A common neurobiology for pain and pleasure (original) (raw)

References

  1. Petrovic, P., Kalso, E., Petersson, K. M. & Ingvar, M. Placebo and opioid analgesia — imaging a shared neuronal network. Science 295, 1737–1740 (2002).
    CAS PubMed Google Scholar
  2. Zubieta, J.-K. et al. Placebo effects mediated by endogenous opioid activity on μ-opioid receptors. J. Neurosci. 25, 7754–7762 (2005).
    CAS PubMed PubMed Central Google Scholar
  3. Scott, D. J. et al. Individual differences in reward responding explain placebo-induced expectations and effects. Neuron 55, 325–336 (2007).
    CAS PubMed Google Scholar
  4. Fields, H. L. Understanding how opioids contribute to reward and analgesia. Reg. Anesth. Pain Med. 32, 242–246 (2007).
    CAS PubMed Google Scholar
  5. Seymour, B., Daw, N., Dayan, P., Singer, T. & Dolan, R. Differential encoding of losses and gains in the human striatum. J. Neurosci. 27, 4826–4831 (2007).
    CAS PubMed PubMed Central Google Scholar
  6. Cabanac, M. Sensory pleasure. Q. Rev. Biol. 54, 1–29 (1979).
    CAS PubMed Google Scholar
  7. Bentham, J. An introduction to the principles of morals and legislation (Clarendon 1907) Accessible online at http://www.econlib.org/library/Bentham/bnthPML1.html.
    Google Scholar
  8. Cannon, W. B. The wisdom of the body (Norton and Co., New York, 1932).
    Google Scholar
  9. Kringelbach, M. L., O'Doherty, J., Rolls, E. T. & Andrews, C. Activation of the human orbitofrontal cortex to a liquid food stimulus is correlated with its subjective pleasantness. Cereb. Cortex 13, 1064–1071 (2003).
    CAS PubMed Google Scholar
  10. Craig, A. D. A new view of pain as a homeostatic emotion. Trends Neurosci. 26, 303–307 (2003).
    CAS PubMed Google Scholar
  11. Leknes, S., Wiech, K., Brooks, J. C. W. & Tracey, I. Is there more to pain relief than a reduction in pain intensity? A psychophysical investigation. Eur. J. Pain 10, S78 (2006).
    Google Scholar
  12. Price, D. D., Harkins, S. W. & Baker, C. Sensory-affective relationships among different types of clinical and experimental pain. Pain 28, 297–307 (1987).
    CAS PubMed Google Scholar
  13. Harper, P. No pain, no gain: pain behaviour in the armed forces. Br. J. Nurs. 15, 548–551 (2006).
    PubMed Google Scholar
  14. Fields, H. L. in Proceedings of the 11th World Congress on Pain (eds Flor, H., Kalso, E. & Dostrovsky, J. O.) 449–459 (IASP Press, Seattle, 2006).
    Google Scholar
  15. Tracey, I. & Mantyh, P. W. The cerebral signature for pain perception and its modulation. Neuron 55, 377–391 (2007).
    CAS PubMed Google Scholar
  16. Dum, J. & Herz, A. Endorphinergic modulation of neural reward systems indicated by behavioral changes. Pharmacol. Biochem. Behav. 21, 259–266 (1984).
    CAS PubMed Google Scholar
  17. Reboucas, E. C. et al. Effect of the blockade of μ1-opioid and 5HT2A-serotonergic/α1-noradrenergic receptors on sweet-substance-induced analgesia. Psychopharmacology (Berl.) 179, 349–55 (2005).
    CAS Google Scholar
  18. Forsberg, G., Wiesenfeld-Hallin, Z., Eneroth, P. & Sodersten, P. Sexual behavior induces naloxone-reversible hypoalgesia in male rats. Neurosci. Lett. 81, 151–154 (1987).
    CAS PubMed Google Scholar
  19. Szechtman, H., Hershkowitz, M. & Simantov, R. Sexual behavior decreases pain sensitivity and stimulated endogenous opioids in male rats. Eur. J. Pharmacol. 70, 279–285 (1981).
    CAS PubMed Google Scholar
  20. Gear, R. W., Aley, K. O. & Levine, J. D. Pain-induced analgesia mediated by mesolimbic reward circuits. J. Neurosci. 19, 7175–7181 (1999).
    CAS PubMed PubMed Central Google Scholar
  21. Villemure, C., Slotnick, B. M. & Bushnell, M. C. Effects of odors on pain perception: deciphering the roles of emotion and attention. Pain 106, 101–108 (2003).
    PubMed Google Scholar
  22. Kenntner-Mabiala, R. & Pauli, P. Affective modulation of brain potentials to painful and nonpainful stimuli. Psychophysiology 42, 559–567 (2005).
    PubMed Google Scholar
  23. Roy., M., Peretz, I. & Rainville, P. Emotional valence contributes to music-induced analgesia. Pain 134, 140–147 (2008).
    PubMed Google Scholar
  24. de la Fuente-Fernandez, R. et al. Expectation and dopamine release: mechanism of the placebo effect in Parkinson's disease. Science 293, 1164–1166 (2001).
    CAS PubMed Google Scholar
  25. Petrovic, P. et al. Placebo in emotional processing—induced expectations of anxiety relief activate a generalized modulatory network. Neuron 46, 957–969 (2005).
    CAS PubMed Google Scholar
  26. Benedetti, F., Mayberg, H. S., Wager, T. D., Stohler, C. S. & Zubieta, J.-K. Neurobiological mechanisms of the placebo effect. J. Neurosci. 25, 10390–10402 (2005).
    CAS PubMed PubMed Central Google Scholar
  27. Stevenson, G. W., Bilsky, E. J. & Negus, S. S. Targeting pain-suppressed behaviors in preclinical assays of pain and analgesia: effects of morphine on acetic acid-suppressed feeding in C57BL/6J mice. J. Pain 7, 408–416 (2006).
    CAS PubMed Google Scholar
  28. Narita, M. et al. Direct evidence for the involvement of the mesolimbic κ-opioid system in the morphine-induced rewarding effect under an inflammatory pain-like state. Neuropsychopharmacology 30, 111–118 (2004).
    Google Scholar
  29. Marbach, J. J. & Lund, P. Depression, anhedonia and anxiety in temporomandibular joint and other facial pain syndromes. Pain 11, 73–84 (1981).
    CAS PubMed Google Scholar
  30. Berridge, K. The debate over dopamine's role in reward: the case for incentive salience. Psychopharmacology 191, 391–431 (2007).
    CAS PubMed Google Scholar
  31. Berridge, K. C. Pleasures of the brain. Brain Cogn. 52, 106–128 (2003).
    PubMed Google Scholar
  32. Pecina, S., Cagniard, B., Berridge, K. C., Aldridge, J. W. & Zhuang, X. Hyperdopaminergic mutant mice have higher “wanting” but not “liking” for sweet rewards. J. Neurosci. 23, 9395–9402 (2003).
    CAS PubMed PubMed Central Google Scholar
  33. Hnasko, T. S., Sotak, B. N. & Palmiter, R. D. Morphine reward in dopamine-deficient mice. Nature 438, 854–857 (2005).
    CAS PubMed Google Scholar
  34. Barbano, M. F. & Cador, M. Differential regulation of the consummatory, motivational and anticipatory aspects of feeding behavior by dopaminergic and opioidergic drugs. Neuropsychopharmacology 31, 1371–1381 (2006).
    CAS PubMed Google Scholar
  35. Barbano, M. & Cador, M. Opioids for hedonic experience and dopamine to get ready for it. Psychopharmacology 191, 497–506 (2007).
    CAS PubMed Google Scholar
  36. Zubieta, J.-K. et al. Regional mu opioid receptor regulation of sensory and affective dimensions of pain. Science 293, 311–315 (2001).
    CAS PubMed Google Scholar
  37. Murphy, M. R., Checkley, S. A., Seckl, J. R. & Lightman, S. L. Naloxone inhibits oxytocin release at orgasm in man. J. Clin. Endocrinol. Metab. 71, 1056–1058 (1990).
    CAS PubMed Google Scholar
  38. Zhao, Z.-Q. et al. Central serotonergic neurons are differentially required for opioid analgesia but not for morphine tolerance or morphine reward. Proc. Natl Acad. Sci. USA 104, 14519–14524 (2007).
    CAS PubMed PubMed Central Google Scholar
  39. Mucha, R. F. & Herz, A. Motivational properties of kappa and mu opioid receptor agonists studied with place and taste preference conditioning. Psychopharmacology 86, 274–280 (1985).
    CAS PubMed Google Scholar
  40. Hirakawa, N., Tershner, S. A., Fields, H. L. & Manning, B. H. Bi-directional changes in affective state elicited by manipulation of medullary pain-modulatory circuitry. Neuroscience 100, 861–871 (2000).
    CAS PubMed Google Scholar
  41. Drevets, W. C. et al. Amphetamine-induced dopamine release in human ventral striatum correlates with euphoria. Biol. Psychiatry 49, 81–96 (2001).
    CAS PubMed Google Scholar
  42. Schultz, W. Behavioral dopamine signals. Trends Neurosci. 30, 203–210 (2007).
    CAS PubMed Google Scholar
  43. Scott, D. J., Heitzeg, M. M., Koeppe, R. A., Stohler, C. S. & Zubieta, J.-K. Variations in the human pain stress experience mediated by ventral and dorsal basal ganglia dopamine activity. J. Neurosci. 26, 10789–10795 (2006).
    CAS PubMed PubMed Central Google Scholar
  44. Jensen, J. et al. Direct activation of the ventral striatum in anticipation of aversive stimuli. Neuron 40, 1251–1257 (2003).
    CAS PubMed Google Scholar
  45. Schultz, W. Multiple dopamine functions at different time courses. Annu. Rev. Neurosci. 30, 259–288 (2007).
    CAS PubMed Google Scholar
  46. Ungless, M. A., Magill, P. J. & Bolam, J. P. Uniform inhibition of dopamine neurons in the ventral tegmental area by aversive stimuli. Science 303, 2040–2042 (2004).
    CAS PubMed Google Scholar
  47. Hagelberg, N. et al. Alfentanil increases cortical dopamine D2/D3 receptor binding in healthy subjects. Pain 109, 86–93 (2004).
    CAS PubMed Google Scholar
  48. Wood, P. B. et al. Fibromyalgia patients show an abnormal dopamine response to pain. Eur. J. Neurosci. 25, 3576–3582 (2007).
    PubMed Google Scholar
  49. Altier, N. & Stewart, J. The role of dopamine in the nucleus accumbens in analgesia. Life Sci. 65, 2269–2287 (1999).
    CAS PubMed Google Scholar
  50. Gerdelat-Mas, A. et al. Levodopa raises objective pain threshold in Parkinson's disease: a RIII reflex study. J. Neurol. Neurosurg. Psychiatry 78, 1140–1142 (2007).
    CAS PubMed PubMed Central Google Scholar
  51. Wood, P. B. Mesolimbic dopaminergic mechanisms and pain control. Pain 120, 230–234 (2006).
    CAS PubMed Google Scholar
  52. Bilder, R. M., Volavka, J., Lachman, H. M. & Grace, A. A. The catechol-_O_-methyltransferase polymorphism: relations to the tonic-phasic dopamine hypothesis and neuropsychiatric phenotypes. Neuropsychopharmacology 29, 1943–1961 (2004).
    CAS PubMed Google Scholar
  53. Zubieta, J.-K. et al. COMT val158met genotype affects μ-opioid neurotransmitter responses to a pain stressor. Science 299, 1240–1243 (2003).
    CAS PubMed Google Scholar
  54. Khachaturian, H. & Watson, S. J. Some perspectives on monoamine-opioid peptide interaction in rat central nervous system. Brain Res. Bull. 9, 441–462 (1982).
    CAS PubMed Google Scholar
  55. Roth-Deri, I. et al. Effect of experimenter-delivered and self-administered cocaine on extracellular β-endorphin levels in the nucleus accumbens. J. Neurochem. 84, 930–938 (2003).
    CAS PubMed Google Scholar
  56. King, M. A., Bradshaw, S., Chang, A. H., Pintar, J. E. & Pasternak, G. W. Potentiation of opioid analgesia in dopamine2 receptor knock-out mice: evidence for a tonically active anti-opioid system. J. Neurosci. 21, 7788–7792 (2001).
    CAS PubMed PubMed Central Google Scholar
  57. Johnson, S. W. & North, R. A. Opioids excite dopamine neurons by hyperpolarization of local interneurons. J. Neurosci. 12, 483–488 (1992).
    CAS PubMed PubMed Central Google Scholar
  58. Nugent, F. S., Penick, E. C. & Kauer, J. A. Opioids block long-term potentiation of inhibitory synapses. Nature 446, 1086–1090 (2007).
    CAS PubMed Google Scholar
  59. Hagelberg, N. et al. μ-Receptor agonism with alfentanil increases striatal dopamine D2 receptor binding in man. Synapse 45, 25–30 (2002).
    CAS PubMed Google Scholar
  60. Gray, J. A. & McNaughton, N. The neuropsychology of anxiety (Oxford Univ. Press, Oxford, 2000).
    Google Scholar
  61. Seymour, B. et al. Opponent appetitive-aversive neural processes underlie predictive learning of pain relief. Nature Neurosci. 8, 1234–1240 (2005).
    CAS PubMed Google Scholar
  62. Tindell, A. J., Smith, K. S., Pecina, S., Berridge, K. C. & Aldridge, J. W. Ventral pallidum firing codes hedonic reward: when a bad taste turns good. J. Neurophysiol. 96, 2399–2409 (2006).
    PubMed Google Scholar
  63. Paton, J. J., Belova, M. A., Morrison, S. E. & Salzman, C. D. The primate amygdala represents the positive and negative value of visual stimuli during learning. Nature 439, 865–870 (2006).
    CAS PubMed PubMed Central Google Scholar
  64. Blood, A. J. & Zatorre, R. J. Intensely pleasurable responses to music correlate with activity in brain regions implicated in reward and emotion. Proc. Natl Acad. Sci. USA 98, 11818–11823 (2001).
    CAS PubMed PubMed Central Google Scholar
  65. Smith, K. S. & Berridge, K. C. Opioid limbic circuit for reward: interaction between hedonic hotspots of nucleus accumbens and ventral pallidum. J. Neurosci. 27, 1594–1605 (2007).
    CAS PubMed PubMed Central Google Scholar
  66. Miller, J. M. et al. Anhedonia after a selective bilateral lesion of the globus pallidus. Am. J. Psychiatry 163, 786–788 (2006).
    PubMed Google Scholar
  67. Schlaepfer, T. E. et al. Deep brain stimulation to reward circuitry alleviates anhedonia in refractory major depression. Neuropsychopharmacology 33, 368–377 (2007).
    PubMed Google Scholar
  68. Wager, T. D., Scott, D. J. & Zubieta, J. K. Placebo effects on human μ-opioid activity during pain. Proc. Natl Acad. Sci. USA 104, 11056–11061 (2007).
    CAS PubMed PubMed Central Google Scholar
  69. Fields, H. State-dependent opioid control of pain. Nature Rev. Neurosci. 5, 565–575 (2004).
    CAS Google Scholar
  70. Bingel, U., Lorenz, J., Schoell, E., Weiller, C. & Buchel, C. Mechanisms of placebo analgesia: rACC recruitment of a subcortical antinociceptive network. Pain 120, 8–15 (2006).
    CAS PubMed Google Scholar
  71. Harris, R. E. et al. Decreased central μ-opioid receptor availability in fibromyalgia. J. Neurosci. 27, 10000–10006 (2007).
    CAS PubMed PubMed Central Google Scholar
  72. Braz, J. M., Nassar, M. A., Wood, J. N. & Basbaum, A. I. Parallel “pain” pathways arise from subpopulations of primary afferent nociceptor. Neuron 47, 787–793 (2005).
    CAS PubMed Google Scholar
  73. Reynolds, S. M. & Berridge, K. C. Positive and negative motivation in nucleus accumbens shell: bivalent rostrocaudal gradients for GABA-elicited eating, taste “liking”/“disliking” reactions, place preference/avoidance, and fear. J. Neurosci. 22, 7308–7320 (2002).
    CAS PubMed PubMed Central Google Scholar
  74. Rolls, E. T. et al. Representations of pleasant and painful touch in the human orbitofrontal and cingulate cortices. Cereb. Cortex 13, 308–317 (2003).
    CAS PubMed Google Scholar
  75. Small, D. M., Zatorre, R. J., Dagher, A., Evans, A. C. & Jones-Gotman, M. Changes in brain activity related to eating chocolate: from pleasure to aversion. Brain 124, 1720–1733 (2001).
    CAS PubMed Google Scholar
  76. Tremblay, L. & Schultz, W. Relative reward preference in primate orbitofrontal cortex. Nature 398, 704–708 (1999).
    CAS PubMed Google Scholar
  77. Kringelbach, M. L. The human orbitofrontal cortex: linking reward to hedonic experience. Nature Rev. Neurosci. 6, 691–702 (2005).
    CAS Google Scholar
  78. Nutt, D. et al. The other face of depression, reduced positive affect: the role of catecholamines in causation and cure. J. Psychopharmacol. 21, 461–471 (2007).
    CAS PubMed Google Scholar
  79. Dawkins, L., Powell, J. H., West, R., Powell, J. & Pickering, A. A double-blind placebo controlled experimental study of nicotine: I—effects on incentive motivation. Psychopharmacology 189, 355–367 (2006).
    CAS PubMed Google Scholar
  80. Ashby, F. G., Isen, A. M. & Turken, A. U. A neuropsychological theory of positive affect and its influence on cognition. Psychol. Rev. 106, 529–550 (1999).
    CAS PubMed Google Scholar
  81. de Vasconcellos, A. P. S., Nieto, F. B., Fontella, F. U., da Rocha, E. R. & Dalmaz, C. The nociceptive response of stressed and lithium-treated rats is differently modulated by different flavors. Physiol. Behav. 88, 382–388 (2006).
    PubMed Google Scholar
  82. Zubieta, J.-K. et al. Regulation of human affective responses by anterior cingulate and limbic μ-opioid neurotransmission. Arch. Gen. Psychiatry 60, 1145–1153 (2003).
    CAS PubMed Google Scholar
  83. Willoch, F. et al. Central poststroke pain and reduced opioid receptor binding within pain processing circuitries: a [11C]diprenorphine PET study. Pain 108, 213–220 (2004).
    CAS PubMed Google Scholar
  84. Pressman, S. D. & Cohen, S. Does positive affect influence health? Psychol. Bull. 131, 925–71 (2005).
    PubMed Google Scholar
  85. Seligman, M. in Handbook of Positive Psychology (eds Snyder, C. R. & Lopez, S. J.) (Oxford Univ. Press, New York, 2005).
    Google Scholar
  86. Driscoll, R. & Edwards, L. The misconception of Christian suffering. Pastoral Psychol. 32, 34–48 (1983).
    Google Scholar
  87. Nagel, T. What is it like to be a bat? Philos. Rev. 83, 435–450 (1974).
    Google Scholar
  88. Price, D. D., Barrell, J. J. & Gracely, R. H. A psychophysical analysis of experiential factors that selectively influence the affective dimension of pain. Pain 8, 137–149 (1980).
    CAS PubMed Google Scholar
  89. Lowe, M. R. & Butryn, M. L. Hedonic hunger: a new dimension of appetite? Physiol. Behav. 91, 432–439 (2007).
    CAS PubMed Google Scholar
  90. Damasio, A. Descartes' Error: Emotion, Reason, and the Human Brain (Grosset/Putnam, New York, 1994).
    Google Scholar
  91. Peters, E., Västfjäll, D., Gärling, T. & Slovic, P. Affect and decision making: a 'hot' topic. J. Behav. Decision Making 19, 79–85 (2006).
    Google Scholar
  92. Harbaugh, W. T., Mayr, U. & Burghart, D. R. Neural responses to taxation and voluntary giving reveal motives for charitable donations. Science 316, 1622–1625 (2007).
    CAS PubMed Google Scholar
  93. Koob, G. F. & Moal, M. L. Drug abuse: hedonic homeostatic dysregulation. Science 278, 52–58 (1997).
    CAS PubMed Google Scholar
  94. Moss, J. in Oxford Studies in Ancient Philosophy (ed. Sedley, D.) (Oxford Univ. Press, USA, 2005).
    Google Scholar
  95. Ballantyne, J. C. & LaForge, K. S. Opioid dependence and addiction during opioid treatment of chronic pain. Pain 129, 235–255 (2007).
    CAS PubMed Google Scholar
  96. Franken, I. H. A., Zijlstra, C. & Muris, P. Are nonpharmacological induced rewards related to anhedonia? A study among skydivers. Prog. Neuropsychopharmacol. Biol. Psychiatry 30, 297–300 (2006).
    PubMed Google Scholar
  97. Symons, F., Thompson, A. & Rodriguez, M. Self-injurious behavior and the efficacy of naltrexone treatment: a quantitative synthesis. Ment. Retard. Dev. Disabil. Res. Rev. 10, 193–200 (2004).
    PubMed Google Scholar
  98. Grace, A. A. Phasic versus tonic dopamine release and the modulation of dopamine system responsivity: a hypothesis for the etiology of schizophrenia. Neuroscience 41, 1–24 (1991).
    CAS PubMed Google Scholar
  99. Floresco, S. B., West, A. R., Ash, B., Moore, H. & Grace, A. A. Afferent modulation of dopamine neuron firing differentially regulates tonic and phasic dopamine transmission. Nature Neurosci. 6, 968–973 (2003).
    CAS PubMed Google Scholar
  100. Gut-Fayand, A. et al. Substance abuse and suicidality in schizophrenia: a common risk factor linked to impulsivity. Psychiatry Res. 102, 65–72 (2001).
    CAS PubMed Google Scholar
  101. Kringelbach, M. L., de Araujo, I. E. T. & Rolls, E. T. Taste-related activity in the human dorsolateral prefrontal cortex. Neuroimage 21, 781–788 (2004).
    PubMed Google Scholar
  102. Lorenz, J., Minoshima, S. & Casey, K. L. Keeping pain out of mind: the role of the dorsolateral prefrontal cortex in pain modulation. Brain 126, 1079–1091 (2003).
    CAS PubMed Google Scholar
  103. Wiech, K. et al. Anterolateral prefrontal cortex mediates the analgesic effect of expected and perceived control over pain. J. Neurosci. 26, 11501–11509 (2006).
    CAS PubMed PubMed Central Google Scholar
  104. Pelchat, M. L., Johnson, A., Chan, R., Valdez, J. & Ragland, J. D. Images of desire: food-craving activation during fMRI. Neuroimage 23, 1486–1493 (2004).
    PubMed Google Scholar
  105. Brooks, J. C. W., Zambreanu, L., Godinez, A., Craig, A. D. & Tracey, I. Somatotopic organisation of the human insula to painful heat studied with high resolution functional imaging. Neuroimage 27, 201–209 (2005).
    CAS PubMed Google Scholar
  106. Wager, T. D. et al. Placebo-induced changes in fMRI in the anticipation and experience of pain. Science 303, 1162–1167 (2004).
    CAS PubMed Google Scholar
  107. Wittmann, M., Leland, D. & Paulus, M. Time and decision making: differential contribution of the posterior insular cortex and the striatum during a delay discounting task. Exp. Brain Res. 179, 643–653 (2007).
    PubMed Google Scholar
  108. Ostrowsky, K. et al. Representation of pain and somatic sensation in the human insula: a study of responses to direct electrical cortical stimulation. Cereb. Cortex 12, 376–385 (2002).
    PubMed Google Scholar
  109. Knutson, B., Fong, G. W., Bennett, S. M., Adams, C. M. & Hommer, D. A region of mesial prefrontal cortex tracks monetarily rewarding outcomes: characterization with rapid event-related fMRI. Neuroimage 18, 263–272 (2003).
    PubMed Google Scholar
  110. Porro, C. A., Cettolo, V., Francescato, M. P. & Baraldi, P. Functional activity mapping of the mesial hemispheric wall during anticipation of pain. Neuroimage 19, 1738–1747 (2003).
    PubMed Google Scholar
  111. Ochsner, K. N. et al. Neural correlates of individual differences in pain-related fear and anxiety. Pain 120, 69–77 (2006).
    PubMed Google Scholar
  112. Shidara, M. & Richmond, B. J. Anterior cingulate: single neuronal signals related to degree of reward expectancy. Science 296, 1709–1711 (2002).
    PubMed Google Scholar
  113. Rainville, P., Duncan, G. H., Price, D. D., Carrier, B. & Bushnell, M. C. Pain affect encoded in human anterior cingulate but not somatosensory cortex. Science 277, 968–971 (1997).
    CAS PubMed Google Scholar
  114. O'Doherty, J. et al. Dissociable roles of ventral and dorsal striatum in instrumental conditioning. Science 304, 452–454 (2004).
    CAS PubMed Google Scholar
  115. Delgado, M. R., Stenger, V. A. & Fiez, J. A. Motivation-dependent responses in the human caudate nucleus. Cereb. Cortex 14, 1022–1030 (2004).
    CAS PubMed Google Scholar
  116. Bingel, U., Glascher, J., Weiller, C. & Buchel, C. Somatotopic representation of nociceptive information in the putamen: an event-related fMRI study. Cereb. Cortex 14, 1340–1345 (2004).
    CAS PubMed Google Scholar
  117. Menon, V. & Levitin, D. J. The rewards of music listening: response and physiological connectivity of the mesolimbic system. Neuroimage 28, 175–184 (2005).
    CAS PubMed Google Scholar
  118. Bussone, G. et al. Deep brain stimulation in craniofacial pain: seven years' experience. Neurol. Sci. 28, S146–S149 (2007).
    PubMed Google Scholar
  119. Fairhurst, M., Wiech, K., Dunckley, P. & Tracey, I. Anticipatory brainstem activity predicts neural processing of pain in humans. Pain 128, 101–110 (2007).
    PubMed Google Scholar
  120. Becerra, L., Breiter, H. C., Wise, R., Gonzalez, R. G. & Borsook, D. Reward circuitry activation by noxious thermal stimuli. Neuron 32, 927–946 (2001).
    CAS PubMed Google Scholar
  121. Ramnani, N., Elliott, R., Athwal, B. S. & Passingham, R. E. Prediction error for free monetary reward in the human prefrontal cortex. Neuroimage 23, 777–786 (2004).
    CAS PubMed Google Scholar
  122. Ploghaus, A. et al. Exacerbation of pain by anxiety is associated with activity in a hippocampal network. J. Neurosci. 21, 9896–9903 (2001).
    CAS PubMed PubMed Central Google Scholar
  123. Zambreanu, L., Wise, R. G., Brooks, J. C. W., Iannetti, G. D. & Tracey, I. A role for the brainstem in central sensitisation in humans. Evidence from functional magnetic resonance imaging. Pain 114, 397–407 (2005).
    CAS PubMed Google Scholar
  124. Pecina, S. & Berridge, K. C. Brainstem mediates diazepam enhancement of palatability and feeding: microinjections into fourth ventricle versus lateral ventricle. Brain Res. 727, 22–30 (1996).
    CAS PubMed Google Scholar

Download references