A common neurobiology for pain and pleasure (original) (raw)
References
Petrovic, P., Kalso, E., Petersson, K. M. & Ingvar, M. Placebo and opioid analgesia — imaging a shared neuronal network. Science295, 1737–1740 (2002). CASPubMed Google Scholar
Zubieta, J.-K. et al. Placebo effects mediated by endogenous opioid activity on μ-opioid receptors. J. Neurosci.25, 7754–7762 (2005). CASPubMedPubMed Central Google Scholar
Scott, D. J. et al. Individual differences in reward responding explain placebo-induced expectations and effects. Neuron55, 325–336 (2007). CASPubMed Google Scholar
Fields, H. L. Understanding how opioids contribute to reward and analgesia. Reg. Anesth. Pain Med.32, 242–246 (2007). CASPubMed Google Scholar
Seymour, B., Daw, N., Dayan, P., Singer, T. & Dolan, R. Differential encoding of losses and gains in the human striatum. J. Neurosci.27, 4826–4831 (2007). CASPubMedPubMed Central Google Scholar
Cannon, W. B. The wisdom of the body (Norton and Co., New York, 1932). Google Scholar
Kringelbach, M. L., O'Doherty, J., Rolls, E. T. & Andrews, C. Activation of the human orbitofrontal cortex to a liquid food stimulus is correlated with its subjective pleasantness. Cereb. Cortex13, 1064–1071 (2003). CASPubMed Google Scholar
Craig, A. D. A new view of pain as a homeostatic emotion. Trends Neurosci.26, 303–307 (2003). CASPubMed Google Scholar
Leknes, S., Wiech, K., Brooks, J. C. W. & Tracey, I. Is there more to pain relief than a reduction in pain intensity? A psychophysical investigation. Eur. J. Pain10, S78 (2006). Google Scholar
Price, D. D., Harkins, S. W. & Baker, C. Sensory-affective relationships among different types of clinical and experimental pain. Pain28, 297–307 (1987). CASPubMed Google Scholar
Harper, P. No pain, no gain: pain behaviour in the armed forces. Br. J. Nurs.15, 548–551 (2006). PubMed Google Scholar
Fields, H. L. in Proceedings of the 11th World Congress on Pain (eds Flor, H., Kalso, E. & Dostrovsky, J. O.) 449–459 (IASP Press, Seattle, 2006). Google Scholar
Tracey, I. & Mantyh, P. W. The cerebral signature for pain perception and its modulation. Neuron55, 377–391 (2007). CASPubMed Google Scholar
Dum, J. & Herz, A. Endorphinergic modulation of neural reward systems indicated by behavioral changes. Pharmacol. Biochem. Behav.21, 259–266 (1984). CASPubMed Google Scholar
Reboucas, E. C. et al. Effect of the blockade of μ1-opioid and 5HT2A-serotonergic/α1-noradrenergic receptors on sweet-substance-induced analgesia. Psychopharmacology (Berl.)179, 349–55 (2005). CAS Google Scholar
Forsberg, G., Wiesenfeld-Hallin, Z., Eneroth, P. & Sodersten, P. Sexual behavior induces naloxone-reversible hypoalgesia in male rats. Neurosci. Lett.81, 151–154 (1987). CASPubMed Google Scholar
Szechtman, H., Hershkowitz, M. & Simantov, R. Sexual behavior decreases pain sensitivity and stimulated endogenous opioids in male rats. Eur. J. Pharmacol.70, 279–285 (1981). CASPubMed Google Scholar
Gear, R. W., Aley, K. O. & Levine, J. D. Pain-induced analgesia mediated by mesolimbic reward circuits. J. Neurosci.19, 7175–7181 (1999). CASPubMedPubMed Central Google Scholar
Villemure, C., Slotnick, B. M. & Bushnell, M. C. Effects of odors on pain perception: deciphering the roles of emotion and attention. Pain106, 101–108 (2003). PubMed Google Scholar
Kenntner-Mabiala, R. & Pauli, P. Affective modulation of brain potentials to painful and nonpainful stimuli. Psychophysiology42, 559–567 (2005). PubMed Google Scholar
Roy., M., Peretz, I. & Rainville, P. Emotional valence contributes to music-induced analgesia. Pain134, 140–147 (2008). PubMed Google Scholar
de la Fuente-Fernandez, R. et al. Expectation and dopamine release: mechanism of the placebo effect in Parkinson's disease. Science293, 1164–1166 (2001). CASPubMed Google Scholar
Petrovic, P. et al. Placebo in emotional processing—induced expectations of anxiety relief activate a generalized modulatory network. Neuron46, 957–969 (2005). CASPubMed Google Scholar
Benedetti, F., Mayberg, H. S., Wager, T. D., Stohler, C. S. & Zubieta, J.-K. Neurobiological mechanisms of the placebo effect. J. Neurosci.25, 10390–10402 (2005). CASPubMedPubMed Central Google Scholar
Stevenson, G. W., Bilsky, E. J. & Negus, S. S. Targeting pain-suppressed behaviors in preclinical assays of pain and analgesia: effects of morphine on acetic acid-suppressed feeding in C57BL/6J mice. J. Pain7, 408–416 (2006). CASPubMed Google Scholar
Narita, M. et al. Direct evidence for the involvement of the mesolimbic κ-opioid system in the morphine-induced rewarding effect under an inflammatory pain-like state. Neuropsychopharmacology30, 111–118 (2004). Google Scholar
Marbach, J. J. & Lund, P. Depression, anhedonia and anxiety in temporomandibular joint and other facial pain syndromes. Pain11, 73–84 (1981). CASPubMed Google Scholar
Berridge, K. The debate over dopamine's role in reward: the case for incentive salience. Psychopharmacology191, 391–431 (2007). CASPubMed Google Scholar
Berridge, K. C. Pleasures of the brain. Brain Cogn.52, 106–128 (2003). PubMed Google Scholar
Pecina, S., Cagniard, B., Berridge, K. C., Aldridge, J. W. & Zhuang, X. Hyperdopaminergic mutant mice have higher “wanting” but not “liking” for sweet rewards. J. Neurosci.23, 9395–9402 (2003). CASPubMedPubMed Central Google Scholar
Hnasko, T. S., Sotak, B. N. & Palmiter, R. D. Morphine reward in dopamine-deficient mice. Nature438, 854–857 (2005). CASPubMed Google Scholar
Barbano, M. F. & Cador, M. Differential regulation of the consummatory, motivational and anticipatory aspects of feeding behavior by dopaminergic and opioidergic drugs. Neuropsychopharmacology31, 1371–1381 (2006). CASPubMed Google Scholar
Barbano, M. & Cador, M. Opioids for hedonic experience and dopamine to get ready for it. Psychopharmacology191, 497–506 (2007). CASPubMed Google Scholar
Zubieta, J.-K. et al. Regional mu opioid receptor regulation of sensory and affective dimensions of pain. Science293, 311–315 (2001). CASPubMed Google Scholar
Murphy, M. R., Checkley, S. A., Seckl, J. R. & Lightman, S. L. Naloxone inhibits oxytocin release at orgasm in man. J. Clin. Endocrinol. Metab.71, 1056–1058 (1990). CASPubMed Google Scholar
Zhao, Z.-Q. et al. Central serotonergic neurons are differentially required for opioid analgesia but not for morphine tolerance or morphine reward. Proc. Natl Acad. Sci. USA104, 14519–14524 (2007). CASPubMedPubMed Central Google Scholar
Mucha, R. F. & Herz, A. Motivational properties of kappa and mu opioid receptor agonists studied with place and taste preference conditioning. Psychopharmacology86, 274–280 (1985). CASPubMed Google Scholar
Hirakawa, N., Tershner, S. A., Fields, H. L. & Manning, B. H. Bi-directional changes in affective state elicited by manipulation of medullary pain-modulatory circuitry. Neuroscience100, 861–871 (2000). CASPubMed Google Scholar
Drevets, W. C. et al. Amphetamine-induced dopamine release in human ventral striatum correlates with euphoria. Biol. Psychiatry49, 81–96 (2001). CASPubMed Google Scholar
Schultz, W. Behavioral dopamine signals. Trends Neurosci.30, 203–210 (2007). CASPubMed Google Scholar
Scott, D. J., Heitzeg, M. M., Koeppe, R. A., Stohler, C. S. & Zubieta, J.-K. Variations in the human pain stress experience mediated by ventral and dorsal basal ganglia dopamine activity. J. Neurosci.26, 10789–10795 (2006). CASPubMedPubMed Central Google Scholar
Jensen, J. et al. Direct activation of the ventral striatum in anticipation of aversive stimuli. Neuron40, 1251–1257 (2003). CASPubMed Google Scholar
Schultz, W. Multiple dopamine functions at different time courses. Annu. Rev. Neurosci.30, 259–288 (2007). CASPubMed Google Scholar
Ungless, M. A., Magill, P. J. & Bolam, J. P. Uniform inhibition of dopamine neurons in the ventral tegmental area by aversive stimuli. Science303, 2040–2042 (2004). CASPubMed Google Scholar
Hagelberg, N. et al. Alfentanil increases cortical dopamine D2/D3 receptor binding in healthy subjects. Pain109, 86–93 (2004). CASPubMed Google Scholar
Wood, P. B. et al. Fibromyalgia patients show an abnormal dopamine response to pain. Eur. J. Neurosci.25, 3576–3582 (2007). PubMed Google Scholar
Altier, N. & Stewart, J. The role of dopamine in the nucleus accumbens in analgesia. Life Sci.65, 2269–2287 (1999). CASPubMed Google Scholar
Gerdelat-Mas, A. et al. Levodopa raises objective pain threshold in Parkinson's disease: a RIII reflex study. J. Neurol. Neurosurg. Psychiatry78, 1140–1142 (2007). CASPubMedPubMed Central Google Scholar
Wood, P. B. Mesolimbic dopaminergic mechanisms and pain control. Pain120, 230–234 (2006). CASPubMed Google Scholar
Bilder, R. M., Volavka, J., Lachman, H. M. & Grace, A. A. The catechol-_O_-methyltransferase polymorphism: relations to the tonic-phasic dopamine hypothesis and neuropsychiatric phenotypes. Neuropsychopharmacology29, 1943–1961 (2004). CASPubMed Google Scholar
Zubieta, J.-K. et al. COMT val158met genotype affects μ-opioid neurotransmitter responses to a pain stressor. Science299, 1240–1243 (2003). CASPubMed Google Scholar
Khachaturian, H. & Watson, S. J. Some perspectives on monoamine-opioid peptide interaction in rat central nervous system. Brain Res. Bull.9, 441–462 (1982). CASPubMed Google Scholar
Roth-Deri, I. et al. Effect of experimenter-delivered and self-administered cocaine on extracellular β-endorphin levels in the nucleus accumbens. J. Neurochem.84, 930–938 (2003). CASPubMed Google Scholar
King, M. A., Bradshaw, S., Chang, A. H., Pintar, J. E. & Pasternak, G. W. Potentiation of opioid analgesia in dopamine2 receptor knock-out mice: evidence for a tonically active anti-opioid system. J. Neurosci.21, 7788–7792 (2001). CASPubMedPubMed Central Google Scholar
Johnson, S. W. & North, R. A. Opioids excite dopamine neurons by hyperpolarization of local interneurons. J. Neurosci.12, 483–488 (1992). CASPubMedPubMed Central Google Scholar
Nugent, F. S., Penick, E. C. & Kauer, J. A. Opioids block long-term potentiation of inhibitory synapses. Nature446, 1086–1090 (2007). CASPubMed Google Scholar
Hagelberg, N. et al. μ-Receptor agonism with alfentanil increases striatal dopamine D2 receptor binding in man. Synapse45, 25–30 (2002). CASPubMed Google Scholar
Gray, J. A. & McNaughton, N. The neuropsychology of anxiety (Oxford Univ. Press, Oxford, 2000). Google Scholar
Seymour, B. et al. Opponent appetitive-aversive neural processes underlie predictive learning of pain relief. Nature Neurosci.8, 1234–1240 (2005). CASPubMed Google Scholar
Tindell, A. J., Smith, K. S., Pecina, S., Berridge, K. C. & Aldridge, J. W. Ventral pallidum firing codes hedonic reward: when a bad taste turns good. J. Neurophysiol.96, 2399–2409 (2006). PubMed Google Scholar
Paton, J. J., Belova, M. A., Morrison, S. E. & Salzman, C. D. The primate amygdala represents the positive and negative value of visual stimuli during learning. Nature439, 865–870 (2006). CASPubMedPubMed Central Google Scholar
Blood, A. J. & Zatorre, R. J. Intensely pleasurable responses to music correlate with activity in brain regions implicated in reward and emotion. Proc. Natl Acad. Sci. USA98, 11818–11823 (2001). CASPubMedPubMed Central Google Scholar
Smith, K. S. & Berridge, K. C. Opioid limbic circuit for reward: interaction between hedonic hotspots of nucleus accumbens and ventral pallidum. J. Neurosci.27, 1594–1605 (2007). CASPubMedPubMed Central Google Scholar
Miller, J. M. et al. Anhedonia after a selective bilateral lesion of the globus pallidus. Am. J. Psychiatry163, 786–788 (2006). PubMed Google Scholar
Schlaepfer, T. E. et al. Deep brain stimulation to reward circuitry alleviates anhedonia in refractory major depression. Neuropsychopharmacology33, 368–377 (2007). PubMed Google Scholar
Wager, T. D., Scott, D. J. & Zubieta, J. K. Placebo effects on human μ-opioid activity during pain. Proc. Natl Acad. Sci. USA104, 11056–11061 (2007). CASPubMedPubMed Central Google Scholar
Fields, H. State-dependent opioid control of pain. Nature Rev. Neurosci.5, 565–575 (2004). CAS Google Scholar
Bingel, U., Lorenz, J., Schoell, E., Weiller, C. & Buchel, C. Mechanisms of placebo analgesia: rACC recruitment of a subcortical antinociceptive network. Pain120, 8–15 (2006). CASPubMed Google Scholar
Harris, R. E. et al. Decreased central μ-opioid receptor availability in fibromyalgia. J. Neurosci.27, 10000–10006 (2007). CASPubMedPubMed Central Google Scholar
Braz, J. M., Nassar, M. A., Wood, J. N. & Basbaum, A. I. Parallel “pain” pathways arise from subpopulations of primary afferent nociceptor. Neuron47, 787–793 (2005). CASPubMed Google Scholar
Reynolds, S. M. & Berridge, K. C. Positive and negative motivation in nucleus accumbens shell: bivalent rostrocaudal gradients for GABA-elicited eating, taste “liking”/“disliking” reactions, place preference/avoidance, and fear. J. Neurosci.22, 7308–7320 (2002). CASPubMedPubMed Central Google Scholar
Rolls, E. T. et al. Representations of pleasant and painful touch in the human orbitofrontal and cingulate cortices. Cereb. Cortex13, 308–317 (2003). CASPubMed Google Scholar
Small, D. M., Zatorre, R. J., Dagher, A., Evans, A. C. & Jones-Gotman, M. Changes in brain activity related to eating chocolate: from pleasure to aversion. Brain124, 1720–1733 (2001). CASPubMed Google Scholar
Tremblay, L. & Schultz, W. Relative reward preference in primate orbitofrontal cortex. Nature398, 704–708 (1999). CASPubMed Google Scholar
Kringelbach, M. L. The human orbitofrontal cortex: linking reward to hedonic experience. Nature Rev. Neurosci.6, 691–702 (2005). CAS Google Scholar
Nutt, D. et al. The other face of depression, reduced positive affect: the role of catecholamines in causation and cure. J. Psychopharmacol.21, 461–471 (2007). CASPubMed Google Scholar
Dawkins, L., Powell, J. H., West, R., Powell, J. & Pickering, A. A double-blind placebo controlled experimental study of nicotine: I—effects on incentive motivation. Psychopharmacology189, 355–367 (2006). CASPubMed Google Scholar
Ashby, F. G., Isen, A. M. & Turken, A. U. A neuropsychological theory of positive affect and its influence on cognition. Psychol. Rev.106, 529–550 (1999). CASPubMed Google Scholar
de Vasconcellos, A. P. S., Nieto, F. B., Fontella, F. U., da Rocha, E. R. & Dalmaz, C. The nociceptive response of stressed and lithium-treated rats is differently modulated by different flavors. Physiol. Behav.88, 382–388 (2006). PubMed Google Scholar
Zubieta, J.-K. et al. Regulation of human affective responses by anterior cingulate and limbic μ-opioid neurotransmission. Arch. Gen. Psychiatry60, 1145–1153 (2003). CASPubMed Google Scholar
Willoch, F. et al. Central poststroke pain and reduced opioid receptor binding within pain processing circuitries: a [11C]diprenorphine PET study. Pain108, 213–220 (2004). CASPubMed Google Scholar
Pressman, S. D. & Cohen, S. Does positive affect influence health? Psychol. Bull.131, 925–71 (2005). PubMed Google Scholar
Seligman, M. in Handbook of Positive Psychology (eds Snyder, C. R. & Lopez, S. J.) (Oxford Univ. Press, New York, 2005). Google Scholar
Driscoll, R. & Edwards, L. The misconception of Christian suffering. Pastoral Psychol.32, 34–48 (1983). Google Scholar
Nagel, T. What is it like to be a bat? Philos. Rev.83, 435–450 (1974). Google Scholar
Price, D. D., Barrell, J. J. & Gracely, R. H. A psychophysical analysis of experiential factors that selectively influence the affective dimension of pain. Pain8, 137–149 (1980). CASPubMed Google Scholar
Lowe, M. R. & Butryn, M. L. Hedonic hunger: a new dimension of appetite? Physiol. Behav.91, 432–439 (2007). CASPubMed Google Scholar
Damasio, A. Descartes' Error: Emotion, Reason, and the Human Brain (Grosset/Putnam, New York, 1994). Google Scholar
Peters, E., Västfjäll, D., Gärling, T. & Slovic, P. Affect and decision making: a 'hot' topic. J. Behav. Decision Making19, 79–85 (2006). Google Scholar
Harbaugh, W. T., Mayr, U. & Burghart, D. R. Neural responses to taxation and voluntary giving reveal motives for charitable donations. Science316, 1622–1625 (2007). CASPubMed Google Scholar
Koob, G. F. & Moal, M. L. Drug abuse: hedonic homeostatic dysregulation. Science278, 52–58 (1997). CASPubMed Google Scholar
Moss, J. in Oxford Studies in Ancient Philosophy (ed. Sedley, D.) (Oxford Univ. Press, USA, 2005). Google Scholar
Ballantyne, J. C. & LaForge, K. S. Opioid dependence and addiction during opioid treatment of chronic pain. Pain129, 235–255 (2007). CASPubMed Google Scholar
Franken, I. H. A., Zijlstra, C. & Muris, P. Are nonpharmacological induced rewards related to anhedonia? A study among skydivers. Prog. Neuropsychopharmacol. Biol. Psychiatry30, 297–300 (2006). PubMed Google Scholar
Symons, F., Thompson, A. & Rodriguez, M. Self-injurious behavior and the efficacy of naltrexone treatment: a quantitative synthesis. Ment. Retard. Dev. Disabil. Res. Rev.10, 193–200 (2004). PubMed Google Scholar
Grace, A. A. Phasic versus tonic dopamine release and the modulation of dopamine system responsivity: a hypothesis for the etiology of schizophrenia. Neuroscience41, 1–24 (1991). CASPubMed Google Scholar
Floresco, S. B., West, A. R., Ash, B., Moore, H. & Grace, A. A. Afferent modulation of dopamine neuron firing differentially regulates tonic and phasic dopamine transmission. Nature Neurosci.6, 968–973 (2003). CASPubMed Google Scholar
Gut-Fayand, A. et al. Substance abuse and suicidality in schizophrenia: a common risk factor linked to impulsivity. Psychiatry Res.102, 65–72 (2001). CASPubMed Google Scholar
Kringelbach, M. L., de Araujo, I. E. T. & Rolls, E. T. Taste-related activity in the human dorsolateral prefrontal cortex. Neuroimage21, 781–788 (2004). PubMed Google Scholar
Lorenz, J., Minoshima, S. & Casey, K. L. Keeping pain out of mind: the role of the dorsolateral prefrontal cortex in pain modulation. Brain126, 1079–1091 (2003). CASPubMed Google Scholar
Wiech, K. et al. Anterolateral prefrontal cortex mediates the analgesic effect of expected and perceived control over pain. J. Neurosci.26, 11501–11509 (2006). CASPubMedPubMed Central Google Scholar
Pelchat, M. L., Johnson, A., Chan, R., Valdez, J. & Ragland, J. D. Images of desire: food-craving activation during fMRI. Neuroimage23, 1486–1493 (2004). PubMed Google Scholar
Brooks, J. C. W., Zambreanu, L., Godinez, A., Craig, A. D. & Tracey, I. Somatotopic organisation of the human insula to painful heat studied with high resolution functional imaging. Neuroimage27, 201–209 (2005). CASPubMed Google Scholar
Wager, T. D. et al. Placebo-induced changes in fMRI in the anticipation and experience of pain. Science303, 1162–1167 (2004). CASPubMed Google Scholar
Wittmann, M., Leland, D. & Paulus, M. Time and decision making: differential contribution of the posterior insular cortex and the striatum during a delay discounting task. Exp. Brain Res.179, 643–653 (2007). PubMed Google Scholar
Ostrowsky, K. et al. Representation of pain and somatic sensation in the human insula: a study of responses to direct electrical cortical stimulation. Cereb. Cortex12, 376–385 (2002). PubMed Google Scholar
Knutson, B., Fong, G. W., Bennett, S. M., Adams, C. M. & Hommer, D. A region of mesial prefrontal cortex tracks monetarily rewarding outcomes: characterization with rapid event-related fMRI. Neuroimage18, 263–272 (2003). PubMed Google Scholar
Porro, C. A., Cettolo, V., Francescato, M. P. & Baraldi, P. Functional activity mapping of the mesial hemispheric wall during anticipation of pain. Neuroimage19, 1738–1747 (2003). PubMed Google Scholar
Ochsner, K. N. et al. Neural correlates of individual differences in pain-related fear and anxiety. Pain120, 69–77 (2006). PubMed Google Scholar
Shidara, M. & Richmond, B. J. Anterior cingulate: single neuronal signals related to degree of reward expectancy. Science296, 1709–1711 (2002). PubMed Google Scholar
Rainville, P., Duncan, G. H., Price, D. D., Carrier, B. & Bushnell, M. C. Pain affect encoded in human anterior cingulate but not somatosensory cortex. Science277, 968–971 (1997). CASPubMed Google Scholar
O'Doherty, J. et al. Dissociable roles of ventral and dorsal striatum in instrumental conditioning. Science304, 452–454 (2004). CASPubMed Google Scholar
Delgado, M. R., Stenger, V. A. & Fiez, J. A. Motivation-dependent responses in the human caudate nucleus. Cereb. Cortex14, 1022–1030 (2004). CASPubMed Google Scholar
Bingel, U., Glascher, J., Weiller, C. & Buchel, C. Somatotopic representation of nociceptive information in the putamen: an event-related fMRI study. Cereb. Cortex14, 1340–1345 (2004). CASPubMed Google Scholar
Menon, V. & Levitin, D. J. The rewards of music listening: response and physiological connectivity of the mesolimbic system. Neuroimage28, 175–184 (2005). CASPubMed Google Scholar
Bussone, G. et al. Deep brain stimulation in craniofacial pain: seven years' experience. Neurol. Sci.28, S146–S149 (2007). PubMed Google Scholar
Fairhurst, M., Wiech, K., Dunckley, P. & Tracey, I. Anticipatory brainstem activity predicts neural processing of pain in humans. Pain128, 101–110 (2007). PubMed Google Scholar
Becerra, L., Breiter, H. C., Wise, R., Gonzalez, R. G. & Borsook, D. Reward circuitry activation by noxious thermal stimuli. Neuron32, 927–946 (2001). CASPubMed Google Scholar
Ramnani, N., Elliott, R., Athwal, B. S. & Passingham, R. E. Prediction error for free monetary reward in the human prefrontal cortex. Neuroimage23, 777–786 (2004). CASPubMed Google Scholar
Ploghaus, A. et al. Exacerbation of pain by anxiety is associated with activity in a hippocampal network. J. Neurosci.21, 9896–9903 (2001). CASPubMedPubMed Central Google Scholar
Zambreanu, L., Wise, R. G., Brooks, J. C. W., Iannetti, G. D. & Tracey, I. A role for the brainstem in central sensitisation in humans. Evidence from functional magnetic resonance imaging. Pain114, 397–407 (2005). CASPubMed Google Scholar
Pecina, S. & Berridge, K. C. Brainstem mediates diazepam enhancement of palatability and feeding: microinjections into fourth ventricle versus lateral ventricle. Brain Res.727, 22–30 (1996). CASPubMed Google Scholar