The amygdala and reward (original) (raw)

References

  1. Calder, A. J., Lawrence, A. D. & Young, A. W. Neuropsychology of fear and loathing. Nature Rev. Neurosci. 2, 352–363 (2001).
    Article CAS Google Scholar
  2. Medina, J. F., Repa, J. C., Mauk, M. D. & LeDoux, J. E. Parallels between cerebellum- and amygdala-dependent conditioning. Nature Rev. Neurosci. 3, 122–131 (2002).
    Article CAS Google Scholar
  3. McGaugh, J. L., Ferry, B., Vazdarjanova, A. & Roozendaal, B. in The Amygdala: a Functional Analysis (ed. Aggleton, J. P.) 391–423 (Oxford Univ. Press, Oxford, UK, 2000).
    Google Scholar
  4. Davis, M. & Whalen, P. J. The amygdala: vigilance and emotion. Mol. Psychiatry 6, 13–34 (2001).
    Article CAS PubMed Google Scholar
  5. Everitt, B. J., Cardinal, R. N., Hall, J., Parkinson, J. A. & Robbins, T. W. in The Amygdala: a Functional Analysis (ed. Aggleton, J. P.) 353–390 (Oxford Univ. Press, Oxford, UK, 2000).
    Google Scholar
  6. Gaffan, D. in The Amygdala: Neurobiological Aspects of Emotion, Memory, and Mental Dysfunction (ed. Aggleton, J. P.) 471–483 (Wiley–Liss, New York, 1992).
    Google Scholar
  7. Baxter, M. G. & Murray, E. A. in The Amygdala: a Functional Analysis (ed. Aggleton, J. P.) 545–568 (Oxford Univ. Press, Oxford, UK, 2000).
    Google Scholar
  8. Murray, E. A. & Mishkin, M. Severe tactual as well as visual memory deficits follow combined removal of the amygdala and hippocampus in monkeys. J. Neurosci. 4, 2565–2580 (1984).
    Article CAS PubMed PubMed Central Google Scholar
  9. Murray, E. A. & Mishkin, M. Amygdalectomy impairs crossmodal association in monkeys. Science 228, 604–606 (1985).
    Article CAS PubMed Google Scholar
  10. Mishkin, M. & Oubre, J. L. Dissociation of deficits on visual memory tasks after inferior temporal and amygdala lesions in monkeys. Soc. Neurosci. Abstr. 2, 1127 (1976).
    Google Scholar
  11. Spiegler, B. J. & Mishkin, M. Evidence for the sequential participation of inferior temporal cortex and amygdala in the acquisition of stimulus–reward associations. Behav. Brain Res. 3, 303–317 (1981).
    Article CAS PubMed Google Scholar
  12. Gaffan, D. & Harrison, S. Amygdalectomy and disconnection in visual learning for auditory secondary reinforcement by monkeys. J. Neurosci. 7, 2285–2292 (1987).
    CAS PubMed PubMed Central Google Scholar
  13. Gaffan, D. & Murray, E. A. Amygdalar interaction with the mediodorsal nucleus of the thalamus and the ventromedial prefrontal cortex in stimulus–reward associative learning in the monkey. J. Neurosci. 10, 3479–3493 (1990).
    Article CAS PubMed PubMed Central Google Scholar
  14. Murray, E. A., Gaffan, E. A. & Flint, R. W. Jr. Anterior rhinal cortex and amygdala: dissociation of their contributions to memory and food preference in rhesus monkeys. Behav. Neurosci. 110, 30–42 (1996).
    Article CAS PubMed Google Scholar
  15. Goulet, S. & Murray, E. A. Neural substrates of crossmodal association memory in monkeys: the amygdala versus the anterior rhinal cortex. Behav. Neurosci. 115, 271–284 (2001).
    Article CAS PubMed Google Scholar
  16. Murray, E. A., Gaffan, D. & Mishkin, M. Neural substrates of visual stimulus–stimulus association in rhesus monkeys. J. Neurosci. 13, 4549–4561 (1993).
    Article CAS PubMed PubMed Central Google Scholar
  17. Murray, E. A. & Mishkin, M. Object recognition and location memory in monkeys with excitotoxic lesions of the amygdala and hippocampus. J. Neurosci. 18, 6568–6582 (1998).
    Article CAS PubMed PubMed Central Google Scholar
  18. Málková, L., Gaffan, D. & Murray, E. A. Excitotoxic lesions of the amygdala fail to produce impairments in visual learning for auditory secondary reinforcement but interfere with reinforcer devaluation effects in rhesus monkeys. J. Neurosci. 17, 6011–6020 (1997).
    Article PubMed PubMed Central Google Scholar
  19. Thornton, J. A., Málková, L. & Murray, E. A. Rhinal cortex ablations fail to disrupt reinforcer devaluation effects in rhesus monkeys (Macaca mulatta). Behav. Neurosci. 112, 1020–1025 (1998).
    Article CAS PubMed Google Scholar
  20. Wyvell, C. L. & Berridge, K. C. Intra-accumbens amphetamine increases the conditioned incentive salience of sucrose reward: enhancement of reward 'wanting' without enhanced 'liking' or response reinforcement. J. Neurosci. 20, 8122–8130 (2000).This study used elegant behavioural methods to show a selective role of dopamine in the nucleus accumbens in modulating 'wanting' (incentive salience) of reward, in the absence of any effect on the primary or secondary reinforcing properties of the reward itself. This is a particularly accessible example of dissociable aspects of reward.
    Article CAS PubMed PubMed Central Google Scholar
  21. Berridge, K. C. & Robinson, T. E. What is the role of dopamine in reward: hedonic impact, reward learning, or incentive salience? Brain Res. Brain Res. Rev. 28, 309–369 (1998).
    Article CAS PubMed Google Scholar
  22. Burns, L. H., Robbins, T. W. & Everitt, B. J. Differential effects of excitotoxic lesions of the basolateral amygdala, ventral subiculum and medial prefrontal cortex on responding with conditioned reinforcement and locomotor activity potentiated by intra-accumbens infusions of d-amphetamine. Behav. Brain Res. 55, 167–183 (1993).
    Article CAS PubMed Google Scholar
  23. Blundell, P., Hall, G. & Killcross, S. Lesions of the basolateral amygdala disrupt selective aspects of reinforcer representation in rats. J. Neurosci. 21, 9018–9026 (2001).These experiments examined the impact of neurotoxic lesions of the basolateral amygdala on reinforcer representation, indexed by the differential-outcomes effect and reinforcer-specific Pavlovian-instrumental-transfer effects. Although the lesions fail to affect the acquisition of instrumental responding or discrimination, they do disrupt phenomena that depend on the ability to represent the properties of rewards.
    Article CAS PubMed PubMed Central Google Scholar
  24. Murray, E. A. & Wise, S. P. Role of the hippocampus plus subjacent cortex but not amygdala in visuomotor conditional learning in rhesus monkeys. Behav. Neurosci. 110, 1261–1270 (1996).
    Article CAS PubMed Google Scholar
  25. Gallagher, M., Graham, P. W. & Holland, P. C. The amygdala central nucleus and appetitive Pavlovian conditioning: lesions impair one class of conditioned behavior. J. Neurosci. 10, 1906–1911 (1990).
    Article CAS PubMed PubMed Central Google Scholar
  26. Hatfield, T., Han, J.-S., Conley, M., Gallagher, M. & Holland, P. Neurotoxic lesions of basolateral, but not central, amygdala interfere with Pavlovian second-order conditioning and reinforcer devaluation effects. J. Neurosci. 16, 5256–5265 (1996).A study that shows an involvement of the amygdala in appetitive learning. Rats with lesions of the basolateral complex (but not the central nucleus) of the amygdala are impaired on two types of behaviour: responses to reinforcer devaluation and Pavlovian second-order conditioning. The same rats showed intact first-order conditioning.
    Article CAS PubMed PubMed Central Google Scholar
  27. Aggleton, J. P. & Passingham, R. E. An assessment of the reinforcing properties of foods after amygdaloid lesions in rhesus monkeys. J. Comp. Physiol. Psychol. 96, 71–77 (1982).
    Article CAS PubMed Google Scholar
  28. Gaffan, D. Hippocampus: memory, habit and voluntary movement. Philos Trans R Soc Lond B Biol Sci 308, 87–99 (1985).
    Article CAS PubMed Google Scholar
  29. Platt, M. L. & Glimcher, P. W. Neural correlates of decision variables in parietal cortex. Nature 400, 233–238 (1999).A neurophysiological study of decision making in awake, behaving monkeys. The authors showed that neurons in the parietal cortex carry signals that are related to the size and probability of reward outcomes, and are independent of attentional modulation.
    Article CAS PubMed Google Scholar
  30. Tremblay, L. & Schultz, W. Relative reward preference in primate orbitofrontal cortex. Nature 398, 704–708 (1999).A neurophysiological study of reward processing in awake, behaving monkeys. Neurons in the orbital prefrontal cortex showed increased firing in response to reward-predicting signals, during the expectation of rewards and after the receipt of rewards. Even more strikingly, some neurons carried signals about the relative preference among available rewards.
    Article CAS PubMed Google Scholar
  31. Tremblay, L. & Schultz, W. Modifications of reward expectation-related neuronal activity during learning in primate orbitofrontal cortex. J. Neurophysiol. 83, 1877–1885 (2000).
    Article CAS PubMed Google Scholar
  32. Rolls, E. T., Critchley, H. D., Mason, R. & Wakeman, E. A. Orbitofrontal cortex neurons: role in olfactory and visual association learning. J. Neurophysiol. 75, 1970–1981 (1996).
    Article CAS PubMed Google Scholar
  33. Wilson, F. A. & Rolls, E. T. The effects of stimulus novelty and familiarity on neuronal activity in the amygdala of monkeys performing recognition memory tasks. Exp. Brain Res. 93, 367–382 (1993).
    Article CAS PubMed Google Scholar
  34. Watanabe, M. Reward expectancy in primate prefrontal neurons. Nature 382, 629–632 (1996).
    Article CAS PubMed Google Scholar
  35. Jagadeesh, B., Chelazzi, L., Mishkin, M. & Desimone, R. Learning increases stimulus salience in anterior inferior temporal cortex of the macaque. J. Neurophysiol. 86, 290–303 (2001).
    Article CAS PubMed Google Scholar
  36. Easton, A. & Gaffan, D. in The Amygdala: a Functional Analysis (ed. Aggleton, J. P.) 569–586 (Oxford Univ. Press, Oxford, UK, 2000).
    Google Scholar
  37. Easton, A. & Gaffan, D. Comparison of perirhinal cortex ablation and crossed unilateral lesions of the medial forebrain bundle from the inferior temporal cortex in the rhesus monkey: effects on learning and retrieval. Behav. Neurosci. 114, 1041–1057 (2000).
    Article CAS PubMed Google Scholar
  38. Easton, A. & Gaffan, D. Crossed unilateral lesions of the medial forebrain bundle and either inferior temporal or frontal cortex impair object–reward association learning in rhesus monkeys. Neuropsychologia 39, 71–82 (2001).
    Article CAS PubMed Google Scholar
  39. Gaffan, D., Murray, E. A. & Fabre-Thorpe, M. Interaction of the amygdala with the frontal lobe in reward memory. Eur. J. Neurosci. 5, 968–975 (1993).
    Article CAS PubMed Google Scholar
  40. Fernandez-Ruiz, J., Wang, J., Aigner, T. G. & Mishkin, M. Visual habit formation in monkeys with neurotoxic lesions of the ventrocaudal neostriatum. Proc. Natl Acad. Sci. USA 98, 4196–4201 (2001).
    Article CAS PubMed PubMed Central Google Scholar
  41. Toni, I. & Passingham, R. E. Prefrontal–basal ganglia pathways are involved in the learning of arbitrary visuomotor associations: a PET study. Exp. Brain Res. 127, 19–32 (1999).
    Article CAS PubMed Google Scholar
  42. Bar-Gad, I. & Bergman, H. Stepping out of the box: information processing in the neural networks of the basal ganglia. Curr. Opin. Neurobiol. 11, 689–695 (2001).
    Article CAS PubMed Google Scholar
  43. Wise, S. P., Murray, E. A. & Gerfen, C. R. The frontal cortex–basal ganglia system in primates. Crit. Rev. Neurobiol. 10, 317–356 (1996).
    Article CAS PubMed Google Scholar
  44. Holland, P. C. & Rescorla, R. A. The effect of two ways of devaluing the unconditioned stimulus after first- and second-order appetitive conditioning. J. Exp. Psychol. Anim. Behav. Process. 1, 355–363 (1975).
    Article Google Scholar
  45. Holland, P. C. Event representation in Pavlovian conditioning: image and action. Cognition 37, 105–131 (1990).
    Article CAS PubMed Google Scholar
  46. Holland, P. Amount of training affects associatively-activated event representation. Neuropharmacology 37, 461–469 (1998).
    Article CAS PubMed Google Scholar
  47. Baxter, M. G., Parker, A., Lindner, C. C. C., Izquierdo, A. D. & Murray, E. A. Control of response selection by reinforcer value requires interaction of amygdala and orbital prefrontal cortex. J. Neurosci. 20, 4311–4319 (2000).Using a crossed-disconnection design, these authors show that the amygdala and the orbital/medial prefrontal cortex must functionally interact to guide choices between objects that yield different reward outcomes.
    Article CAS PubMed PubMed Central Google Scholar
  48. Ettlinger, G. Visual discrimination following successive temporal ablations in monkeys. Brain 82, 232–250 (1959).
    Article CAS PubMed Google Scholar
  49. Butter, C. M., McDonald, J. A. & Snyder, D. R. Orality, preference behavior, and reinforcement value of nonfood object in monkeys with orbital frontal lesions. Science 164, 1306–1307 (1969).
    Article CAS PubMed Google Scholar
  50. Aggleton, J. P. & Passingham, R. E. Syndrome produced by lesions of the amygdala in monkeys (Macaca mulatta). J. Comp. Physiol. Psychol. 95, 961–977 (1981).
    Article CAS PubMed Google Scholar
  51. Nishijo, H., Ono, T. & Nishino, H. Single neuron responses in amygdala of alert monkey during complex sensory stimulation with affective significance. J. Neurosci. 8, 3570–3583 (1988).
    Article CAS PubMed PubMed Central Google Scholar
  52. Leonard, C. M., Rolls, E. T., Wilson, F. A. & Baylis, G. C. Neurons in the amygdala of the monkey with responses selective for faces. Behav. Brain Res. 15, 159–176 (1985).
    Article CAS PubMed Google Scholar
  53. Rolls, E. T. in The Amygdala: a Functional Analysis (ed. Aggleton, J. P.) 447–478 (Oxford Univ. Press, Oxford, UK, 2000).
    Google Scholar
  54. Sanghera, M. K., Rolls, E. T. & Roper-Hall, A. Visual responses of neurons in the dorsolateral amygdala of the alert monkey. Exp. Neurol. 63, 610–626 (1979).
    Article CAS PubMed Google Scholar
  55. Rolls, E. T., Sienkiewicz, Z. J. & Yaxley, S. Hunger modulates the responses to gustatory stimuli of single neurons in the caudolateral orbitofrontal cortex of the macaque monkey. Eur. J. Neurosci. 1, 53–60 (1989).
    Article PubMed Google Scholar
  56. Critchley, H. D. & Rolls, E. T. Hunger and satiety modify the responses of olfactory and visual neurons in the primate orbitofrontal cortex. J. Neurophysiol. 75, 1673–1686 (1996).A neurophysiological study of the effects of motivational state on the response properties of orbital frontal neurons to visual and olfactory stimuli in awake, behaving macaque monkeys. Most neurons that had specific responses to particular foods (either by sight or smell) reduced their responding after satiation with that food, indicating that the orbital frontal cortex has access to information about the current value of a food reinforcer.
    Article CAS PubMed Google Scholar
  57. Gewirtz, J. C. & Davis, M. Second-order fear conditioning prevented by blocking NMDA receptors in amygdala. Nature 388, 471–474 (1997).
    Article CAS PubMed Google Scholar
  58. Cador, M., Robbins, T. W. & Everitt, B. J. Involvement of the amygdala in stimulus–reward associations: interaction with the ventral striatum. Neuroscience 30, 77–86 (1989).
    Article CAS PubMed Google Scholar
  59. Everitt, B. J., Cador, M. & Robbins, T. W. Interactions between the amygdala and ventral striatum in stimulus–reward associations: studies using a second-order schedule of sexual reinforcement. Neuroscience 30, 63–75 (1989).
    Article CAS PubMed Google Scholar
  60. Setlow, B., Gallagher, M. & Holland, P. C. Disconnection of the basolateral amygdala complex and nucleus accumbens impairs appetitive Pavlovian second-order conditioned responses. Behav. Neurosci. 116, 267–275 (2002).
    Article PubMed Google Scholar
  61. Holland, P. C., Hatfield, T. & Gallagher, M. Rats with basolateral amygdala lesions show normal increases in conditioned stimulus processing but reduced conditioned potentiation of eating. Behav. Neurosci. 115, 945–950 (2001).
    Article CAS PubMed Google Scholar
  62. Killcross, S., Robbins, T. W. & Everitt, B. J. Different types of fear-conditioned behaviour mediated by separate nuclei within amygdala. Nature 388, 377–380 (1997).This classic study showed a double dissociation between the basolateral amygdala and the central nucleus of the amygdala in mediating different types of fear-related behaviour in a conditioned-punishment procedure.
    Article CAS PubMed Google Scholar
  63. Parkinson, J. A. et al. The role of the primate amygdala in conditioned reinforcement. J. Neurosci. 21, 7770–7780 (2001).This experiment examined the performance of marmoset monkeys in a conditioned-reinforcement task adapted from that used in rats. Marmosets with amygdala lesions were less willing to work for presentations of a preoperatively trained secondary reinforcer.
    Article CAS PubMed PubMed Central Google Scholar
  64. Setlow, B., Gallagher, M. & Holland, P. C. The basolateral complex of the amygdala is necessary for acquisition but not expression of CS motivational value in appetitive Pavlovian second-order conditioning. Eur. J. Neurosci. (in the press).The findings of this experiment complement those of reference 26 . The authors found that when first-order Pavlovian conditioning takes place before damage to the basolateral amygdala, subsequent second-order conditioning (after the amygdala lesion) proceeds normally. So, once a stimulus–value association is acquired in the presence of the basolateral amygdala, some aspects of the reinforcer representation that are necessary to support new learning can be represented and accessed outside the amygdala.
  65. Gallagher, M. & Holland, P. C. in The Amygdala: Neurobiological Aspects of Emotion, Memory, and Mental Dysfunction (ed. Aggleton, J. P.) 307–321 (Wiley–Liss, New York, 1992).
    Google Scholar
  66. Holland, P. C. Conditioned stimulus as a determinant of the form of the Pavlovian conditioned response. J. Exp. Psychol. Anim. Behav. Process. 3, 77–104 (1977).
    Article CAS PubMed Google Scholar
  67. Han, J. S., McMahan, R. W., Holland, P. & Gallagher, M. The role of an amygdalo-nigrostriatal pathway in associative learning. J. Neurosci. 17, 3913–3919 (1997).
    Article CAS PubMed PubMed Central Google Scholar
  68. Bussey, T. J., Everitt, B. J. & Robbins, T. W. Dissociable effects of cingulate and medial frontal cortex lesions on stimulus–reward learning using a novel Pavlovian autoshaping procedure for the rat: implications for the neurobiology of emotion. Behav. Neurosci. 111, 908–919 (1997).
    Article CAS PubMed Google Scholar
  69. Parkinson, J. A., Robbins, T. W. & Everitt, B. J. Dissociable roles of the central and basolateral amygdala in appetitive emotional learning. Eur. J. Neurosci. 12, 405–413 (2000).
    Article CAS PubMed Google Scholar
  70. Parkinson, J. A., Willoughby, P. J., Robbins, T. W. & Everitt, B. J. Disconnection of the anterior cingulate cortex and nucleus accumbens core impairs Pavlovian approach behavior: further evidence for limbic cortical–ventral striatopallidal systems. Behav. Neurosci. 114, 42–63 (2000).
    Article CAS PubMed Google Scholar
  71. Cleland, G. G. & Davey, G. C. L. The effects of satiation and reinforcer devaluation on signal-centered behaviors in the rat. Learn. Motiv. 13, 343–360 (1982).
    Article Google Scholar
  72. Bechara, A., Damasio, A. R., Damasio, H. & Anderson, S. W. Insensitivity to future consequences following damage to human prefrontal cortex. Cognition 50, 7–15 (1994).
    Article CAS PubMed Google Scholar
  73. Bechara, A., Tranel, D., Damasio, H. & Damasio, A. R. Failure to respond autonomically to anticipated future outcomes following damage to prefrontal cortex. Cereb. Cortex 6, 215–225 (1996).
    Article CAS PubMed Google Scholar
  74. Bechara, A., Damasio, H., Damasio, A. R. & Lee, G. P. Different contributions of the human amygdala and ventromedial prefrontal cortex to decision-making. J. Neurosci. 19, 5473–5481 (1999).
    Article CAS PubMed PubMed Central Google Scholar
  75. Schoenbaum, G., Chiba, A. A. & Gallagher, M. Orbitofrontal cortex and basolateral amygdala encode expected outcomes during learning. Nature Neurosci. 1, 155–159 (1998).A unit-recording study of reward processing in awake, behaving rats performing a go–no-go olfactory discrimination. During the period after an instruction odour and before the rat's behavioural response, neurons in both the basolateral amygdala and the orbital frontal cortex showed activity that coded either rewarding (sucrose) or aversive (quinine) outcomes of a trial. This selective activity emerged early in training, before the rats had learned the task.
    Article CAS PubMed Google Scholar
  76. Schoenbaum, G., Chiba, A. A. & Gallagher, M. Neural encoding in orbitofrontal cortex and basolateral amygdala during olfactory discrimination learning. J. Neurosci. 19, 1876–1884 (1999).
    Article CAS PubMed PubMed Central Google Scholar
  77. Schoenbaum, G., Chiba, A. A. & Gallagher, M. Changes in functional connectivity in orbitofrontal cortex and basolateral amygdala during learning and reversal training. J. Neurosci. 20, 5179–5189 (2000).
    Article CAS PubMed PubMed Central Google Scholar
  78. McDonald, R. J. & White, N. M. A triple dissociation of memory systems: hippocampus, amygdala, and dorsal striatum. Behav. Neurosci. 107, 3–22 (1993).
    Article CAS PubMed Google Scholar
  79. Hiroi, N. & White, N. M. The lateral nucleus of the amygdala mediates expression of the amphetamine-produced conditioned place preference. J. Neurosci. 11, 2107–2116 (1991).
    Article CAS PubMed PubMed Central Google Scholar
  80. Yin, H. H. & Knowlton, B. J. Reinforcer devaluation abolishes conditioned cue preference: evidence for stimulus–stimulus associations. Behav. Neurosci. 116, 174–177 (2002).
    Article CAS PubMed Google Scholar
  81. Chiba, A. A., Bucci, D. J., Holland, P. C. & Gallagher, M. Basal forebrain cholinergic lesions disrupt increments but not decrements in conditioned stimulus processing. J. Neurosci. 15, 7315–7322 (1995).
    Article CAS PubMed PubMed Central Google Scholar
  82. Holland, P. C. & Gallagher, M. Amygdala central nucleus lesions disrupt increments, but not decrements, in conditioned stimulus processing. Behav. Neurosci. 107, 246–253 (1993).
    Article CAS PubMed Google Scholar
  83. Bucci, D. J., Holland, P. C. & Gallagher, M. Removal of cholinergic input to rat posterior parietal cortex disrupts incremental processing of conditioned stimuli. J. Neurosci. 18, 8038–8046 (1998).
    Article CAS PubMed PubMed Central Google Scholar
  84. Holland, P. C., Han, J. S. & Gallagher, M. Lesions of the amygdala central nucleus alter performance on a selective attention task. J. Neurosci. 20, 6701–6706 (2000).
    Article CAS PubMed PubMed Central Google Scholar
  85. Hall, J., Parkinson, J. A., Connor, T. M., Dickinson, A. & Everitt, B. J. Involvement of the central nucleus of the amygdala and nucleus accumbens core in mediating Pavlovian influences on instrumental behaviour. Eur. J. Neurosci. 13, 1984–1992 (2001).
    Article CAS PubMed Google Scholar
  86. Swanson, L. W. & Petrovich, G. D. What is the amygdala? Trends Neurosci. 21, 323–331 (1998).
    Article CAS PubMed Google Scholar
  87. Kelley, A. E. & Berridge, K. C. The neuroscience of natural rewards: relevance to addictive drugs. J. Neurosci. 22, 3306–3311 (2002).
    Article CAS PubMed PubMed Central Google Scholar
  88. Price, J. L., Carmichael, S. T. & Drevets, W. C. Networks related to the orbital and medial prefrontal cortex; a substrate for emotional behavior? Prog. Brain Res. 107, 523–536 (1996).
    Article CAS PubMed Google Scholar
  89. Holland, P. C. & Gallagher, M. Amygdala circuitry in attentional and representational processes. Trends Cogn. Sci. 3, 65–73 (1999).
    Article CAS PubMed Google Scholar

Download references