. Psychiatry46, 466–472 (1999). ArticleCASPubMed Google Scholar
Druzgal, T. J. & D'Esposito, M. A neural network reflecting decisions about human faces. Neuron32, 947–955 (2001). ArticleCASPubMed Google Scholar
Fink, G. R. et al. Cerebral representation of one's own past: neural networks involved in autobiographical memory. J. Neurosci.16, 4275–4282 (1996). ArticleCASPubMedPubMed Central Google Scholar
Gemar, M. C., Kapur, S., Segal, Z. V., Brown, G. M. & Houle, S. Effects of self-generated sad mood on regional cerebral activity: a PET study in normal subjects. Depression4, 81–88 (1996). ArticleCASPubMed Google Scholar
George, M. S., Ketter, T. A., Parekh, P. I., Herscovitch, P. & Post, R. M. Gender differences in regional cerebral blood flow during transient self-induced sadness or happiness. Biol. Psychiatry40, 859–871 (1996). ArticleCASPubMed Google Scholar
Izard, C. E. et al. The ontogeny and significance of infants' facial expressions in the first 9 months of life. Dev. Psychol.31, 997–1013 (1995). Article Google Scholar
Kesler-West, M. L. et al. Neural substrate of facial emotion processing using fMRI. Brain Res. Cogn. Brain Res.11, 213–226 (2001). ArticleCASPubMed Google Scholar
Liotti, M. et al. Differential limbic-cortical correlates of sadness and anxiety in healthy subjects: implications for affective disorders. Biol. Psychiatry48, 30–42 (2000). ArticleCASPubMed Google Scholar
Maddock, R. J., Garrett, A. S. & Buonocore, M. H. Remembering familiar people: the posterior cingulate cortex and autobiographical memory retrieval. Neuroscience104, 667–676 (2001). ArticleCASPubMed Google Scholar
Maguire, E. A. & Mummery, C. J. Differential modulation of a common memory retrieval network revealed by positron emission tomography. Hippocampus9, 54–61 (1999). ArticleCASPubMed Google Scholar
Mayberg, H. S. et al. Reciprocal limbic-cortical function and negative mood; converging findings in depression and normal sadness. Am. J. Psychiatry156, 675–682 (1999). CASPubMed Google Scholar
Morris, J. S. et al. A differential neural response in the human amygdala to fearful and happy facial expressions. Nature383, 812–815 (1996). ArticleCASPubMed Google Scholar
Morris, J. S. et al. A neuromodulatory role for the human amygdala in processing emotional facial expressions. Brain121, 47–57 (1998). ArticlePubMed Google Scholar
Phillips, M. L. et al. Investigation of facial recognition memory and happy and sad facial expression perception: an fMRI study. Psychiatry Res.83, 127–138 (1998). ArticleCASPubMed Google Scholar
Pietrini, P., Guazzelli, M., Baso, G., Jaffe, K. & Grafman, J. Neural correlates of imaginal aggressive behavior assessed by positron emission tomography in healthy subjects. Am. J. Psychiatry157, 1772–1781 (2000). ArticleCASPubMed Google Scholar
Shah, N. J. et al. The neural correlates of person familiarity: a functional magnetic resonance imaging study with clinical implications. Brain124, 804–815 (2001). ArticleCASPubMed Google Scholar
Sprengelmeyer, R., Rausch, M., Eysel, U. T. & Przuntek, H. Neural structures associated with recognition of facial expressions of basic emotions. Proc. R. Soc. Lond. B265, 1927–1931 (1998). ArticleCAS Google Scholar
Williams, L. M. et al. Arousal dissociates amygdala and hippocampal fear responses: evidence from simultaneous fMRI and skin conductance recording. Neuroimage14, 1070–1079 (2001). ArticleCASPubMed Google Scholar