The short-latency dopamine signal: a role in discovering novel actions? (original) (raw)

References

  1. Thorndike, E. L. Animal Intelligence (Macmillan, New York, 1911).
    Google Scholar
  2. Schultz, W. Predictive reward signal of dopamine neurons. J. Neurophysiol. 80, 1–27 (1998).
    CAS PubMed Google Scholar
  3. Redgrave, P., Prescott, T. J. & Gurney, K. Is the short latency dopamine response too short to signal reward error? Trends Neurosci. 22, 146–151 (1999).
    CAS PubMed Google Scholar
  4. Comoli, E. et al. A direct projection from superior colliculus to substantia nigra for detecting salient visual events. Nature Neurosci. 6, 974–980 (2003).
    CAS PubMed Google Scholar
  5. Dommett, E. et al. How visual stimuli activate dopaminergic neurons at short latency. Science 307, 1476–1479 (2005).
    CAS PubMed Google Scholar
  6. Montague, P. R., Dayan, P. & Sejnowski, T. J. A framework for mesencephalic dopamine systems based on predictive Hebbian learning. J. Neurosci. 16, 1936–1947 (1996).
    CAS PubMed PubMed Central Google Scholar
  7. Montague, P. R., Hyman, S. E. & Cohen, J. D. Computational roles for dopamine in behavioural control. Nature 431, 760–767 (2004).
    CAS PubMed Google Scholar
  8. Schultz, W. Getting formal with dopamine and reward. Neuron 36, 241–263 (2002).
    CAS PubMed Google Scholar
  9. Schultz, W. Behavioral theories and the neurophysiology of reward. Annu. Rev. Psychol. 57, 87–115 (2006).
    PubMed Google Scholar
  10. Schultz, W. & Dickinson, A. Neuronal coding of prediction errors. Annu. Rev. Neurosci. 23, 473–500 (2000).
    CAS PubMed Google Scholar
  11. Gerfen, C. R. & Wilson, C. J. in Handbook of Chemical Neuroanatomy Vol. 12 (eds Swanson, L. W., Bjorklund, A. & Hokfelt, T.) Part III, 371–468 (Elsevier, Amsterdam, 1996).
    Google Scholar
  12. Graybiel, A. M. Neurotransmitter and neuromodulators in the basal ganglia. Trends Neurosci. 13, 244–254 (1990).
    CAS PubMed Google Scholar
  13. Hiroi, N. et al. Molecular dissection of dopamine receptor signaling. J. Chem. Neuroanat. 23, 237–242 (2002).
    CAS PubMed Google Scholar
  14. Bergman, H. et al. Physiological aspects of information processing in the basal ganglia of normal and Parkinsonian primates. Trends Neurosci. 21, 32–38 (1998).
    CAS PubMed Google Scholar
  15. Radad, K., Gille, G. & Rausch, W. D. Short review on dopamine agonists: insight into clinical and research studies relevant to Parkinson's disease. Pharm. Rep. 57, 701–712 (2005).
    CAS Google Scholar
  16. Wise, R. A. Dopamine, learning and motivation. Nature Rev. Neurosci. 5, 483–494 (2004).
    CAS Google Scholar
  17. Berridge, K. C. & Robinson, T. E. What is the role of dopamine in reward: hedonic impact, reward learning, or incentive salience? Brain Res. Rev. 28, 309–369 (1998).
    Article CAS PubMed Google Scholar
  18. Salamone, J. D. & Correa, M. Motivational views of reinforcement: implications for understanding the behavioral functions of nucleus accumbens dopamine. Behav. Brain Res. 137, 3–25 (2002).
    CAS PubMed Google Scholar
  19. Marr, D. Vision: A Computational Approach (Freeman & Co., San Francisco, 1982).
    Google Scholar
  20. Gurney, K., Prescott, T. J., Wickens, J. R. & Redgrave, P. Computational models of the basal ganglia: from robots to membranes. Trends Neurosci. 27, 453–459 (2004).
    CAS PubMed Google Scholar
  21. Waelti, P., Dickinson, A. & Schultz, W. Dopamine responses comply with basic assumptions of formal learning theory. Nature 412, 43–48 (2001).
    CAS PubMed Google Scholar
  22. Fiorillo, C. D., Tobler, P. N. & Schultz, W. Discrete coding of reward probability and uncertainty by dopamine neurons. Science 299, 1898–1902 (2003).
    CAS PubMed Google Scholar
  23. Tobler, P. N., Fiorillo, C. D. & Schultz, W. Adaptive coding of reward value by dopamine neurons. Science 307, 1642–1645 (2005).
    CAS PubMed Google Scholar
  24. Bayer, H. M. & Glimcher, P. W. Midbrain dopamine neurons encode a quantitative reward prediction error signal. Neuron 47, 129–141 (2005).
    CAS PubMed PubMed Central Google Scholar
  25. Satoh, T., Nakai, S., Sato, T. & Kimura, M. Correlated coding of motivation and outcome of decision by dopamine neurons. J. Neurosci. 23, 9913–9923 (2003).
    CAS PubMed PubMed Central Google Scholar
  26. Nakahara, H., Itoh, H., Kawagoe, R., Takikawa, Y. & Hikosaka, O. Dopamine neurons can represent context-dependent prediction error. Neuron 41, 269–280 (2004).
    CAS PubMed Google Scholar
  27. Tobler, P. N., Dickinson, A. & Schultz, W. Coding of predicted reward omission by dopamine neurons in a conditioned inhibition paradigm. J. Neurosci. 23, 10402–10410 (2003).
    CAS PubMed PubMed Central Google Scholar
  28. Ungless, M. A. Dopamine: the salient issue. Trends Neurosci. 27, 702–706 (2004).
    CAS PubMed Google Scholar
  29. Sugrue, L. P., Corrado, G. S. & Newsome, W. T. Choosing the greater of two goods: neural currencies for valuation and decision making. Nature Rev. Neurosci. 6, 363–375 (2005).
    CAS Google Scholar
  30. Salzman, C. D., Belova, M. A. & Paton, J. J. Beetles, boxes and brain cells: neural mechanisms underlying valuation and learning. Curr. Opin. Neurobiol. 15, 721–729 (2005).
    CAS PubMed PubMed Central Google Scholar
  31. Houk, J. C. Agents of the mind. Biol. Cybern. 92, 427–437 (2005).
    PubMed Google Scholar
  32. Suri, R. E. TD models of reward predictive responses in dopamine neurons. Neural Netw. 15, 523–533 (2002).
    PubMed Google Scholar
  33. Bar-Gad, I. & Bergman, H. Stepping out of the box: information processing in the neural networks of the basal ganglia. Curr. Opin. Neurobiol. 11, 689–695 (2001).
    CAS PubMed Google Scholar
  34. Frank, M. J. Dynamic dopamine modulation in the basal ganglia: a neurocomputational account of cognitive deficits in medicated and nonmedicated Parkinsonism. J. Cogn. Neurosci. 17, 51–72 (2005).
    PubMed Google Scholar
  35. Daw, N. D., Niv, Y. & Dayan, P. Uncertainty-based competition between prefrontal and dorsolateral striatal systems for behavioral control. Nature Neurosci. 8, 1704–1711 (2005).
    CAS PubMed Google Scholar
  36. Freeman, A. S. Firing properties of substantia nigra dopaminergic neurons in freely moving rats. Life Sci. 36, 1983–1994 (1985).
    CAS PubMed Google Scholar
  37. Guarraci, F. A. & Kapp, B. S. An electrophysiological characterization of ventral tegmental area dopaminergic neurons during differential pavlovian fear conditioning in the awake rabbit. Behav. Brain Res. 99, 169–179 (1999).
    CAS PubMed Google Scholar
  38. Horvitz, J. C., Stewart, T. & Jacobs, B. L. Burst activity of ventral tegmental dopamine neurons is elicited by sensory stimuli in the awake cat. Brain Res. 759, 251–258 (1997).
    CAS PubMed Google Scholar
  39. Ljungberg, T., Apicella, P. & Schultz, W. Responses of monkey dopamine neurons during learning of behavioural reactions. J. Neurophysiol. 67, 145–163 (1992).
    CAS PubMed Google Scholar
  40. Pan, W. X., Schmidt, R., Wickens, J. R. & Hyland, B. I. Dopamine cells respond to predicted events during classical conditioning: evidence for eligibility traces in the reward- learning network. J. Neurosci. 25, 6235–6242 (2005).
    CAS PubMed PubMed Central Google Scholar
  41. Schultz, W., Dayan, P. & Montague, P. R. A neural substrate of prediction and reward. Science 275, 1593–1599 (1997).
    CAS PubMed Google Scholar
  42. Mirenowicz, J. & Schultz, W. Importance of unpredictability for reward responses in primate dopamine neurons. J. Neurophysiol. 72, 1024–1027 (1994).
    CAS PubMed Google Scholar
  43. Coizet, V., Comoli, E., Westby, G. W. M. & Redgrave, P. Phasic activation of substantia nigra and the ventral tegmental area by chemical stimulation of the superior colliculus: an electrophysiological investigation in the rat. Eur. J. Neurosci. 17, 28–40 (2003).
    PubMed Google Scholar
  44. Overton, P. G., Coizet, V., Dommett, E. J. & Redgrave, P. The parabrachial nucleus is a source of short latency nociceptive input to midbrain dopaminergic neurones in rat. Soc. Neurosci. Abstr. 301.5 (2005).
  45. Coizet, V., Dommett, E. J., Redgrave, P. & Overton, P. G. Nociceptive responses of midbrain dopaminergic neurones are modulated by the superior colliculus in the rat. Neuroscience 139, 1479–1493 (2006).
    CAS PubMed Google Scholar
  46. McHaffie, J. G. et al. A direct projection from superior colliculus to substantia nigra pars compacta in the cat. Neuroscience 138, 221–234 (2006).
    CAS PubMed Google Scholar
  47. Horvitz, J. C. Mesolimbocortical and nigrostriatal dopamine responses to salient non-reward events. Neuroscience 96, 651–656 (2000).
    CAS PubMed Google Scholar
  48. Takikawa, Y., Kawagoe, R. & Hikosaka, O. A possible role of midbrain dopamine neurons in short- and long-term adaptation of saccades to position-reward mapping. J. Neurophysiol. 92, 2520–2529 (2004).
    PubMed Google Scholar
  49. Jay, M. F. & Sparks, D. L. Sensorimotor integration in the primate superior colliculus. I. Motor convergence. J. Neurophysiol. 57, 22–34 (1987).
    CAS PubMed Google Scholar
  50. Hikosaka, O. & Wurtz, R. H. Visual and oculomotor function of monkey substantia nigra pars reticulata. I. Relation of visual and auditory responses to saccades. J. Neurophysiol. 49, 1230–1253 (1983).
    CAS PubMed Google Scholar
  51. Thorpe, S. J. & Fabre-Thorpe, M. Seeking categories in the brain. Science 291, 260–263 (2001).
    CAS PubMed Google Scholar
  52. Rousselet, G. A., Thorpe, S. J. & Fabre-Thorpe, M. How parallel is visual processing in the ventral pathway? Trends Cogn. Sci. 8, 363–370 (2004).
    PubMed Google Scholar
  53. Schultz, W. & Romo, R. Dopamine neurons of the monkey midbrain: contingencies of responses to stimuli eliciting immediate behavioural reactions. J. Neurophysiol. 63, 607–624 (1990).
    CAS PubMed Google Scholar
  54. Hikosaka, O., Sakamoto, M. & Usui, S. Functional properties of monkey caudate neurons. II. Visual and auditory responses. J. Neurophysiol. 61, 799–813 (1989).
    CAS PubMed Google Scholar
  55. Matsumura, M., Kojima, J., Gardiner, T. W. & Hikosaka, O. Visual and oculomotor functions of monkey subthalamic nucleus. J. Neurophysiol. 67, 1615–1632 (1992).
    CAS PubMed Google Scholar
  56. May, P. J. et al. Projections from the superior colliculus to substantia nigra pars compacta in a primate. Soc. Neurosci. Abstr. 450.2 (2005).
  57. Katsuta, H. & Isa, T. Release from GABAA receptor-mediated inhibition unmasks interlaminar connection within superior colliculus in anesthetized adult rats. Neurosci. Res. 46, 73–83 (2003).
    CAS PubMed Google Scholar
  58. Wurtz, R. H. & Albano, J. E. Visual-motor function of the primate superior colliculus. Ann. Rev. Neurosci. 3, 189–226 (1980).
    CAS PubMed Google Scholar
  59. Sparks, D. L. Translation of sensory signals into commands for control of saccadic eye movements: role of the primate superior colliculus. Physiol. Rev. 66, 118–171 (1986).
    CAS PubMed Google Scholar
  60. Grantyn, R. in Neuroanatomy of the Oculomotor System (ed. Buttner-Ennever, J. A.) 273–333 (Elsevier, Amsterdam, 1988).
    Google Scholar
  61. Stein, B. E. & Meredith, M. A. The Merging of the Senses (MIT Press, Cambridge, Massachusetts, 1993).
    Google Scholar
  62. Horn, G. & Hill, R. M. Effect of removing the neocortex on the response to repeated sensory stimulation of neurones in the mid-brain. Nature 211, 754–755 (1966).
    CAS PubMed Google Scholar
  63. Sprague, J. M., Marchiafava, P. L. & Rixxolatti, G. Unit responses to visual stimuli in the superior colliculus of the unanesthetized, mid-pontine cat. Arch. Ital. Biol. 106, 169–193 (1968).
    CAS PubMed Google Scholar
  64. Ikeda, T. & Hikosaka, O. Reward-dependent gain and bias of visual responses in primate superior colliculus. Neuron 39, 693–700 (2003).
    CAS PubMed Google Scholar
  65. Hikosaka, O., Nakamura, K. & Nakahara, H. Basal ganglia orient eyes to reward. J. Neurophysiol. 95, 567–584 (2006).
    PubMed Google Scholar
  66. Sutton, R. S. & Barto, A. G. Reinforcement Learning – an Introduction (MIT Press, Cambridge, Massachusetts, 1998).
    Google Scholar
  67. White, N. M. Reward or reinforcement: what's the difference? Neurosci. Biobehav. Rev. 13, 181–186 (1989).
    CAS PubMed Google Scholar
  68. McHaffie, J. G., Stanford, T. R., Stein, B. E., Coizet, V. & Redgrave, P. Subcortical loops through the basal ganglia. Trends Neurosci. 28, 401–407 (2005).
    CAS PubMed Google Scholar
  69. Reynolds, J. N. J., Schulz, J. M. & Wickens, J. R. Visual responsiveness of striatal spiny neurons in anaesthetised rats: an in vivo intracellular study. Proc. Int. Australas. Wint. Conf. Brain Res. Abstr. 6.4, 39 (2005).
    Google Scholar
  70. Schultz, W., Apicella, P., Romo, R. & Scarnati, E. in Models of Information Processing in the Basal Ganglia (eds Houk, J. C., Davis, J. L. & Beiser, D. G.) 11–27 (MIT Press, Cambridge, Massachusetts, 1995).
    Google Scholar
  71. Apicella, P., Legallet, E. & Trouche, E. Responses of tonically discharging neurons in the monkey striatum to primary rewards delivered during different behavioral states. Exp. Brain Res. 116, 456–466 (1997).
    CAS PubMed Google Scholar
  72. Samejima, K., Ueda, Y., Doya, K. & Kimura, M. Representation of action-specific reward values in the striatum. Science 310, 1337–1340 (2005).
    CAS PubMed Google Scholar
  73. Crutcher, M. D. & DeLong, M. R. Single cell studies of the primate putamen. II. Relations to direction of movement and pattern of muscular activity. Exp. Brain Res. 53, 244–258 (1984).
    CAS PubMed Google Scholar
  74. Bickford, M. E. & Hall, W. C. Collateral projections of predorsal bundle cells of the superior colliculus in the rat. J. Comp. Neurol. 283, 86–106 (1989).
    CAS PubMed Google Scholar
  75. Levesque, M., Charara, A., Gagnon, S., Parent, A. & Deschenes, M. Corticostriatal projections from layer V cells in rat are collaterals of long-range corticofugal axons. Brain Res. 709, 311–315 (1996).
    CAS PubMed Google Scholar
  76. Mink, J. W. The basal ganglia: focused selection and inhibition of competing motor programs. Prog. Neurobiol. 50, 381–425 (1996).
    CAS PubMed Google Scholar
  77. Reiner, A., Jiao, Y., DelMar, N., Laverghetta, A. V. & Lei, W. L. Differential morphology of pyramidal tract-type and intratelencephalically projecting-type corticostriatal neurons and their intrastriatal terminals in rats. J. Comp. Neurol. 457, 420–440 (2003).
    PubMed Google Scholar
  78. Alexander, G. E., DeLong, M. R. & Strick, P. L. Parallel organization of functionally segregated circuits linking basal ganglia and cortex. Ann. Rev. Neurosci. 9, 357–381 (1986).
    CAS PubMed Google Scholar
  79. Haber, S. N. The primate basal ganglia: parallel and integrative networks. J. Chem. Neuroanat. 26, 317–330 (2003).
    PubMed Google Scholar
  80. Harting, J. K., Updyke, B. V. & VanLieshout, D. P. The visual-oculomotor striatum of the cat: functional relationship to the superior colliculus. Exp. Brain Res. 136, 138–142 (2001).
    CAS PubMed Google Scholar
  81. Krout, K. E., Loewy, A. D., Westby, G. W. M. & Redgrave, P. Superior colliculus projections to midline and intralaminar thalamic nuclei of the rat. J. Comp. Neurol. 431, 198–216 (2001).
    CAS PubMed Google Scholar
  82. Krout, K. E., Belzer, R. E. & Loewy, A. D. Brainstem projections to midline and intralaminar thalamic nuclei of the rat. J. Comp. Neurol. 448, 53–101 (2002).
    PubMed Google Scholar
  83. Van der Werf, Y. D., Witter, M. P. & Groenewegen, H. J. The intralaminar and midline nuclei of the thalamus. Anatomical and functional evidence for participation in processes of arousal and awareness. Brain Res. Rev. 39, 107–140 (2002).
    PubMed Google Scholar
  84. Smith, Y., Raju, D. V., Pare, J. F. & Sidibe, M. The thalamostriatal system: a highly specific network of the basal ganglia circuitry. Trends Neurosci. 27, 520–527 (2004).
    CAS PubMed Google Scholar
  85. Parent, M. & Parent, A. Single-axon tracing and three-dimensional reconstruction of centre median-parafascicular thalamic neurons in primates. J. Comp. Neurol. 481, 127–144 (2005).
    PubMed Google Scholar
  86. Matsumoto, N., Minamimoto, T., Graybiel, A. M. & Kimura, M. Neurons in the thalamic CM-Pf complex supply striatal neurons with information about behaviorally significant sensory events. J. Neurophysiol. 85, 960–976 (2001).
    CAS PubMed Google Scholar
  87. Wightman, R. M. & Robinson, D. L. Transient changes in mesolimbic dopamine and their association with 'reward'. J. Neurochem. 82, 721–735 (2002).
    CAS PubMed Google Scholar
  88. Roitman, M. F., Stuber, G. D., Phillips, P. E. M., Wightman, R. M. & Carelli, R. M. Dopamine operates as a subsecond modulator of food seeking. J. Neurosci. 24, 1265–1271 (2004).
    CAS PubMed PubMed Central Google Scholar
  89. Centonze, D., Picconi, B., Gubellini, P., Bernardi, G. & Calabresi, P. Dopaminergic control of synaptic plasticity in the dorsal striatum. Eur. J. Neurosci. 13, 1071–1077 (2001).
    CAS PubMed Google Scholar
  90. Reynolds, J. N. & Wickens, J. R. Dopamine-dependent plasticity of corticostriatal synapses. Neural Netw. 15, 507–521 (2002).
    PubMed Google Scholar
  91. Wickens, J. A Theory of the Striatum (Pergamon, Oxford, 1993).
    Google Scholar
  92. Hikosaka, O. in The Basal ganglia IV: New Ideas and Data on Structure and Function (eds Percheron, G., McKenzie, J. S. & Feger, J.) 589–596 (Plenum, New York, 1994).
    Google Scholar
  93. Redgrave, P., Prescott, T. & Gurney, K. N. The basal ganglia: a vertebrate solution to the selection problem? Neuroscience 89, 1009–1023 (1999).
    CAS PubMed Google Scholar
  94. Gurney, K., Prescott, T. J. & Redgrave, P. A computational model of action selection in the basal ganglia. I. A new functional anatomy. Biol. Cybern. 84, 401–410 (2001).
    CAS PubMed Google Scholar
  95. Gurney, K., Prescott, T. J. & Redgrave, P. A computational model of action selection in the basal ganglia. II. Analysis and simulation of behaviour. Biol. Cybern. 84, 411–423 (2001).
    CAS PubMed Google Scholar
  96. Prescott, T. J., Gonzalez, F. M. M., Gurney, K., Humphries, M. D. & Redgrave, P. A robot model of the basal ganglia: behavior and intrinsic processing. Neural Netw. 19, 31–61 (2006).
    PubMed Google Scholar
  97. Devenport, L. D. & Holloway, F. A. The rat's resistance to superstition: role of the hippocampus. J. Comp. Physiol. Psychol. 94, 691–705 (1980).
    CAS PubMed Google Scholar
  98. Roberts, S. & Gharib, A. Variation of bar-press duration: where do new responses come from? Behav. Processes 72, 215–223 (2006).
    PubMed Google Scholar
  99. Wickens, J. R., Reynolds, J. N. J. & Hyland, B. I. Neural mechanisms of reward-related motor learning. Curr. Opin. Neurobiol. 13, 685–690 (2003).
    CAS PubMed Google Scholar
  100. Paton, J. J., Belova, M. A., Morrison, S. E. & Salzman, C. D. The primate amygdala represents the positive and negative value of visual stimuli during learning. Nature 439, 865–870 (2006).
    CAS PubMed PubMed Central Google Scholar
  101. Lisman, J. E. & Grace, A. A. The hippocampal-VTA loop: controlling the entry of information into long-term memory. Neuron 46, 703–713 (2005).
    CAS PubMed Google Scholar
  102. Schultz, W. Multiple reward signals in the brain. Nature Rev. Neurosci. 1, 199–207 (2000).
    CAS Google Scholar
  103. Schoenbaum, G., Setlow, B., Saddoris, M. P. & Gallagher, M. Encoding predicted outcome and acquired value in orbitofrontal cortex during cue sampling depends upon input from basolateral amygdala. Neuron 39, 855–867 (2003).
    CAS PubMed Google Scholar
  104. Corbit, L. H., Ostlund, S. B. & Balleine, B. W. Sensitivity to instrumental contingency degradation is mediated by the entorhinal cortex and its efferents via the dorsal hippocampus. J. Neurosci. 22, 10976–10984 (2002).
    CAS PubMed PubMed Central Google Scholar
  105. Corbit, L. H. & Balleine, B. W. The role of prelimbic cortex in instrumental conditioning. Behav. Brain Res. 146, 145–157 (2003).
    PubMed Google Scholar
  106. Padoa-Schioppa, C. & Assad, J. A. Neurons in the orbitofrontal cortex encode economic value. Nature 441, 223–226 (2006).
    CAS PubMed PubMed Central Google Scholar
  107. Ungless, M. A., Magill, P. J. & Bolam, J. P. Uniform inhibition of dopamine neurons in the ventral tegmental area by aversive stimuli. Science 303, 2040–2042 (2004).
    CAS PubMed Google Scholar
  108. Klop, E. M., Mouton, L. J., Hulsebosch, R., Boers, J. & Holstege, G. In cat four times as many lamina I neurons project to the parabrachial nuclei and twice as many to the periaqueductal gray as to the thalamus. Neuroscience 134, 189–197 (2005).
    CAS PubMed Google Scholar
  109. Dean, P., Redgrave, P. & Westby, G. W. M. Event or emergency? Two response systems in the mammalian superior colliculus. Trends Neurosci. 12, 137–147 (1989).
    CAS PubMed Google Scholar
  110. Dickinson, A. The 28th Bartlett Memorial Lecture. Causal learning: an associative analysis. Q. J. Exp. Psychol. B 54, 3–25 (2001).
    CAS PubMed Google Scholar
  111. Elsner, B. & Hommel, B. Contiguity and contingency in action-effect learning. Psychol. Res. 68, 138–154 (2004).
    PubMed Google Scholar
  112. Yin, H. H., Knowlton, B. J. & Balleine, B. W. Blockade of NMDA receptors in the dorsomedial striatum prevents action-outcome learning in instrumental conditioning. Eur. J. Neurosci. 22, 505–512 (2005).
    PubMed Google Scholar
  113. Burgdorf, J. & Panksepp, J. The neurobiology of positive emotions. Neurosci. Biobehav. Rev. 30, 173–187 (2006).
    PubMed Google Scholar
  114. Roesch, M. R. & Olson, C. R. Neuronal activity related to reward value and motivation in primate frontal cortex. Science 304, 307–310 (2004).
    CAS PubMed Google Scholar
  115. McDonald, A. J. Topographical organization of amygdaloid projections to the caudatoputamen, nucleus accumbens, and related striatal-like areas of the rat brain. Neuroscience 44, 15–33 (1991).
    CAS PubMed Google Scholar
  116. Fudge, J. L., Kunishio, K., Walsh, P., Richard, C. & Haber, S. N. Amygdaloid projections to ventromedial striatal subterritories in the primate. Neuroscience 110, 257–275 (2002).
    CAS PubMed Google Scholar
  117. Singh, S., Barto, A. G. & Chentanez, N. in Advances in Neural Information Processing Systems 17 (eds Saul, L. K., Weiss, H. & Bottou, L.) 1281–1288 (MIT Press, Cambridge, Massachusetts, 2005).
    Google Scholar
  118. Robbins, T. W. & Sahakian, B. J. in Metabolic Disorders of the Nervous System (ed. Rose, F. C.) 244–291 (Pitman, London, 1981).
    Google Scholar
  119. Saka, E., Goodrich, C., Harlan, P., Madras, B. K. & Graybiel, A. M. Repetitive behaviors in monkeys are linked to specific striatal activation patterns. J. Neurosci. 24, 7557–7565 (2004).
    CAS PubMed PubMed Central Google Scholar
  120. Daprati, E. et al. Looking for the agent: an investigation into consciousness of action and self-consciousness in schizophrenic patients. Cognition 65, 71–86 (1997).
    CAS PubMed Google Scholar
  121. Spence, S. A. et al. A PET study of voluntary movement in schizophrenic patients experiencing passivity phenomena (delusions of alien control). Brain 120, 1997–2011 (1997).
    PubMed Google Scholar
  122. Kapur, S., Mizrahi, R. & Li, M. From dopamine to salience to psychosis — linking biology, pharmacology and phenomenology of psychosis. Schiz. Res. 79, 59–68 (2005).
    Google Scholar
  123. Wise, S. P., Murray, E. A. & Gerfen, C. R. The frontal-cortex-basal ganglia system in primates. Crit. Rev. Neurobiol. 10, 317–356 (1996).
    CAS PubMed Google Scholar
  124. Reed, P., Mitchell, C. & Nokes, T. Intrinsic reinforcing properties of putatively neutral stimuli in an instrumental two-level discrimination task. Anim. Learn. Behav. 24, 38–45 (1996).
    Google Scholar
  125. St Clair-Smith, R. & MacLaren, D. Response preconditioning effects. J. Exp. Psychol Anim. Behav. Process. 9, 41–48 (1983).
    Google Scholar

Download references