Altman, J. Proliferation and migration of undifferentiated precursor cells in the rat during postnatal gliogenesis. Exp. Neurol.16, 263–278 (1966). ArticleCAS Google Scholar
Choi, B. H., Kim, R. C. & Lapham, L. W. Do radial glia give rise to both astroglial and oligodendroglial cells? Dev. Brain Res.8, 119–130 (1983). Article Google Scholar
Choi, B. H. & Kim, R. C. Expression of glial fibrillary acidic protein by immature oligodendroglia and its implications. J. Neuroimmunol.8, 215–235 (1985). ArticleCAS Google Scholar
Hirano, M. & Goldman, J. E. Gliogenesis in the rat spinal cord: evidence for origin of astrocytes and oligodendrocytes from radial precursors. J. Neurosci. Res.21, 155–167 (1988). ArticleCAS Google Scholar
Warf, B. C., Fok-Seang, J. & Miller, R. H. Evidence for the ventral origin of oligodendrocyte precursors in the rat spinal cord. J. Neurosci.11, 2477–2488 (1991). ArticleCAS Google Scholar
Pringle, N. P. & Richardson, W. D. A singularity of PDGFα-receptor expression in the dorsoventral axis of the neural tube may define the origin of the oligodendrocyte lineage. Development117, 525–533 (1993). CASPubMed Google Scholar
Noll, E. & Miller, R. H. Oligodendrocyte precursors originate at the ventral ventricular zone dorsal to the ventral midline region in the embryonic rat spinal cord. Development118, 563–573 (1993). CASPubMed Google Scholar
Yu, W.-P., Collarini, E. J., Pringle, N. P. & Richardson, W. D. Embryonic expression of myelin genes: evidence for a focal source of oligodendrocyte precursors in the ventricular zone of the neural tube. Neuron12, 1353–1362 (1994). ArticleCAS Google Scholar
Timsit, S. et al. Oligodendrocytes originate in a restricted zone of the embryonic ventral neural tube defined by DM-20 mRNA expression. J. Neurosci.15, 1012–1024 (1995). ArticleCAS Google Scholar
Lu, Q. R. et al. Sonic hedgehog-regulated oligodendrocyte lineage genes encoding bHLH proteins in the mammalian central nervous system. Neuron25, 317–329 (2000). ArticleCAS Google Scholar
Takebayashi, H. et al. Dynamic expression of basic helix–loop–helix Olig family members: implication of Olig2 in neuron and oligodendrocyte differentiation and identification of a new member, Olig3. Mech. Dev.99, 143–148 (2000). ArticleCAS Google Scholar
Zhou, Q., Wang, S. & Anderson, D. J. Identification of a novel family of oligodendrocyte lineage-specific basic helix–loop–helix transcription factors. Neuron25, 331–343 (2000). ArticleCAS Google Scholar
Rowitch, D. H. Glial specification in the vertebrate neural tube. Nature Rev. Neurosci.5, 409–419 (2004). ArticleCAS Google Scholar
Tekki-Kessaris, N. et al. Hedgehog-dependent oligodendrocyte lineage specification in the telencephalon. Development128, 2545–2554 (2001). CASPubMed Google Scholar
Spassky, N. et al. Sonic hedgehog-dependent emergence of oligodendrocytes in the telencephalon: evidence for a source of oligodendrocytes in the olfactory bulb that is independent of PDGFRα signaling. Development128, 4993–5004 (2001). CASPubMed Google Scholar
Olivier, C. et al. Monofocal origin of telencephalic oligodendrocytes in the chick embryo: the entopeduncular area. Development128, 1757–1769 (2001). CASPubMed Google Scholar
Jessell, T. M. Neuronal specification in the spinal cord; inductive signals and transcriptional codes. Nature Rev. Genet.1, 20–29 (2001). Article Google Scholar
Cai, J. et al. Generation of oligodendrocyte precursor cells from mouse dorsal spinal cord independent of Nkx6 regulation and Shh signaling. Neuron45, 41–53 (2005). Describes studies withNkx6.1/Nkx6.2compound knockout mice, showing sonic hedgehog-independent production of oligodendrocyte precursors (OLPs) in the dorsal spinal cord. ArticleCAS Google Scholar
Vallstedt, A., Klos, J. M. & Ericson, J. Multiple dorsoventral origins of oligodendrocyte generation in the spinal cord and hindbrain. Neuron45, 55–67 (2005). Like reference 18, this describes studies withNkx6-null mice that demonstrate production of oligodendrocyte precursors in the dorsal spinal cord and hindbrain, and provides evidence for the involvement of BMPs in dorsal specification events. Vallstedtet al. also show that the role of the transcription factor Nkx2.2 differs between spinal cord and brainstem. ArticleCAS Google Scholar
Fogarty, M., Richardson, W. D. & Kessaris, N. A subset of oligodendrocytes generated from radial glia in the dorsal spinal cord. Development132, 1951–1959 (2005). This article from our own laboratory provides independent evidence, by Cre-loxfate mapping in transgenic mice, for dorsal production of OLPs (and astrocytes). It also shows that specification of the dorsal subset of OLPs is hedgehog-independent in culture but depends on FGF signalling. ArticleCAS Google Scholar
Kessaris, N. et al. Competition among oligodendrocyte sub-populations in the forebrain and elimination of an early embryonic lineage. Nature Neurosci. (in the press). Describes experiments that used a series of Cre mouse lines to show that OLPs originate in both ventral and dorsal forebrain territories. Kessariset al. also killed ventral and dorsal populations separately by targeted expression of Diphtheria toxin A chain, and showed that the different regional populations are able to substitute functionally for one another.
Spassky, N. et al. Multiple restricted origin of oligodendrocytes. J. Neurosci.18, 8331–8343 (1998). ArticleCAS Google Scholar
Spassky, N. et al. Single or multiple oligodendroglial lineages: a controversy. Glia29, 143–148 (2000). References 23 and 24 set out the contemporary arguments for and against multiple ventral and dorsal origins of oligodendrocytes versus a restricted ventral origin. These articles epitomize the 'wars' described in the current review. ArticleCAS Google Scholar
Richardson, W. D. et al. Oligodendrocyte lineage and the motor neuron connection. Glia12, 136–142 (2000). Article Google Scholar
Rao, M. S., Noble, M. & Mayer-Proschel, M. A tripotential glial precursor cell is present in the developing spinal cord. Proc. Natl Acad. Sci. USA95, 3996–4001 (1998). ArticleCAS Google Scholar
Liu, Y. & Rao, M. Oligodendrocytes, GRPs and MNOPs. Trends Neurosci.26, 410–412 (2003). Provides a discussion of the current debate about glial restricted precursors versus neuron–oligodendrocyte precursors.
Rowitch, D. H., Lu, Q. R., Kessaris, N. & Richardson, W. D. An 'oligarchy' rules neural development. Trends Neurosci.25, 417–422 (2002). ArticleCAS Google Scholar
Lu, Q. R. et al. Common developmental requirement for Olig function indicates a motor neuron/oligodendrocyte lineage connection. Cell109, 75–86 (2002). ArticleCAS Google Scholar
Takebayashi, H. et al. The basic helix–loop–helix factor Olig2 is essential for the development of motoneuron and oligodendrocyte lineages. Curr. Biol.12, 1157–1163 (2002). ArticleCAS Google Scholar
Zhou, Q. & Anderson, D. J. The bHLH transcription factors OLIG2 and OLIG1 couple neuronal and glial subtype specification. Cell109, 61–73 (2002). ArticleCAS Google Scholar
Calver, A. R. et al. Oligodendrocyte population dynamics and the role of PDGF in vivo. Neuron20, 869–882 (1998). ArticleCAS Google Scholar
van Heyningen, P., Calver, A. R. & Richardson, W. D. Control of progenitor cell number by mitogen supply and demand. Curr. Biol.11, 232–241 (2001). ArticleCAS Google Scholar
Fogarty, M. Fate mapping the mouse neural tube by Cre-loxP transgenesis. Thesis, Univ. London (2005).
Ivanova, A. et al. Evidence for a second wave of oligodendrogenesis in the postnatal cerebral cortex of the mouse. J. Neurosci. Res.73, 581–592 (2003). ArticleCAS Google Scholar
Sun, T., Pringle, N. P., Hardy, A. P., Richardson, W. D. & Smith, H. K. Pax6 influences the time and site of origin of glial precursors in the ventral neural tube. Mol. Cell. Neurosci.12, 228–239 (1998). ArticleCAS Google Scholar
Xu, X. et al. Selective expression of Nkx-2.2 transcription factor in chicken oligodendrocyte progenitors and implications for the embryonic origin of oligodendrocytes. Mol. Cell. Neurosci.16, 740–753 (2000). ArticleCAS Google Scholar
Soula, C. et al. Distinct sites of origin of oligodendrocytes and somatic motor neurons in the chick spinal cord; oligodendrocytes arise from Nkx2.2-expressing progenitors by a Shh-dependent mechanism. Development128, 1369–1379 (2001). CASPubMed Google Scholar
Zhou, Q., Choi, G. & Anderson, D. The bHLH transcription factor Olig2 promotes oligodendrocyte differentiation in collaboration with Nkx2.2. Neuron31, 791–807 (2001). This pioneering article was the first to show a functional role for Nkx2.2 in oligodendrocyte development. ArticleCAS Google Scholar
Fu, H. et al. Dual origin of spinal oligodendrocyte progenitors and evidence for the cooperative role of Olig2 and Nkx2.2 in the control of oligodendrocyte differentiation. Development129, 681–693 (2002). CASPubMed Google Scholar
Agius, E. et al. Converse control of oligodendrocyte and astrocyte lineage development by sonic hedgehog in the chick spinal cord. Dev. Biol.270, 308–321 (2004). ArticleCAS Google Scholar
Qi, Y. et al. Control of oligodendrocyte differentiation by the Nkx2.2 homeodomain transcription factor. Development128, 2723–2733 (2001). Provides evidence that, in the mouse spinal cord, Nkx2.2 has an essential role in oligodendrocyte maturation, but not in initial lineage specification. CASPubMed Google Scholar
Gorski, J. A. et al. Cortical excitatory neurons and glia, but not GABAergic neurons, are produced in the Emx1-expressing lineage. J. Neurosci.22, 6309–6314 (2002). ArticleCAS Google Scholar
He, W., Ingraham, C., Rising, L., Goderie, S. & Temple, S. Multipotent stem cells from the mouse basal forebrain contribute GABAergic neurons and oligodendrocytes to the cerebral cortex during embryogenesis. J. Neurosci.21, 8854–8862 (2001). ArticleCAS Google Scholar
Wichterle, H., Turnbull, D. H., Nery, S., Fishell, G. & Alvarez-Buylla, A. In utero fate mapping reveals distinct migratory pathways and fates of neurons born in the mammalian basal forebrain. Development128, 3759–3771 (2001). CASPubMed Google Scholar
Marshall, C. A. & Goldman, J. E. Subpallial _Dlx2_-expressing cells give rise to astrocytes and oligodendrocytes in the cerebral cortex and white matter. J. Neurosci.22, 9821–9830 (2002). ArticleCAS Google Scholar
Yung, S. Y. et al. Differential modulation of BMP signaling promotes the elaboration of cerebral cortical GABAergic neurons or oligodendrocytes from a common sonic hedgehog-responsive ventral forebrain progenitor species. Proc. Natl Acad. Sci. USA99, 16273–16278 (2002). ArticleCAS Google Scholar
Levison, S. W. & Goldman, J. E. Both oligodendrocytes and astrocytes develop from progenitors in the subventricular zone of postnatal rat forebrain. Neuron10, 201–212 (1993). ArticleCAS Google Scholar
Luskin, M. B. & McDermott, K. Divergent lineages for oligodendrocytes and astrocytes originating in the neonatal forebrain subventricular zone. Glia11, 211–226 (1994). ArticleCAS Google Scholar
Levison, S. W. & Goldman, J. E. Multipotential and lineage restricted precursors coexist in the mammalian perinatal subventricular zone. J. Neurosci. Res.48, 83–94 (1997). ArticleCAS Google Scholar
Parnavelas, J. G. Glial cell lineages in the rat cerebral cortex. Exp. Neurol.156, 418–429 (1999). ArticleCAS Google Scholar
Levison, S. W., Young, G. M. & Goldman, J. E. Cycling cells in the adult rat neocortex preferentially generate oligodendroglia. J. Neurosci. Res.57, 435–446 (1999). ArticleCAS Google Scholar
Chandran, S. et al. FGF-dependent generation of oligodendrocytes by a hedgehog-independent pathway. Development130, 6599–6609 (2004). Article Google Scholar
Kessaris, N., Jamen, F., Rubin, L. & Richardson, W. D. Cooperation between sonic hedgehog and fibroblast growth factor/MAPK signalling pathways in neocortical precursors. Development131, 1289–1298 (2004). ArticleCAS Google Scholar
Gross, R. E. et al. Bone morphogenetic proteins promote astroglial lineage commitment by mammalian subventricular zone progenitor cells. Neuron17, 595–606 (1996). ArticleCAS Google Scholar
Grinspan, J. B. et al. Stage-specific effects of bone morphogenetic proteins on the oligodendrocyte lineage. J. Neurobiol.43, 1–17 (2000). ArticleCAS Google Scholar
Mekki-Dauriac, S., Agius, E., Kan, P. & Cochard, P. Bone morphogenetic proteins negatively control oligodendrocyte precursor specification in the chick spinal cord. Development129, 5117–5130 (2002). CASPubMed Google Scholar
Shimizu, T. et al. Wnt signaling controls the timing of oligodendrocyte development in the spinal cord. Dev. Biol.282, 397–410 (2005). ArticleCAS Google Scholar
Nery, S., Wichterle, H. & Fishell, G. Sonic hedgehog contributes to oligodendrocyte specification in the mammalian forebrain. Development128, 527–540 (2001). CASPubMed Google Scholar
Marin, O. & Rubenstein, J. L. A long, remarkable journey: tangential migration in the telencephalon. Nature Rev. Neurosci.2, 780–790 (2001). ArticleCAS Google Scholar
Letinic, K., Zoncu, R. & Rakic, P. Origin of GABAergic neurons in the human neocortex. Nature417, 645–649 (2002). ArticleCAS Google Scholar
Richardson, W. D., Pringle, N. P., Yu, W.-P. & Hall, A. C. Origins of spinal cord oligodendrocytes: possible developmental and evolutionary relationships with motor neurons. Dev. Neurosci.19, 54–64 (1997). Article Google Scholar
Cameron-Curry, P. & Le Douarin, N. M. Oligodendrocyte precursors originate from both the dorsal and the ventral parts of the spinal cord. Neuron15, 1299–1310 (1995). ArticleCAS Google Scholar
Pringle, N. P., Guthrie, S., Lumsden, A. & Richardson, W. D. Dorsal spinal cord neuroepithelium generates astrocytes but not oligodendrocytes. Neuron20, 883–893 (1998). ArticleCAS Google Scholar
Fu, H. et al. Molecular mapping of the origin of postnatal spinal cord ependymal cells: evidence that adult ependymal cells are derived from Nkx6.1+ ventral neural progenitor cells. J. Comp. Neurol.456, 237–244 (2003). Provides persuasive evidence that the postnatal ependymal layer that surrounds the lumen of the postnatal spinal cord is derived exclusively from neuroepithelial cells in the ventral (Nkx6.1-expressing) part of the embryonic spinal cord. The results of Cre-loxfate mapping (see reference 20) support this conclusion, which raises interesting questions about the cell fate potential of neural stem cells in the adult. ArticleCAS Google Scholar
Bunge, R. Glial cells and the central myelin sheath. Physiol. Rev.48, 197–251 (1968). ArticleCAS Google Scholar
Bjartmar, C., Hildebrand, C. & Loinder, K. Morphological heterogeneity of rat oligodendrocytes: electron microscopic studies on serial sections. Glia11, 235–244 (1994). ArticleCAS Google Scholar
Butt, A. M., Ibrahim, M. & Berry, M. The relationship between developing oligodendrocyte units and maturing axons during myelinogenesis in the anterior medullary velum of neonatal rats. J. Neurocytol.27, 327–338 (1997). Article Google Scholar
Butt, A. M., Colquhoun, K., Tutton, M. & Berry, M. Three-dimensional morphology of astrocytes and oligodendrocytes in the intact mouse optic nerve. J. Neurocytol.23, 469–485 (1994). ArticleCAS Google Scholar
Kleopa, K. A., Orthmann, J. L., Enriquez, A., Paul, D. L. & Scherer, S. S. Unique distributions of the gap junction proteins connexin29, connexin32 and connexin47 in oligodendrocytes. Glia47, 346–357 (2004). Article Google Scholar
Fanarraga, M. L., Griffiths, I. R., Zhao, M. & Duncan, I. D. Oligodendrocytes are not inherently programmed to myelinate a specific size of axon. J. Comp. Neurol.399, 94–100 (1998). ArticleCAS Google Scholar
Le Bras, B. et al. Oligodendrocyte development in the embryonic brain: the contribution of the plp lineage. Int. J. Dev. Biol.49, 209–220 (2005). ArticleCAS Google Scholar