Prenatal exposure to drugs: effects on brain development and implications for policy and education (original) (raw)
Pinto, C. Medical officials question arrest of pregnant patient. The Tennessean A1 (24 Apr 2008).
Seckl, J. R. & Meaney, M. J. Glucocorticoid “programming” and PTSD risk. Ann. NY Acad. Sci.1071, 351–378 (2006). CASPubMed Google Scholar
Levitt, P. Prenatal effects of drugs of abuse on brain development. Drug Alcohol Depend.51, 109–125 (1998). CASPubMed Google Scholar
Thadani, P. V. The intersection of stress, drug abuse and development. Psychoneuroendocrinology27, 221–230 (2002). PubMed Google Scholar
Randall, C. L. Alcohol and pregnancy: highlights from three decades of research. J. Stud. Alcohol62, 554–561 (2001). CASPubMed Google Scholar
Malanga, C. J. & Kosofsky, B. E. Mechanisms of action of drugs of abuse on the developing fetal brain. Clin. Perinatol.26, 17–37, v–vi (1999). CASPubMed Google Scholar
Clancy, B., Darlington, R. B. & Finlay, B. L. Translating developmental time across mammalian species. Neuroscience105, 7–17 (2001). CASPubMed Google Scholar
Clancy, B., Finlay, B. L., Darlington, R. B. & Anand, K. J. Extrapolating brain development from experimental species to humans. Neurotoxicology28, 931–937 (2007). PubMed Google Scholar
Clancy, B. et al. Web-based method for translating neurodevelopment from laboratory species to humans. Neuroinformatics5, 79–94 (2007). PubMed Google Scholar
Volkow, N. D., Fowler, J. S., Wang, G. J., Swanson, J. M. & Telang, F. Dopamine in drug abuse and addiction: results of imaging studies and treatment implications. Arch. Neurol.64, 1575–1579 (2007). PubMed Google Scholar
Wise, R. A. Dopamine, learning and motivation. Nature Rev. Neurosci.5, 483–494 (2004). CAS Google Scholar
Goldman-Rakic, P. S., Lidow, M. S. & Gallager, D. W. Overlap of dopaminergic, adrenergic, and serotoninergic receptors and complementarity of their subtypes in primate prefrontal cortex. J. Neurosci.10, 2125–2138 (1990). CASPubMedPubMed Central Google Scholar
Djamgoz, M. B. & Wagner, H. J. Localization and function of dopamine in the adult vertebrate retina. Neurochem. Int.20, 139–191 (1992). CASPubMed Google Scholar
De Souza, E. B. & Kuhar, M. J. Dopamine receptors in the anterior lobe of the human pituitary gland: autoradiographic localization. Brain Res.306, 391–395 (1984). CASPubMed Google Scholar
Murrin, L. C., Gale, K. & Kuhar, M. J. Autoradiographic localization of neuroleptic and dopamine receptors in the caudate-putamen and substantia nigra: effects of lesions. Eur. J. Pharmacol.60, 229–235 (1979). CASPubMed Google Scholar
Chasnoff, I. J., Burns, W. J., Schnoll, S. H. & Burns, K. A. Cocaine use in pregnancy. N. Engl. J. Med.313, 666–669 (1985). CASPubMed Google Scholar
Chasnoff, I. J., Burns, K. A. & Burns, W. J. Cocaine use in pregnancy: perinatal morbidity and mortality. Neurotoxicol. Teratol.9, 291–293 (1987). CASPubMed Google Scholar
Bauchner, H., Zuckerman, B., Amaro, H., Frank, D. A. & Parker, S. Teratogenicity of cocaine. J. Pediatr.111, 160–161 (1987). CASPubMed Google Scholar
Dow-Edwards, D., Mayes, L., Spear, L. & Hurd, Y. Cocaine and development: clinical, behavioral, and neurobiological perspectives–a symposium report. Neurotoxicol. Teratol.21, 481–490 (1999). CASPubMed Google Scholar
Gingras, J. L. & O'Donnell, K. J. State control in the substance-exposed fetus. I. The fetal neurobehavioral profile: an assessment of fetal state, arousal, and regulation competency. Ann. NY Acad. Sci.846, 262–276 (1998). CASPubMed Google Scholar
Karmel, B. Z. & Gardner, J. M. Prenatal cocaine exposure effects on arousal-modulated attention during the neonatal period. Dev. Psychobiol.29, 463–480 (1996). CASPubMed Google Scholar
Mayes, L. C., Grillon, C., Granger, R. & Schottenfeld, R. Regulation of arousal and attention in preschool children exposed to cocaine prenatally. Ann. NY Acad. Sci.846, 126–143 (1998). CASPubMed Google Scholar
Richardson, G. A., Hamel, S. C., Goldschmidt, L. & Day, N. L. The effects of prenatal cocaine use on neonatal neurobehavioral status. Neurotoxicol. Teratol.18, 519–528 (1996). CASPubMed Google Scholar
Singer, L. T. et al. Cognitive outcomes of preschool children with prenatal cocaine exposure. JAMA291, 2448–2456 (2004). CASPubMed Google Scholar
Mayes, L. C. Exposure to cocaine: behavioral outcomes in preschool and school-age children. NIDA Res. Monogr.164, 211–229 (1996). CASPubMed Google Scholar
Mayes, L. C., Bornstein, M. H., Chawarska, K. & Granger, R. H. Information processing and developmental assessments in 3-month-old infants exposed prenatally to cocaine. Pediatrics95, 539–545 (1995). CASPubMed Google Scholar
Mayes, L. C., Cicchetti, D., Acharyya, S. & Zhang, H. Developmental trajectories of cocaine-and-other-drug-exposed and non-cocaine-exposed children. J. Dev. Behav. Pediatr.24, 323–335 (2003). PubMed Google Scholar
Richardson, G. A., Conroy, M. L. & Day, N. L. Prenatal cocaine exposure: effects on the development of school-age children. Neurotoxicol. Teratol.18, 627–634 (1996). CASPubMed Google Scholar
Richardson, G. A. Prenatal cocaine exposure. A longitudinal study of development. Ann. NY Acad. Sci.846, 144–152 (1998). CASPubMed Google Scholar
Gabriel, M., Taylor, C. & Burhans, L. In utero cocaine, discriminative avoidance learning with low-salient stimuli and learning-related neuronal activity in rabbits (Oryctolagus cuniculus). Behav. Neurosci.117, 912–926 (2003). CASPubMed Google Scholar
Morrow, B. A., Elsworth, J. D. & Roth, R. H. Prenatal cocaine exposure disrupts non-spatial, short-term memory in adolescent and adult male rats. Behav. Brain Res.129, 217–223 (2002). CASPubMed Google Scholar
Thompson, B. L., Levitt, P. & Stanwood, G. D. Prenatal cocaine exposure specifically alters spontaneous alternation behavior. Behav. Brain Res.164, 107–116 (2005). CASPubMed Google Scholar
Levine, T. P. et al. Effects of prenatal cocaine exposure on special education in school-aged children. Pediatrics122, e83–e91 (2008). PubMed Google Scholar
Harvey, J. A. Cocaine effects on the developing brain: current status. Neurosci. Biobehav. Rev.27, 751–764 (2004). CASPubMed Google Scholar
Lidow, M. S. Consequences of prenatal cocaine exposure in nonhuman primates. Brain Res. Dev. Brain Res.147, 23–36 (2003). CASPubMed Google Scholar
Mayes, L. C. A behavioral teratogenic model of the impact of prenatal cocaine exposure on arousal regulatory systems. Neurotoxicol. Teratol.24, 385–395 (2002). CASPubMed Google Scholar
Stanwood, G. D. & Levitt, P. Drug exposure early in life: functional repercussions of changing neuropharmacology during sensitive periods of brain development. Curr. Opin. Pharmacol.4, 65–71 (2004). CASPubMed Google Scholar
Parlaman, J. P., Thompson, B. L., Levitt, P. & Stanwood, G. D. Pharmacokinetic profile of cocaine following intravenous administration in the female rabbit. Eur. J. Pharmacol.563, 124–129 (2007). CASPubMedPubMed Central Google Scholar
Evans, S. M., Cone, E. J. & Henningfield, J. E. Arterial and venous cocaine plasma concentrations in humans: relationship to route of administration, cardiovascular effects and subjective effects. J. Pharmacol. Exp. Ther.279, 1345–1356 (1996). CASPubMed Google Scholar
Jenkins, A. J., Keenan, R. M., Henningfield, J. E. & Cone, E. J. Correlation between pharmacological effects and plasma cocaine concentrations after smoked administration. J. Anal. Toxicol.26, 382–392 (2002). CASPubMed Google Scholar
Friedman, E., Yadin, E. & Wang, H. Y. Effect of prenatal cocaine on dopamine receptor-G protein coupling in mesocortical regions of the rabbit brain. Neuroscience70, 739–747 (1996). CASPubMed Google Scholar
Jones, L. B. et al. In utero cocaine-induced dysfunction of dopamine D1 receptor signaling and abnormal differentiation of cerebral cortical neurons. J. Neurosci.20, 4606–4614 (2000). CASPubMedPubMed Central Google Scholar
Wang, H. Y., Runyan, S., Yadin, E. & Friedman, E. Prenatal exposure to cocaine selectively reduces D1 dopamine receptor-mediated activation of striatal Gs proteins. J. Pharmacol. Exp. Ther.273, 492–498 (1995). CASPubMed Google Scholar
Stanwood, G. D., Parlaman, J. P. & Levitt, P. Anatomical abnormalities in dopaminoceptive regions of the cerebral cortex of dopamine D1 receptor mutant mice. J. Comp. Neurol.487, 270–282 (2005). CASPubMed Google Scholar
Stanwood, G. D., Washington, R. A., Shumsky, J. S. & Levitt, P. Prenatal cocaine exposure produces consistent developmental alterations in dopamine-rich regions of the cerebral cortex. Neuroscience106, 5–14 (2001). CASPubMed Google Scholar
Murphy, E. H. et al. Cocaine administration in pregnant rabbits alters cortical structure and function in their progeny in the absence of maternal seizures. Exp. Brain Res.114, 433–441 (1997). CASPubMed Google Scholar
Stanwood, G. D. & Levitt, P. Prenatal exposure to cocaine produces unique developmental and long-term adaptive changes in dopamine D1 receptor activity and subcellular distribution. J. Neurosci.27, 152–157 (2007). CASPubMedPubMed Central Google Scholar
Clark, L., Cools, R. & Robbins, T. W. The neuropsychology of ventral prefrontal cortex: decision-making and reversal learning. Brain Cogn.55, 41–53 (2004). CASPubMed Google Scholar
Collette, F. & Van der Linden, M. Brain imaging of the central executive component of working memory. Neurosci. Biobehav. Rev.26, 105–125 (2002). PubMed Google Scholar
Elliott, R. Executive functions and their disorders. Br. Med. Bull.65, 49–59 (2003). PubMed Google Scholar
Elston, G. N. Cortex, cognition and the cell: new insights into the pyramidal neuron and prefrontal function. Cereb. Cortex13, 1124–1138 (2003). PubMed Google Scholar
Goldman-Rakic, P. S. Regional and cellular fractionation of working memory. Proc. Natl Acad. Sci. USA93, 13473–13480 (1996). CASPubMedPubMed Central Google Scholar
Goldman-Rakic, P. S. The prefrontal landscape: implications of functional architecture for understanding human mentation and the central executive. Philos. Trans. R. Soc. Lond. B Biol. Sci.351, 1445–1453 (1996). CASPubMed Google Scholar
Stanwood, G. D., Washington, R. A. & Levitt, P. Identification of a sensitive period of prenatal cocaine exposure that alters the development of the anterior cingulate cortex. Cereb. Cortex11, 430–440 (2001). CASPubMed Google Scholar
Crandall, J. E., Hackett, H. E., Tobet, S. A., Kosofsky, B. E. & Bhide, P. G. Cocaine exposure decreases GABA neuron migration from the ganglionic eminence to the cerebral cortex in embryonic mice. Cereb. Cortex14, 665–675 (2004). PubMed Google Scholar
Gressens, P., Kosofsky, B. E. & Evrard, P. Cocaine-induced disturbances of corticogenesis in the developing murine brain. Neurosci. Lett.140, 113–116 (1992). CASPubMed Google Scholar
Lidow, M. S. Prenatal cocaine exposure adversely affects development of the primate cerebral cortex. Synapse21, 332–341 (1995). CASPubMed Google Scholar
Lidow, M. S. & Song, Z. M. Effect of cocaine on cell proliferation in the cerebral wall of monkey fetuses. Cereb. Cortex11, 545–551 (2001). CASPubMed Google Scholar
Ren, J. Q., Malanga, C. J., Tabit, E. & Kosofsky, B. E. Neuropathological consequences of prenatal cocaine exposure in the mouse. Int. J. Dev. Neurosci.22, 309–320 (2004). CASPubMedPubMed Central Google Scholar
Lidow, M. S. & Song, Z. M. Primates exposed to cocaine in utero display reduced density and number of cerebral cortical neurons. J. Comp. Neurol.435, 263–275 (2001). CASPubMed Google Scholar
Crandall, J. E. et al. Dopamine receptor activation modulates GABA neuron migration from the basal forebrain to the cerebral cortex. J. Neurosci.27, 3813–3822 (2007). CASPubMedPubMed Central Google Scholar
Ohtani, N., Goto, T., Waeber, C. & Bhide, P. G. Dopamine modulates cell cycle in the lateral ganglionic eminence. J. Neurosci.23, 2840–2850 (2003). CASPubMedPubMed Central Google Scholar
Harvey, J. A. et al. Effects of prenatal exposure to cocaine on the developing brain: anatomical, chemical, physiological and behavioral consequences. Neurotox. Res.3, 117–143 (2001). CASPubMed Google Scholar
Stanwood, G. D. & Levitt, P. Repeated i.v. cocaine exposure produces long-lasting behavioral sensitization in pregnant adults, but behavioral tolerance in their offspring. Neuroscience122, 579–583 (2003). CASPubMed Google Scholar
Johnston, L. D., O'Malley, P. M., Bachman, J. G. & Schulenberg, J. E. Monitoring the Future national survey results on drug use, 1975–2007. Volume I: secondary school students. NIH Publication No. 08–6418A (National Institute on Drug Abuse, Bethesda, Maryland, 2008).
Smith, L. M. et al. Prenatal methamphetamine use and neonatal neurobehavioral outcome. Neurotoxicol. Teratol.30, 20–28 (2008). CASPubMed Google Scholar
Smith, L. M. et al. The infant development, environment, and lifestyle study: effects of prenatal methamphetamine exposure, polydrug exposure, and poverty on intrauterine growth. Pediatrics118, 1149–1156 (2006). PubMed Google Scholar
Petrou, S., Sach, T. & Davidson, L. The long-term costs of preterm birth and low birth weight: results of a systematic review. Child Care Health Dev.27, 97–115 (2001). CASPubMed Google Scholar
Chaikind, S. & Corman, H. The impact of low birthweight on special education costs. J. Health Econ.10, 291–311 (1991). CASPubMed Google Scholar
Cernerud, L., Eriksson, M., Jonsson, B., Steneroth, G. & Zetterstrom, R. Amphetamine addiction during pregnancy: 14-year follow-up of growth and school performance. Acta Paediatr.85, 204–208 (1996). CASPubMed Google Scholar
Chang, L. et al. Smaller subcortical volumes and cognitive deficits in children with prenatal methamphetamine exposure. Psychiatry Res.132, 95–106 (2004). CASPubMed Google Scholar
Chang, L., Alicata, D., Ernst, T. & Volkow, N. Structural and metabolic brain changes in the striatum associated with methamphetamine abuse. Addiction102 (Suppl. 1), 16–32 (2007). PubMed Google Scholar
Derauf, C. et al. Demographic and psychosocial characteristics of mothers using methamphetamine during pregnancy: preliminary results of the Infant Development, Environment, And Lifestyle study (IDEAL). Am. J. Drug Alcohol Abuse33, 281–289 (2007). PubMedPubMed Central Google Scholar
Melo, P., Rodrigues, L. G., Silva, M. C. & Tavares, M. A. Effects of prenatal exposure to methamphetamine on the development of the rat retina. Ann. NY Acad. Sci.1074, 590–603 (2006). CASPubMed Google Scholar
Melo, P., Moreno, V. Z., Vazquez, S. P., Pinazo-Duran, M. D. & Tavares, M. A. Myelination changes in the rat optic nerve after prenatal exposure to methamphetamine. Brain Res.1106, 21–29 (2006). CASPubMed Google Scholar
Slamberova, R., Pometlova, M. & Charousova, P. Postnatal development of rat pups is altered by prenatal methamphetamine exposure. Prog. Neuropsychopharmacol. Biol. Psychiatry30, 82–88 (2006). CASPubMed Google Scholar
Slamberova, R., Pometlova, M., Syllabova, L. & Mancuskova, M. Learning in the place navigation task, not the new-learning task, is altered by prenatal methamphetamine exposure. Brain Res. Dev. Brain Res.157, 217–219 (2005). CASPubMed Google Scholar
Nasif, F. J., Cuadra, G. R. & Ramirez, O. A. Permanent alteration of central noradrenergic system by prenatally administered amphetamine. Brain Res. Dev. Brain Res.112, 181–188 (1999). CASPubMed Google Scholar
Gomes-da-Silva, J. et al. Prenatal exposure to methamphetamine in the rat: ontogeny of tyrosine hydroxylase mRNA expression in mesencephalic dopaminergic neurons. Ann. NY Acad. Sci.965, 68–77 (2002). CASPubMed Google Scholar
Cabrera, T. M., Levy, A. D., Li, Q., van de Kar, L. D. & Battaglia, G. Prenatal methamphetamine attenuates serotonin mediated renin secretion in male and female rat progeny: evidence for selective long-term dysfunction of serotonin pathways in brain. Synapse15, 198–208 (1993). CASPubMed Google Scholar
Slamberova, R., Pometlova, M. & Rokyta, R. Effect of methamphetamine exposure during prenatal and preweaning periods lasts for generations in rats. Dev. Psychobiol.49, 312–322 (2007). CASPubMed Google Scholar
Rogers, J. M. Tobacco and pregnancy: overview of exposures and effects. Birth Defects Res. C Embryo Today84, 1–15 (2008). CASPubMed Google Scholar
Hollins, K. Consequences of antenatal mental health problems for child health and development. Curr. Opin. Obstet. Gynecol.19, 568–572 (2007). PubMed Google Scholar
Hack, M. Young adult outcomes of very-low-birth-weight children. Semin. Fetal Neonatal Med.11, 127–137 (2006). PubMed Google Scholar
Gianni, M. L. et al. Twelve-month neurofunctional assessment and cognitive performance at 36 months of age in extremely low birth weight infants. Pediatrics120, 1012–1019 (2007). PubMed Google Scholar
Lambe, M., Hultman, C., Torrang, A., Maccabe, J. & Cnattingius, S. Maternal smoking during pregnancy and school performance at age 15. Epidemiology17, 524–530 (2006). PubMed Google Scholar
George, L., Granath, F., Johansson, A. L., Anneren, G. & Cnattingius, S. Environmental tobacco smoke and risk of spontaneous abortion. Epidemiology17, 500–505 (2006). PubMed Google Scholar
Cnattingius, S. The epidemiology of smoking during pregnancy: smoking prevalence, maternal characteristics, and pregnancy outcomes. Nicotine Tob. Res.6 (Suppl. 2), S125–S140 (2004). PubMed Google Scholar
DiFranza, J. R., Aligne, C. A. & Weitzman, M. Prenatal and postnatal environmental tobacco smoke exposure and children's health. Pediatrics113, 1007–1015 (2004). PubMed Google Scholar
Fried, P. A., Watkinson, B. & Gray, R. Differential effects on cognitive functioning in 13- to 16-year-olds prenatally exposed to cigarettes and marihuana. Neurotoxicol. Teratol.25, 427–436 (2003). CASPubMed Google Scholar
Fried, P. A. & Watkinson, B. Differential effects on facets of attention in adolescents prenatally exposed to cigarettes and marihuana. Neurotoxicol. Teratol.23, 421–430 (2001). CASPubMed Google Scholar
Makin, J., Fried, P. A. & Watkinson, B. A comparison of active and passive smoking during pregnancy: long-term effects. Neurotoxicol. Teratol.13, 5–12 (1991). CASPubMed Google Scholar
Eskenazi, B., Prehn, A. W. & Christianson, R. E. Passive and active maternal smoking as measured by serum cotinine: the effect on birthweight. Am. J. Public Health85, 395–398 (1995). CASPubMedPubMed Central Google Scholar
Langley, K., Rice, F., van den Bree, M. B. & Thapar, A. Maternal smoking during pregnancy as an environmental risk factor for attention deficit hyperactivity disorder behaviour. A review. Minerva Pediatr.57, 359–371 (2005). CASPubMed Google Scholar
Gaither, K. H., Huber, L. R., Thompson, M. E. & Huet-Hudson, Y. M. Does the use of nicotine replacement therapy during pregnancy affect pregnancy outcomes? Matern. Child Health J. 14 May 2008 (doi: 10.1007/s10995-008-0361-1). PubMed Google Scholar
Schroeder, D. R. et al. Nicotine patch use in pregnant smokers: smoking abstinence and delivery outcomes. J. Matern. Fetal Neonatal Med.11, 100–107 (2002). CASPubMed Google Scholar
Pauly, J. R. & Slotkin, T. A. Maternal tobacco smoking, nicotine replacement and neurobehavioural development. Acta Paediatr.97, 1331–1337 (2008). PubMed Google Scholar
Slotkin, T. A. If nicotine is a developmental neurotoxicant in animal studies, dare we recommend nicotine replacement therapy in pregnant women and adolescents? Neurotoxicol. Teratol.30, 1–19 (2008). CASPubMed Google Scholar
Sarasin, A. et al. Adrenal-mediated rather than direct effects of nicotine as a basis of altered sex steroid synthesis in fetal and neonatal rat. Reprod. Toxicol.17, 153–162 (2003). CASPubMed Google Scholar
Dwyer, J. B., Broide, R. S. & Leslie, F. M. Nicotine and brain development. Birth Defects Res. C Embryo Today84, 30–44 (2008). CASPubMed Google Scholar
Navarro, H. A. et al. Prenatal exposure to nicotine impairs nervous system development at a dose which does not affect viability or growth. Brain Res. Bull.23, 187–192 (1989). CASPubMed Google Scholar
Roy, T. S., Seidler, F. J. & Slotkin, T. A. Prenatal nicotine exposure evokes alterations of cell structure in hippocampus and somatosensory cortex. J. Pharmacol. Exp. Ther.300, 124–133 (2002). CASPubMed Google Scholar
Paz, R., Barsness, B., Martenson, T., Tanner, D. & Allan, A. M. Behavioral teratogenicity induced by nonforced maternal nicotine consumption. Neuropsychopharmacology32, 693–699 (2007). CASPubMed Google Scholar
Levin, E. D. et al. Increased nicotine self-administration following prenatal exposure in female rats. Pharmacol. Biochem. Behav.85, 669–674 (2006). CASPubMedPubMed Central Google Scholar
Vaglenova, J., Birru, S., Pandiella, N. M. & Breese, C. R. An assessment of the long-term developmental and behavioral teratogenicity of prenatal nicotine exposure. Behav. Brain Res.150, 159–170 (2004). CASPubMed Google Scholar
Slotkin, T. A. Fetal nicotine or cocaine exposure: which one is worse? J. Pharmacol. Exp. Ther.285, 931–945 (1998). CASPubMed Google Scholar
Sarter, M., Hasselmo, M. E., Bruno, J. P. & Givens, B. Unraveling the attentional functions of cortical cholinergic inputs: interactions between signal-driven and cognitive modulation of signal detection. Brain Res. Brain Res. Rev.48, 98–111 (2005). CASPubMed Google Scholar
Liang, K. et al. Neonatal nicotine exposure impairs nicotinic enhancement of central auditory processing and auditory learning in adult rats. Eur. J. Neurosci.24, 857–866 (2006). PubMed Google Scholar
Barbieri, R. L., Gochberg, J. & Ryan, K. J. Nicotine, cotinine, and anabasine inhibit aromatase in human trophoblast in vitro. J. Clin. Invest.77, 1727–1733 (1986). CASPubMedPubMed Central Google Scholar
Fried, P. A., James, D. S. & Watkinson, B. Growth and pubertal milestones during adolescence in offspring prenatally exposed to cigarettes and marihuana. Neurotoxicol. Teratol.23, 431–436 (2001). CASPubMed Google Scholar
Treiman, D. M. GABAergic mechanisms in epilepsy. Epilepsia42 (Suppl. 3), 8–12 (2001). PubMed Google Scholar
Huang, Z. J., Di Cristo, G. & Ango, F. Development of GABA innervation in the cerebral and cerebellar cortices. Nature Rev. Neurosci.8, 673–686 (2007). CAS Google Scholar
Feng, M. J., Yan, S. E. & Yan, Q. S. Effects of prenatal alcohol exposure on brain-derived neurotrophic factor and its receptor tyrosine kinase B in offspring. Brain Res.1042, 125–132 (2005). CASPubMed Google Scholar
Miller, M. W. Expression of transforming growth factor-β in developing rat cerebral cortex: effects of prenatal exposure to ethanol. J. Comp. Neurol.460, 410–424 (2003). CASPubMed Google Scholar
Borodinsky, L. N. et al. GABA-induced neurite outgrowth of cerebellar granule cells is mediated by GABAA receptor activation, calcium influx and CaMKII and erk1/2 pathways. J. Neurochem.84, 1411–1420 (2003). CASPubMed Google Scholar
Schwartz, J. P. Neurotransmitters as neurotrophic factors: a new set of functions. Int. Rev. Neurobiol.34, 1–23 (1992). CASPubMed Google Scholar
Schwartz, M. L. & Meinecke, D. L. Early expression of GABA-containing neurons in the prefrontal and visual cortices of rhesus monkeys. Cereb. Cortex2, 16–37 (1992). CASPubMed Google Scholar
Walker, A., Rosenberg, M. & Balaban-Gil, K. Neurodevelopmental and neurobehavioral sequelae of selected substances of abuse and psychiatric medications in utero. Child Adolesc. Psychiatr. Clin. N. Am.8, 845–867 (1999). CASPubMed Google Scholar
Kosofsky, B. E. Specificity of neurobehavioral outcomes associated with prenatal alcohol exposure. J. Womens Health7, 603–604 (1998). CASPubMed Google Scholar
Chiriboga, C. A. Fetal alcohol and drug effects. Neurologist9, 267–279 (2003). PubMed Google Scholar
Bada, H. S. et al. Low birth weight and preterm births: etiologic fraction attributable to prenatal drug exposure. J. Perinatol.25, 631–637 (2005). PubMed Google Scholar
Loebstein, R. & Koren, G. Pregnancy outcome and neurodevelopment of children exposed in utero to psychoactive drugs: the Motherisk experience. J. Psychiatry Neurosci.22, 192–196 (1997). CASPubMedPubMed Central Google Scholar
Fried, P. A., Watkinson, B. & Gray, R. A follow-up study of attentional behavior in 6-year-old children exposed prenatally to marihuana, cigarettes, and alcohol. Neurotoxicol. Teratol.14, 299–311 (1992). CASPubMed Google Scholar
Linnet, K. M. et al. Maternal lifestyle factors in pregnancy risk of attention deficit hyperactivity disorder and associated behaviors: review of the current evidence. Am. J. Psychiatry160, 1028–1040 (2003). PubMed Google Scholar
Williams, J. H. & Ross, L. Consequences of prenatal toxin exposure for mental health in children and adolescents: a systematic review. Eur. Child Adolesc. Psychiatry16, 243–253 (2007). PubMed Google Scholar
Snow, M. E. & Keiver, K. Prenatal ethanol exposure disrupts the histological stages of fetal bone development. Bone41, 181–187 (2007). CASPubMedPubMed Central Google Scholar
Simpson, M. E., Duggal, S. & Keiver, K. Prenatal ethanol exposure has differential effects on fetal growth and skeletal ossification. Bone36, 521–532 (2005). CASPubMed Google Scholar
Johnston, M. C. & Bronsky, P. T. Prenatal craniofacial development: new insights on normal and abnormal mechanisms. Crit. Rev. Oral Biol. Med.6, 368–422 (1995). CASPubMed Google Scholar
Randall, C. L. & Taylor, W. J. Prenatal ethanol exposure in mice: teratogenic effects. Teratology19, 305–311 (1979). CASPubMed Google Scholar
Miller, M. W. & Dow-Edwards, D. L. Structural and metabolic alterations in rat cerebral cortex induced by prenatal exposure to ethanol. Brain Res.474, 316–326 (1988). CASPubMed Google Scholar
Miller, M. W. Effect of prenatal exposure to ethanol on glutamate and GABA immunoreactivity in macaque somatosensory and motor cortices: critical timing of exposure. Neuroscience138, 97–107 (2006). CASPubMed Google Scholar
Miller, M. W. Effect of early exposure to ethanol on the protein and DNA contents of specific brain regions in the rat. Brain Res.734, 286–294 (1996). CASPubMed Google Scholar
Mooney, S. M. & Miller, M. W. Episodic exposure to ethanol during development differentially affects brainstem nuclei in the macaque. J. Neurocytol.30, 973–982 (2001). CASPubMed Google Scholar
Barrow Heaton, M. B. et al. Prenatal ethanol exposure reduces spinal cord motoneuron number in the fetal rat but does not affect GDNF target tissue protein. Dev. Neurosci.21, 444–452 (1999). CASPubMed Google Scholar
Shetty, A. K. & Phillips, D. E. Effects of prenatal ethanol exposure on the development of Bergmann glia and astrocytes in the rat cerebellum: an immunohistochemical study. J. Comp. Neurol.321, 19–32 (1992). CASPubMed Google Scholar
Redila, V. A. et al. Hippocampal cell proliferation is reduced following prenatal ethanol exposure but can be rescued with voluntary exercise. Hippocampus16, 305–311 (2006). CASPubMed Google Scholar
Ozer, E., Sarioglu, S. & Gure, A. Effects of prenatal ethanol exposure on neuronal migration, neuronogenesis and brain myelination in the mice brain. Clin. Neuropathol.19, 21–25 (2000). CASPubMed Google Scholar
Honse, Y., Nixon, K. M., Browning, M. D. & Leslie, S. W. Cell surface expression of NR1 splice variants and NR2 subunits is modified by prenatal ethanol exposure. Neuroscience122, 689–698 (2003). CASPubMed Google Scholar
Hughes, P. D., Wilson, W. R. & Leslie, S. W. Effect of gestational ethanol exposure on the NMDA receptor complex in rat forebrain: from gene transcription to cell surface. Brain Res. Dev. Brain Res.129, 135–145 (2001). CASPubMed Google Scholar
Zhang, X., Sliwowska, J. H. & Weinberg, J. Prenatal alcohol exposure and fetal programming: effects on neuroendocrine and immune function. Exp. Biol. Med. (Maywood)230, 376–388 (2005). CAS Google Scholar
Wilcoxon, J. S., Kuo, A. G., Disterhoft, J. F. & Redei, E. E. Behavioral deficits associated with fetal alcohol exposure are reversed by prenatal thyroid hormone treatment: a role for maternal thyroid hormone deficiency in FAE. Mol. Psychiatry10, 961–971 (2005). CASPubMed Google Scholar
Champagne, F. & Meaney, M. J. Like mother, like daughter: evidence for non-genomic transmission of parental behavior and stress responsivity. Prog. Brain Res.133, 287–302 (2001). CASPubMed Google Scholar
Kallen, B. & Otterblad Olausson, P. Antidepressant drugs during pregnancy and infant congenital heart defect. Reprod. Toxicol.21, 221–222 (2006). PubMed Google Scholar
Kallen, B. A. & Otterblad Olausson, P. Maternal drug use in early pregnancy and infant cardiovascular defect. Reprod. Toxicol.17, 255–261 (2003). CASPubMed Google Scholar
Buznikov, G. A., Shmukler, Y. B. & Lauder, J. M. From oocyte to neuron: do neurotransmitters function in the same way throughout development? Cell. Mol. Neurobiol.16, 537–559 (1996). CASPubMed Google Scholar
Lauder, J. M. Hormonal and humoral influences on brain development. Psychoneuroendocrinology8, 121–155 (1983). CASPubMed Google Scholar
Whitaker-Azmitia, P. M., Druse, M., Walker, P. & Lauder, J. M. Serotonin as a developmental signal. Behav. Brain Res.73, 19–29 (1996). CASPubMed Google Scholar
Bonnin, A., Peng, W., Hewlitt, W. & Levitt, P. Expression mapping of 5-HT1 serotonin receptor subtypes during fetal and early postnatal mouse forebrain development. Neuroscience141, 781–794 (2006). CASPubMed Google Scholar
Bonnin, A., Torii, M., Wang, L., Rakic, P. & Levitt, P. Serotonin modulates the response of embryonic thalamocortical axons to netrin-1. Nature Neurosci.10, 588–597 (2007). CASPubMed Google Scholar
Lambe, E. K., Krimer, L. S. & Goldman-Rakic, P. S. Differential postnatal development of catecholamine and serotonin inputs to identified neurons in prefrontal cortex of rhesus monkey. J. Neurosci.20, 8780–8787 (2000). CASPubMedPubMed Central Google Scholar
Whitaker-Azmitia, P. M., Lauder, J. M., Shemmer, A. & Azmitia, E. C. Postnatal changes in serotonin receptors following prenatal alterations in serotonin levels: further evidence for functional fetal serotonin receptors. Brain Res.430, 285–289 (1987). CASPubMed Google Scholar
Persico, A. M., Di Pino, G. & Levitt, P. Multiple receptors mediate the trophic effects of serotonin on ventroposterior thalamic neurons in vitro. Brain Res.1095, 17–25 (2006). CASPubMed Google Scholar
Gross, C. et al. Serotonin1A receptor acts during development to establish normal anxiety-like behaviour in the adult. Nature416, 396–400 (2002). CASPubMed Google Scholar
Ansorge, M. S., Zhou, M., Lira, A., Hen, R. & Gingrich, J. A. Early-life blockade of the 5-HT transporter alters emotional behavior in adult mice. Science306, 879–881 (2004). CASPubMed Google Scholar
Maschi, S. et al. Neonatal outcome following pregnancy exposure to antidepressants: a prospective controlled cohort study. BJOG115, 283–289 (2008). CASPubMed Google Scholar
Andrade, S. E. et al. Use of antidepressant medications during pregnancy: a multisite study. Am. J. Obstet. Gynecol.198, 194 e1–e5 (2008). PubMed Google Scholar
Pearson, K. H. et al. Birth outcomes following prenatal exposure to antidepressants. J. Clin. Psychiatry68, 1284–1289 (2007). CASPubMed Google Scholar
Oberlander, T. F. et al. Infant serotonin transporter (SLC6A4) promoter genotype is associated with adverse neonatal outcomes after prenatal exposure to serotonin reuptake inhibitor medications. Mol. Psychiatry13, 65–73 (2008). CASPubMed Google Scholar
Einarson, A. et al. Evaluation of the risk of congenital cardiovascular defects associated with use of paroxetine during pregnancy. Am. J. Psychiatry165, 749–752 (2008). PubMed Google Scholar
Zuo, J. et al. Distinct neurobehavioral consequences of prenatal exposure to sulpiride (SUL) and risperidone (RIS) in rats. Prog. Neuropsychopharmacol. Biol. Psychiatry32, 387–397 (2008). CASPubMed Google Scholar
Singh, Y., Jaiswal, A. K., Singh, M. & Bhattacharya, S. K. Effect of prenatal haloperidol administration on anxiety patterns in rats. Indian J. Exp. Biol.35, 1284–1290 (1997). CASPubMed Google Scholar
Castro, R., Brito, B., Segovia, J., Martin-Trujillo, J. M. & Notario, V. Prenatal haloperidol induces a selective reduction in the expression of plasticity-related genes in neonate rat forebrain. Brain Res. Mol. Brain Res.26, 74–80 (1994). CASPubMed Google Scholar
Leonard, B. E. Effect of psychotropic drugs administered to pregnant rats on the behaviour of the offspring. Neuropharmacology20, 1237–1242 (1981). CASPubMed Google Scholar
Miller, J. C. & Friedhoff, A. J. Prenatal neurotransmitter programming of postnatal receptor function. Prog. Brain Res.73, 509–522 (1988). CASPubMed Google Scholar
Trixler, M., Gati, A., Fekete, S. & Tenyi, T. Use of antipsychotics in the management of schizophrenia during pregnancy. Drugs65, 1193–1206 (2005). CASPubMed Google Scholar
Gentile, S. Clinical utilization of atypical antipsychotics in pregnancy and lactation. Ann. Pharmacother.38, 1265–1271 (2004). CASPubMed Google Scholar
Landmark, C. J. Targets for antiepileptic drugs in the synapse. Med. Sci. Monit.13, RA1–RA7 (2007). CASPubMed Google Scholar
Gottlicher, M. Valproic acid: an old drug newly discovered as inhibitor of histone deacetylases. Ann. Hematol.83 (Suppl. 1), S91–S92 (2004). PubMed Google Scholar
Carrim, Z. I., McKay, L., Sidiki, S. S. & Lavy, T. E. Early intervention for the ocular and neurodevelopmental sequelae of Fetal Valproate Syndrome. J. Paediatr. Child. Health43, 643–645 (2007). PubMed Google Scholar
Duncan, S. Teratogenesis of sodium valproate. Curr. Opin. Neurol.20, 175–180 (2007). CASPubMed Google Scholar
Schneider, T. et al. Gender-specific behavioral and immunological alterations in an animal model of autism induced by prenatal exposure to valproic acid. Psychoneuroendocrinology33, 728–740 (2008). CASPubMed Google Scholar
Schneider, T. & Przewlocki, R. Behavioral alterations in rats prenatally exposed to valproic acid: animal model of autism. Neuropsychopharmacology30, 80–89 (2005). CASPubMed Google Scholar
Rinaldi, T., Kulangara, K., Antoniello, K. & Markram, H. Elevated NMDA receptor levels and enhanced postsynaptic long-term potentiation induced by prenatal exposure to valproic acid. Proc. Natl Acad. Sci. USA104, 13501–13506 (2007). CASPubMedPubMed Central Google Scholar
Rinaldi, T., Silberberg, G. & Markram, H. Hyperconnectivity of local neocortical microcircuitry induced by prenatal exposure to valproic acid. Cereb. Cortex18, 763–770 (2008). PubMed Google Scholar
Travis, B. E. & McCullough, J. M. Pharmacotherapy of preterm labor. Pharmacotherapy13, 28–36 (1993). CASPubMed Google Scholar
Zerrate, M. C. et al. Neuroinflammation and behavioral abnormalities after neonatal terbutaline treatment in rats: implications for autism. J. Pharmacol. Exp. Ther.322, 16–22 (2007). CASPubMed Google Scholar
Meyer, A., Seidler, F. J., Aldridge, J. E. & Slotkin, T. A. Developmental exposure to terbutaline alters cell signaling in mature rat brain regions and augments the effects of subsequent neonatal exposure to the organophosphorus insecticide chlorpyrifos. Toxicol. Appl. Pharmacol.203, 154–166 (2005). CASPubMed Google Scholar
Rhodes, M. C. et al. Terbutaline is a developmental neurotoxicant: effects on neuroproteins and morphology in cerebellum, hippocampus, and somatosensory cortex. J. Pharmacol. Exp. Ther.308, 529–537 (2004). CASPubMed Google Scholar
Pitzer, M., Schmidt, M. H., Esser, G. & Laucht, M. Child development after maternal tocolysis with beta-sympathomimetic drugs. Child Psychiatry Hum. Dev.31, 165–182 (2001). CASPubMed Google Scholar
Hadders-Algra, M., Touwen, B. C. & Huisjes, H. J. Long-term follow-up of children prenatally exposed to ritodrine. Br. J. Obstet. Gynaecol.93, 156–161 (1986). CASPubMed Google Scholar
Connors, S. L. et al. beta2-adrenergic receptor activation and genetic polymorphisms in autism: data from dizygotic twins. J. Child Neurol.20, 876–884 (2005). PubMed Google Scholar
Thornton, J. G. Maintenance tocolysis. BJOG112 (Suppl. 1), 118–121 (2005). CASPubMed Google Scholar
Reese, S., Gandy, O. & Grant, A. (eds) Framing Public Life: Perspectives on Media and Our Understanding of the Social World (Lawrence Erlbaum Associates, Philadelphia, 1993). Google Scholar
Entman, R. M. Framing: toward clarification of a fractured paradigm. J. Commun.43, 51–58 (1993). Google Scholar
Entman, R. M. Projections of Power (Univ. Chicago Press, 2004). Google Scholar
Bales, S. N. Communicating early childhood education: using strategic frame analysis to shape dialogue. Bulletin of Zero to Three19 (1999).
National Advisory Mental Health Council. Transformative neurodevelopmental research in mental illness. National Institute of Mental Health[online], (2008).
Whitaker-Azmitia, P. M. Serotonin and brain development: role in human developmental diseases. Brain Res. Bull.56, 479–485 (2001). CASPubMed Google Scholar
Represa, A. & Ben-Ari, Y. Trophic actions of GABA on neuronal development. Trends Neurosci.28, 278–283 (2005). CASPubMed Google Scholar
Nguyen, L. et al. Neurotransmitters as early signals for central nervous system development. Cell Tissue Res.305, 187–202 (2001). CASPubMed Google Scholar
Lauder, J. M. & Schambra, U. B. Morphogenetic roles of acetylcholine. Environ. Health Perspect.107 (Suppl. 1), 65–69 (1999). CASPubMedPubMed Central Google Scholar
Levitt, P., Harvey, J. A., Friedman, E., Simansky, K. & Murphy, E. H. New evidence for neurotransmitter influences on brain development. Trends Neurosci.20, 269–274 (1997). CASPubMed Google Scholar
Song, Z. M. et al. D1 dopamine receptor regulation of microtubule-associated protein-2 phosphorylation in developing cerebral cortical neurons. J. Neurosci.22, 6092–6105 (2002). CASPubMedPubMed Central Google Scholar
Lauder, J. M., Wallace, J. A. & Krebs, H. Roles for serotonin in neuroembryogenesis. Adv. Exp. Med. Biol.133, 477–506 (1981). CASPubMed Google Scholar
Behar, T. N., Schaffner, A. E., Scott, C. A., Greene, C. L. & Barker, J. L. GABA receptor antagonists modulate postmitotic cell migration in slice cultures of embryonic rat cortex. Cereb. Cortex10, 899–909 (2000). CASPubMed Google Scholar
Brazel, C. Y., Nunez, J. L., Yang, Z. & Levison, S. W. Glutamate enhances survival and proliferation of neural progenitors derived from the subventricular zone. Neuroscience131, 55–65 (2005). CASPubMed Google Scholar
Budetti, P. P. et al. ED359734 - An Analysis of Resources to Aid Drug-Exposed Infants and Their Families (George Washington Univ., Washington DC, 1993). Google Scholar
Poland, M. L., Dombrowski, M. P., Ager, J. W. & Sokol, R. J. Punishing pregnant drug users: enhancing the flight from care. Drug Alcohol Depend.31, 199–203 (1993). CASPubMed Google Scholar
Annas, G. J. Testing poor pregnant patients for cocaine–physicians as police investigators. N. Engl. J. Med.344, 1729–1732 (2001). CASPubMed Google Scholar
US Supreme Court Center. Ferguson et al. v. City of Charleston et al. 532 U.S. 67. Justia.com[online], (2001).
The State of South Carolina in The Supreme Court. McKnight v. State of South Carolina, 26484. South Carolina Judicial Department[online], (2008).
Rakic, P. A small step for the cell, a giant leap for mankind: a hypothesis of neocortical expansion during evolution. Trends Neurosci.18, 383–388 (1995). CASPubMed Google Scholar
Stanwood, G. D. & Levitt, P. in Handbook of Developmental Cognitive Neuroscience 2nd edn (eds Nelson, C. A. & Luciana, M.) 83–94 (MIT Press, 2008). Google Scholar