Circuit-breakers: optical technologies for probing neural signals and systems (original) (raw)
References
Beal, M. F. Experimental models of Parkinson's disease. Nature Rev. Neurosci.2, 325–334 (2001). ArticleCAS Google Scholar
Santarelli, L. et al. Requirement of hippocampal neurogenesis for the behavioural effects of antidepressants. Science301, 805–809 (2003). ArticleCAS Google Scholar
Lewis, D. A. GABAergic local circuit neurons and prefrontal cortical dysfunction in schizophrenia. Brain Res. Brain Res. Rev.31, 270–276 (2000). ArticleCAS Google Scholar
Hashimoto, T., et al. Gene expression deficits in a subclass of GABA neurons in the prefrontal cortex of subjects with schizophrenia. J. Neurosci.23, 6315–6326 (2003). ArticleCAS Google Scholar
Volk, D., Austin, M., Pierri, J., Sampson, A. & Lewis, D. GABA transporter-1 mRNA in the prefrontal cortex in schizophrenia: decreased expression in a subset of neurons. Am. J. Psychiatry158, 256–265 (2001). ArticleCAS Google Scholar
Zhang, F. et al. Multimodal fast optical interrogation of neural circuitry. Nature446, 633–639 (2007). ArticleCAS Google Scholar
Lima, S. Q. & Miesenbock, G. Remote control of behaviour through genetically targeted photostimulation of neurons. Cell121, 141–152 (2005). ArticleCAS Google Scholar
Karpova, A.Y., Tervo, D.G., Gray, N.W. & Svoboda, K. Rapid and reversible chemical inactivation of synaptic transmission in genetically targeted neurons. Neuron48, 727–735 (2005). ArticleCAS Google Scholar
Tan, E.M., et al. Selective and quickly reversible inactivation of mammalian neurons in vivo using the Drosophila allatostatin receptor. Neuron51, 157–170 (2006). ArticleCAS Google Scholar
Lerchner, W., et al. Reversible silencing of neuronal excitability in behaving mice by a genetically targeted, ivermectin-gated Cl– channel. Neuron54, 35–49 (2007). ArticleCAS Google Scholar
Szobota, S. et al. Remote control of neuronal activity with a light-gated glutamate receptor. Neuron54, 535–545 (2007). ArticleCAS Google Scholar
Boyden, E. S., Zhang, F., Bamberg, E., Nagel, G. & Deisseroth, K. Millisecond-timescale, genetically targeted optical control of neural activity. Nature Neurosci.8, 1263–1268 (2005). ArticleCAS Google Scholar
Zhang, F., Wang, L. P., Boyden, E. S. & Deisseroth, K. Channelrhodopsin-2 and optical control of excitable cells. Nature Methods3, 785–792 (2006). ArticleCAS Google Scholar
Wang, H., et al. High-speed mapping of synaptic connectivity using photostimulation in Channelrhodopsin-2 transgenic mice. Proc. Natl Acad. Sci. USA104, 8143–8148 (2007). ArticleCAS Google Scholar
Arenkiel, B. R. et al. In vivo light-induced activation of neural circuitry in transgenic mice expressing channelrhodopsin-2. Neuron54, 205–218 (2007). ArticleCAS Google Scholar
Aravanis, A. M. et al. An optical neural inteface: in vivo control of rodent motor cortex with integrated fiberoptic and optogenetic technology. J. Neural Eng.4, S143–S156 (2007). Article Google Scholar
Han, X. & Boyden, E. S. Multiple-color optical activation, silencing and desynchronization of neural activity with single-spike temporal resolution. PLoS ONE2, e299 (2007). Article Google Scholar
Petreanu, L., Huber, D., Sobczyk, A. & Svoboda, K. Channelrhodopsin-2-assisted circuit mapping of long-range callosal projections. Nature Neurosci.10, 663–668 (2007). ArticleCAS Google Scholar
Li, X., et al. Fast noninvasive activation and inhibition of neural and network activity by vertebrate rhodopsin and green algae channelrhodopsin. Proc. Natl Acad. Sci. USA102, 17816–17821 (2005). ArticleCAS Google Scholar
Nagel, G., et al. Light activation of channelrhodopsin-2 in excitable cells of Caenorhabditis elegans triggers rapid behavioral responses. Curr. Biol.15, 2279–2284 (2005). ArticleCAS Google Scholar
Ishizuka, T., Kakuda, M., Araki, R. & Yawo, H. Kinetic evaluation of photosensitivity in genetically engineered neurons expressing green algae light-gated channels. Neurosci. Res.54, 85–94 (2006). ArticleCAS Google Scholar
Schroll, C., et al. Light-induced activation of distinct modulatory neurons triggers appetitive or aversive learning in Drosophila larvae. Curr. Biol.16, 1741–1747 (2006). ArticleCAS Google Scholar
Nagel, G., et al. Channelrhodopsin-2, a directly light-gated cation-selective membrane channel. Proc. Natl Acad. Sci. USA100, 13940–13945 (2003). ArticleCAS Google Scholar
Soliman, G. S. H. & Truper, H. G. Halobacterium pharaonis: a new, extremely haloalkaliphilic archaebacterium with low magnesium requirement. Zentralblatt für Bakteriologie Mikrobiologie und Hygiene erste Abteilung Originale C, Allgemeine, angewandte und ökologische Mikrobiologie3, 318–329 (1982). ArticleCAS Google Scholar
Bi, A. et al. Ectopic expression of a microbial-type rhodopsin restores visual responses in mice with photoreceptor degeneration. Neuron50, 23–33 (2006). ArticleCAS Google Scholar
Lein, E. S. et al. Genome-wide atlas of gene expression in the adult mouse brain. Nature445, 168–176 (2007). ArticleCAS Google Scholar
Shimada, M., Tritos, N. A., Lowell, B. B., Flier, J. S. & Maratos-Flier, E. Mice lacking melanin-concentrating hormone are hypophagic and lean. Nature396, 670–674 (1998). ArticleCAS Google Scholar
Tecott, L. H. & Wehner, J. M. Mouse molecular genetic technologies: promise for psychiatric research. Arch. Gen. Psychiatry58, 995–1004 (2001). ArticleCAS Google Scholar
Miyoshi, G. & Fishell, G. Directing neuron-specific transgene expression in the mouse CNS. Curr. Opin Neurobiol.16, 577–584 (2006). ArticleCAS Google Scholar
Cetin, A., Komai, S., Eliava, M., Seeburg, P. H. & Osten, P. Stereotaxic gene delivery in the rodent brain. Nature Protoc.1, 3166–3173 (2006). ArticleCAS Google Scholar
Davidson, B. L. & Breakefield, X. O. Viral vectors for gene delivery to the nervous system. Nature Rev. Neurosci.4, 353–364 (2003). ArticleCAS Google Scholar
Kaplitt, M. G., et al. Safety and tolerability of gene therapy with an adeno-associated virus (AAV) borne GAD gene for Parkinson's disease: an open label, phase I trial. Lancet369, 2097–2105 (2007). ArticleCAS Google Scholar
de Boer, A. G. & Gaillard, P. J. Drug targeting to the brain. Annu. Rev. Pharmacol. Toxicol.47, 323–355 (2007). ArticleCAS Google Scholar
Chhatwal, J. P., Hammack, S. E., Jasnow, A. M., Rainnie, D. G. & Ressler, K. J. Identification of cell-type-specific promoters within the brain using lentiviral vectors. Gene Ther.14, 575–583 (2007). ArticleCAS Google Scholar
Osten, P., Grinevich, V. & Cetin, A. Viral vectors: a wide range of choices and high levels of service. Handb. Exp. Pharmacol., 177–202 (2007).
van den Pol, A. N., Acuna-Goycolea, C., Clark, K. R. & Ghosh, P. K. Physiological properties of hypothalamic MCH neurons identified with selective expression of reporter gene after recombinant virus infection. Neuron42, 635–652 (2004). ArticleCAS Google Scholar
Taymans, J. M., et al. Comparative analysis of adeno-associated viral vector serotypes 1, 2, 5, 7, and 8 in mouse brain. Hum. Gene Ther.18, 195–206 (2007). ArticleCAS Google Scholar
Wickersham, I. R., Finke, S., Conzelmann, K. K. & Callaway, E. M. Retrograde neuronal tracing with a deletion-mutant rabies virus. Nature Methods4, 47–49 (2007). ArticleCAS Google Scholar
Barth, A. L., Gerkin, R. C. & Dean, K. L. Alteration of neuronal firing properties after in vivo experience in a FosGFP transgenic mouse. J. Neurosci.24, 6466–6475 (2004). ArticleCAS Google Scholar
Wang, K. H., et al. In vivo two-photon imaging reveals a role of arc in enhancing orientation specificity in visual cortex. Cell126, 389–402 (2006). ArticleCAS Google Scholar
Wickersham, I. R., et al. Monosynaptic restriction of transsynaptic tracing from single, genetically targeted neurons. Neuron53, 639–647 (2007). ArticleCAS Google Scholar
Ferezou, I., Bolea, S. & Petersen, C. C. Visualizing the cortical representation of whisker touch: voltage-sensitive dye imaging in freely moving mice. Neuron50, 617–629 (2006). ArticleCAS Google Scholar
Piyawattanametha, W., et al. Fast-scanning two-photon fluorescence imaging based on a microelectromechanical systems two-dimensional scanning mirror. Opt. Lett.31, 2018–2020 (2006). Article Google Scholar
Miesenbock, G. & Kevrekidis, I. G. Optical imaging and control of genetically designated neurons in functioning circuits. Annu. Rev. Neurosci.28, 533–563 (2005). Article Google Scholar
Kotlikoff, M. I. Genetically encoded Ca2+ indicators: using genetics and molecular design to understand complex physiology. J. Physiol.578, 55–67 (2007). ArticleCAS Google Scholar
Airan R. D. et al. High-speed imaging reveals neurophysiological links to behaviour in an animal model of depression. Science 5 July 2007 (doi: 10.1126/science.1144400).
Mayberg, H. S. et al. Deep brain stimulation for treatment-resistant depression. Neuron45, 651–660 (2005). ArticleCAS Google Scholar
Schlaepfer, T. E. et al. Deep brain stimulation to reward circuitry alleviates anhedonia in refractory major depression. Neuropsychopharmacology (2007).
Rauch, S. L. et al. A functional neuroimaging investigation of deep brain stimulation in patients with obsessive-compulsive disorder. J. Neurosurg.104, 558–565 (2006). Article Google Scholar
Machado, A., Ogrin, M., Rosenow, J. M. & Henderson, J. M. A 12-month prospective study of gasserian ganglion stimulation for trigeminal neuropathic pain. Stereotact. Funct. Neurosurg.85, 216–224 (2007). ArticleCAS Google Scholar
Rasche, D., Ruppolt, M., Stippich, C., Unterberg, A. & Tronnier, V. M. Motor cortex stimulation for long-term relief of chronic neuropathic pain: a 10 year experience. Pain121, 43–52 (2006). Article Google Scholar
Hausser, M. & Smith, S. L. Neuroscience: controlling neural circuits with light. Nature446, 617–619 (2007). Article Google Scholar