Circuit-breakers: optical technologies for probing neural signals and systems (original) (raw)

References

  1. Beal, M. F. Experimental models of Parkinson's disease. Nature Rev. Neurosci. 2, 325–334 (2001).
    Article CAS Google Scholar
  2. Santarelli, L. et al. Requirement of hippocampal neurogenesis for the behavioural effects of antidepressants. Science 301, 805–809 (2003).
    Article CAS Google Scholar
  3. Lewis, D. A. GABAergic local circuit neurons and prefrontal cortical dysfunction in schizophrenia. Brain Res. Brain Res. Rev. 31, 270–276 (2000).
    Article CAS Google Scholar
  4. Hashimoto, T., et al. Gene expression deficits in a subclass of GABA neurons in the prefrontal cortex of subjects with schizophrenia. J. Neurosci. 23, 6315–6326 (2003).
    Article CAS Google Scholar
  5. Volk, D., Austin, M., Pierri, J., Sampson, A. & Lewis, D. GABA transporter-1 mRNA in the prefrontal cortex in schizophrenia: decreased expression in a subset of neurons. Am. J. Psychiatry 158, 256–265 (2001).
    Article CAS Google Scholar
  6. Zhang, F. et al. Multimodal fast optical interrogation of neural circuitry. Nature 446, 633–639 (2007).
    Article CAS Google Scholar
  7. Lima, S. Q. & Miesenbock, G. Remote control of behaviour through genetically targeted photostimulation of neurons. Cell 121, 141–152 (2005).
    Article CAS Google Scholar
  8. Karpova, A.Y., Tervo, D.G., Gray, N.W. & Svoboda, K. Rapid and reversible chemical inactivation of synaptic transmission in genetically targeted neurons. Neuron 48, 727–735 (2005).
    Article CAS Google Scholar
  9. Tan, E.M., et al. Selective and quickly reversible inactivation of mammalian neurons in vivo using the Drosophila allatostatin receptor. Neuron 51, 157–170 (2006).
    Article CAS Google Scholar
  10. Lerchner, W., et al. Reversible silencing of neuronal excitability in behaving mice by a genetically targeted, ivermectin-gated Cl– channel. Neuron 54, 35–49 (2007).
    Article CAS Google Scholar
  11. Szobota, S. et al. Remote control of neuronal activity with a light-gated glutamate receptor. Neuron 54, 535–545 (2007).
    Article CAS Google Scholar
  12. Boyden, E. S., Zhang, F., Bamberg, E., Nagel, G. & Deisseroth, K. Millisecond-timescale, genetically targeted optical control of neural activity. Nature Neurosci. 8, 1263–1268 (2005).
    Article CAS Google Scholar
  13. Zhang, F., Wang, L. P., Boyden, E. S. & Deisseroth, K. Channelrhodopsin-2 and optical control of excitable cells. Nature Methods 3, 785–792 (2006).
    Article CAS Google Scholar
  14. Wang, H., et al. High-speed mapping of synaptic connectivity using photostimulation in Channelrhodopsin-2 transgenic mice. Proc. Natl Acad. Sci. USA 104, 8143–8148 (2007).
    Article CAS Google Scholar
  15. Arenkiel, B. R. et al. In vivo light-induced activation of neural circuitry in transgenic mice expressing channelrhodopsin-2. Neuron 54, 205–218 (2007).
    Article CAS Google Scholar
  16. Aravanis, A. M. et al. An optical neural inteface: in vivo control of rodent motor cortex with integrated fiberoptic and optogenetic technology. J. Neural Eng. 4, S143–S156 (2007).
    Article Google Scholar
  17. Han, X. & Boyden, E. S. Multiple-color optical activation, silencing and desynchronization of neural activity with single-spike temporal resolution. PLoS ONE 2, e299 (2007).
    Article Google Scholar
  18. Petreanu, L., Huber, D., Sobczyk, A. & Svoboda, K. Channelrhodopsin-2-assisted circuit mapping of long-range callosal projections. Nature Neurosci. 10, 663–668 (2007).
    Article CAS Google Scholar
  19. Li, X., et al. Fast noninvasive activation and inhibition of neural and network activity by vertebrate rhodopsin and green algae channelrhodopsin. Proc. Natl Acad. Sci. USA 102, 17816–17821 (2005).
    Article CAS Google Scholar
  20. Nagel, G., et al. Light activation of channelrhodopsin-2 in excitable cells of Caenorhabditis elegans triggers rapid behavioral responses. Curr. Biol. 15, 2279–2284 (2005).
    Article CAS Google Scholar
  21. Ishizuka, T., Kakuda, M., Araki, R. & Yawo, H. Kinetic evaluation of photosensitivity in genetically engineered neurons expressing green algae light-gated channels. Neurosci. Res. 54, 85–94 (2006).
    Article CAS Google Scholar
  22. Schroll, C., et al. Light-induced activation of distinct modulatory neurons triggers appetitive or aversive learning in Drosophila larvae. Curr. Biol. 16, 1741–1747 (2006).
    Article CAS Google Scholar
  23. Nagel, G., et al. Channelrhodopsin-2, a directly light-gated cation-selective membrane channel. Proc. Natl Acad. Sci. USA 100, 13940–13945 (2003).
    Article CAS Google Scholar
  24. Soliman, G. S. H. & Truper, H. G. Halobacterium pharaonis: a new, extremely haloalkaliphilic archaebacterium with low magnesium requirement. Zentralblatt für Bakteriologie Mikrobiologie und Hygiene erste Abteilung Originale C, Allgemeine, angewandte und ökologische Mikrobiologie 3, 318–329 (1982).
    Article CAS Google Scholar
  25. Bi, A. et al. Ectopic expression of a microbial-type rhodopsin restores visual responses in mice with photoreceptor degeneration. Neuron 50, 23–33 (2006).
    Article CAS Google Scholar
  26. Lein, E. S. et al. Genome-wide atlas of gene expression in the adult mouse brain. Nature 445, 168–176 (2007).
    Article CAS Google Scholar
  27. Shimada, M., Tritos, N. A., Lowell, B. B., Flier, J. S. & Maratos-Flier, E. Mice lacking melanin-concentrating hormone are hypophagic and lean. Nature 396, 670–674 (1998).
    Article CAS Google Scholar
  28. Tecott, L. H. & Wehner, J. M. Mouse molecular genetic technologies: promise for psychiatric research. Arch. Gen. Psychiatry 58, 995–1004 (2001).
    Article CAS Google Scholar
  29. Miyoshi, G. & Fishell, G. Directing neuron-specific transgene expression in the mouse CNS. Curr. Opin Neurobiol. 16, 577–584 (2006).
    Article CAS Google Scholar
  30. Cetin, A., Komai, S., Eliava, M., Seeburg, P. H. & Osten, P. Stereotaxic gene delivery in the rodent brain. Nature Protoc. 1, 3166–3173 (2006).
    Article CAS Google Scholar
  31. Davidson, B. L. & Breakefield, X. O. Viral vectors for gene delivery to the nervous system. Nature Rev. Neurosci. 4, 353–364 (2003).
    Article CAS Google Scholar
  32. Kaplitt, M. G., et al. Safety and tolerability of gene therapy with an adeno-associated virus (AAV) borne GAD gene for Parkinson's disease: an open label, phase I trial. Lancet 369, 2097–2105 (2007).
    Article CAS Google Scholar
  33. de Boer, A. G. & Gaillard, P. J. Drug targeting to the brain. Annu. Rev. Pharmacol. Toxicol. 47, 323–355 (2007).
    Article CAS Google Scholar
  34. Chhatwal, J. P., Hammack, S. E., Jasnow, A. M., Rainnie, D. G. & Ressler, K. J. Identification of cell-type-specific promoters within the brain using lentiviral vectors. Gene Ther. 14, 575–583 (2007).
    Article CAS Google Scholar
  35. Osten, P., Grinevich, V. & Cetin, A. Viral vectors: a wide range of choices and high levels of service. Handb. Exp. Pharmacol., 177–202 (2007).
  36. van den Pol, A. N., Acuna-Goycolea, C., Clark, K. R. & Ghosh, P. K. Physiological properties of hypothalamic MCH neurons identified with selective expression of reporter gene after recombinant virus infection. Neuron 42, 635–652 (2004).
    Article CAS Google Scholar
  37. Taymans, J. M., et al. Comparative analysis of adeno-associated viral vector serotypes 1, 2, 5, 7, and 8 in mouse brain. Hum. Gene Ther. 18, 195–206 (2007).
    Article CAS Google Scholar
  38. Wickersham, I. R., Finke, S., Conzelmann, K. K. & Callaway, E. M. Retrograde neuronal tracing with a deletion-mutant rabies virus. Nature Methods 4, 47–49 (2007).
    Article CAS Google Scholar
  39. Barth, A. L., Gerkin, R. C. & Dean, K. L. Alteration of neuronal firing properties after in vivo experience in a FosGFP transgenic mouse. J. Neurosci. 24, 6466–6475 (2004).
    Article CAS Google Scholar
  40. Wang, K. H., et al. In vivo two-photon imaging reveals a role of arc in enhancing orientation specificity in visual cortex. Cell 126, 389–402 (2006).
    Article CAS Google Scholar
  41. Wickersham, I. R., et al. Monosynaptic restriction of transsynaptic tracing from single, genetically targeted neurons. Neuron 53, 639–647 (2007).
    Article CAS Google Scholar
  42. Ferezou, I., Bolea, S. & Petersen, C. C. Visualizing the cortical representation of whisker touch: voltage-sensitive dye imaging in freely moving mice. Neuron 50, 617–629 (2006).
    Article CAS Google Scholar
  43. Piyawattanametha, W., et al. Fast-scanning two-photon fluorescence imaging based on a microelectromechanical systems two-dimensional scanning mirror. Opt. Lett. 31, 2018–2020 (2006).
    Article Google Scholar
  44. Miesenbock, G. & Kevrekidis, I. G. Optical imaging and control of genetically designated neurons in functioning circuits. Annu. Rev. Neurosci. 28, 533–563 (2005).
    Article Google Scholar
  45. Kotlikoff, M. I. Genetically encoded Ca2+ indicators: using genetics and molecular design to understand complex physiology. J. Physiol. 578, 55–67 (2007).
    Article CAS Google Scholar
  46. Airan R. D. et al. High-speed imaging reveals neurophysiological links to behaviour in an animal model of depression. Science 5 July 2007 (doi: 10.1126/science.1144400).
  47. Mayberg, H. S. et al. Deep brain stimulation for treatment-resistant depression. Neuron 45, 651–660 (2005).
    Article CAS Google Scholar
  48. Schlaepfer, T. E. et al. Deep brain stimulation to reward circuitry alleviates anhedonia in refractory major depression. Neuropsychopharmacology (2007).
  49. Rauch, S. L. et al. A functional neuroimaging investigation of deep brain stimulation in patients with obsessive-compulsive disorder. J. Neurosurg. 104, 558–565 (2006).
    Article Google Scholar
  50. Machado, A., Ogrin, M., Rosenow, J. M. & Henderson, J. M. A 12-month prospective study of gasserian ganglion stimulation for trigeminal neuropathic pain. Stereotact. Funct. Neurosurg. 85, 216–224 (2007).
    Article CAS Google Scholar
  51. Rasche, D., Ruppolt, M., Stippich, C., Unterberg, A. & Tronnier, V. M. Motor cortex stimulation for long-term relief of chronic neuropathic pain: a 10 year experience. Pain 121, 43–52 (2006).
    Article Google Scholar
  52. Hausser, M. & Smith, S. L. Neuroscience: controlling neural circuits with light. Nature 446, 617–619 (2007).
    Article Google Scholar

Download references