Calder, A. J., Lawrence, A. D. & Young, A. W. Neuropsychology of fear and loathing. Nature Rev. Neurosci.2, 352–363 (2001). ArticleCAS Google Scholar
Medina, J. F., Repa, J. C., Mauk, M. D. & LeDoux, J. E. Parallels between cerebellum- and amygdala-dependent conditioning. Nature Rev. Neurosci.3, 122–131 (2002). ArticleCAS Google Scholar
McGaugh, J. L., Ferry, B., Vazdarjanova, A. & Roozendaal, B. in The Amygdala: a Functional Analysis (ed. Aggleton, J. P.) 391–423 (Oxford Univ. Press, Oxford, UK, 2000). Google Scholar
Davis, M. & Whalen, P. J. The amygdala: vigilance and emotion. Mol. Psychiatry6, 13–34 (2001). ArticleCASPubMed Google Scholar
Everitt, B. J., Cardinal, R. N., Hall, J., Parkinson, J. A. & Robbins, T. W. in The Amygdala: a Functional Analysis (ed. Aggleton, J. P.) 353–390 (Oxford Univ. Press, Oxford, UK, 2000). Google Scholar
Gaffan, D. in The Amygdala: Neurobiological Aspects of Emotion, Memory, and Mental Dysfunction (ed. Aggleton, J. P.) 471–483 (Wiley–Liss, New York, 1992). Google Scholar
Baxter, M. G. & Murray, E. A. in The Amygdala: a Functional Analysis (ed. Aggleton, J. P.) 545–568 (Oxford Univ. Press, Oxford, UK, 2000). Google Scholar
Murray, E. A. & Mishkin, M. Severe tactual as well as visual memory deficits follow combined removal of the amygdala and hippocampus in monkeys. J. Neurosci.4, 2565–2580 (1984). ArticleCASPubMedPubMed Central Google Scholar
Murray, E. A. & Mishkin, M. Amygdalectomy impairs crossmodal association in monkeys. Science228, 604–606 (1985). ArticleCASPubMed Google Scholar
Mishkin, M. & Oubre, J. L. Dissociation of deficits on visual memory tasks after inferior temporal and amygdala lesions in monkeys. Soc. Neurosci. Abstr.2, 1127 (1976). Google Scholar
Spiegler, B. J. & Mishkin, M. Evidence for the sequential participation of inferior temporal cortex and amygdala in the acquisition of stimulus–reward associations. Behav. Brain Res.3, 303–317 (1981). ArticleCASPubMed Google Scholar
Gaffan, D. & Harrison, S. Amygdalectomy and disconnection in visual learning for auditory secondary reinforcement by monkeys. J. Neurosci.7, 2285–2292 (1987). CASPubMedPubMed Central Google Scholar
Gaffan, D. & Murray, E. A. Amygdalar interaction with the mediodorsal nucleus of the thalamus and the ventromedial prefrontal cortex in stimulus–reward associative learning in the monkey. J. Neurosci.10, 3479–3493 (1990). ArticleCASPubMedPubMed Central Google Scholar
Murray, E. A., Gaffan, E. A. & Flint, R. W. Jr. Anterior rhinal cortex and amygdala: dissociation of their contributions to memory and food preference in rhesus monkeys. Behav. Neurosci.110, 30–42 (1996). ArticleCASPubMed Google Scholar
Goulet, S. & Murray, E. A. Neural substrates of crossmodal association memory in monkeys: the amygdala versus the anterior rhinal cortex. Behav. Neurosci.115, 271–284 (2001). ArticleCASPubMed Google Scholar
Murray, E. A., Gaffan, D. & Mishkin, M. Neural substrates of visual stimulus–stimulus association in rhesus monkeys. J. Neurosci.13, 4549–4561 (1993). ArticleCASPubMedPubMed Central Google Scholar
Murray, E. A. & Mishkin, M. Object recognition and location memory in monkeys with excitotoxic lesions of the amygdala and hippocampus. J. Neurosci.18, 6568–6582 (1998). ArticleCASPubMedPubMed Central Google Scholar
Málková, L., Gaffan, D. & Murray, E. A. Excitotoxic lesions of the amygdala fail to produce impairments in visual learning for auditory secondary reinforcement but interfere with reinforcer devaluation effects in rhesus monkeys. J. Neurosci.17, 6011–6020 (1997). ArticlePubMedPubMed Central Google Scholar
Thornton, J. A., Málková, L. & Murray, E. A. Rhinal cortex ablations fail to disrupt reinforcer devaluation effects in rhesus monkeys (Macaca mulatta). Behav. Neurosci.112, 1020–1025 (1998). ArticleCASPubMed Google Scholar
Wyvell, C. L. & Berridge, K. C. Intra-accumbens amphetamine increases the conditioned incentive salience of sucrose reward: enhancement of reward 'wanting' without enhanced 'liking' or response reinforcement. J. Neurosci.20, 8122–8130 (2000).This study used elegant behavioural methods to show a selective role of dopamine in the nucleus accumbens in modulating 'wanting' (incentive salience) of reward, in the absence of any effect on the primary or secondary reinforcing properties of the reward itself. This is a particularly accessible example of dissociable aspects of reward. ArticleCASPubMedPubMed Central Google Scholar
Berridge, K. C. & Robinson, T. E. What is the role of dopamine in reward: hedonic impact, reward learning, or incentive salience? Brain Res. Brain Res. Rev.28, 309–369 (1998). ArticleCASPubMed Google Scholar
Burns, L. H., Robbins, T. W. & Everitt, B. J. Differential effects of excitotoxic lesions of the basolateral amygdala, ventral subiculum and medial prefrontal cortex on responding with conditioned reinforcement and locomotor activity potentiated by intra-accumbens infusions of d-amphetamine. Behav. Brain Res.55, 167–183 (1993). ArticleCASPubMed Google Scholar
Blundell, P., Hall, G. & Killcross, S. Lesions of the basolateral amygdala disrupt selective aspects of reinforcer representation in rats. J. Neurosci.21, 9018–9026 (2001).These experiments examined the impact of neurotoxic lesions of the basolateral amygdala on reinforcer representation, indexed by the differential-outcomes effect and reinforcer-specific Pavlovian-instrumental-transfer effects. Although the lesions fail to affect the acquisition of instrumental responding or discrimination, they do disrupt phenomena that depend on the ability to represent the properties of rewards. ArticleCASPubMedPubMed Central Google Scholar
Murray, E. A. & Wise, S. P. Role of the hippocampus plus subjacent cortex but not amygdala in visuomotor conditional learning in rhesus monkeys. Behav. Neurosci.110, 1261–1270 (1996). ArticleCASPubMed Google Scholar
Gallagher, M., Graham, P. W. & Holland, P. C. The amygdala central nucleus and appetitive Pavlovian conditioning: lesions impair one class of conditioned behavior. J. Neurosci.10, 1906–1911 (1990). ArticleCASPubMedPubMed Central Google Scholar
Hatfield, T., Han, J.-S., Conley, M., Gallagher, M. & Holland, P. Neurotoxic lesions of basolateral, but not central, amygdala interfere with Pavlovian second-order conditioning and reinforcer devaluation effects. J. Neurosci.16, 5256–5265 (1996).A study that shows an involvement of the amygdala in appetitive learning. Rats with lesions of the basolateral complex (but not the central nucleus) of the amygdala are impaired on two types of behaviour: responses to reinforcer devaluation and Pavlovian second-order conditioning. The same rats showed intact first-order conditioning. ArticleCASPubMedPubMed Central Google Scholar
Aggleton, J. P. & Passingham, R. E. An assessment of the reinforcing properties of foods after amygdaloid lesions in rhesus monkeys. J. Comp. Physiol. Psychol.96, 71–77 (1982). ArticleCASPubMed Google Scholar
Gaffan, D. Hippocampus: memory, habit and voluntary movement. Philos Trans R Soc Lond B Biol Sci308, 87–99 (1985). ArticleCASPubMed Google Scholar
Platt, M. L. & Glimcher, P. W. Neural correlates of decision variables in parietal cortex. Nature400, 233–238 (1999).A neurophysiological study of decision making in awake, behaving monkeys. The authors showed that neurons in the parietal cortex carry signals that are related to the size and probability of reward outcomes, and are independent of attentional modulation. ArticleCASPubMed Google Scholar
Tremblay, L. & Schultz, W. Relative reward preference in primate orbitofrontal cortex. Nature398, 704–708 (1999).A neurophysiological study of reward processing in awake, behaving monkeys. Neurons in the orbital prefrontal cortex showed increased firing in response to reward-predicting signals, during the expectation of rewards and after the receipt of rewards. Even more strikingly, some neurons carried signals about the relative preference among available rewards. ArticleCASPubMed Google Scholar
Tremblay, L. & Schultz, W. Modifications of reward expectation-related neuronal activity during learning in primate orbitofrontal cortex. J. Neurophysiol.83, 1877–1885 (2000). ArticleCASPubMed Google Scholar
Rolls, E. T., Critchley, H. D., Mason, R. & Wakeman, E. A. Orbitofrontal cortex neurons: role in olfactory and visual association learning. J. Neurophysiol.75, 1970–1981 (1996). ArticleCASPubMed Google Scholar
Wilson, F. A. & Rolls, E. T. The effects of stimulus novelty and familiarity on neuronal activity in the amygdala of monkeys performing recognition memory tasks. Exp. Brain Res.93, 367–382 (1993). ArticleCASPubMed Google Scholar
Jagadeesh, B., Chelazzi, L., Mishkin, M. & Desimone, R. Learning increases stimulus salience in anterior inferior temporal cortex of the macaque. J. Neurophysiol.86, 290–303 (2001). ArticleCASPubMed Google Scholar
Easton, A. & Gaffan, D. in The Amygdala: a Functional Analysis (ed. Aggleton, J. P.) 569–586 (Oxford Univ. Press, Oxford, UK, 2000). Google Scholar
Easton, A. & Gaffan, D. Comparison of perirhinal cortex ablation and crossed unilateral lesions of the medial forebrain bundle from the inferior temporal cortex in the rhesus monkey: effects on learning and retrieval. Behav. Neurosci.114, 1041–1057 (2000). ArticleCASPubMed Google Scholar
Easton, A. & Gaffan, D. Crossed unilateral lesions of the medial forebrain bundle and either inferior temporal or frontal cortex impair object–reward association learning in rhesus monkeys. Neuropsychologia39, 71–82 (2001). ArticleCASPubMed Google Scholar
Gaffan, D., Murray, E. A. & Fabre-Thorpe, M. Interaction of the amygdala with the frontal lobe in reward memory. Eur. J. Neurosci.5, 968–975 (1993). ArticleCASPubMed Google Scholar
Fernandez-Ruiz, J., Wang, J., Aigner, T. G. & Mishkin, M. Visual habit formation in monkeys with neurotoxic lesions of the ventrocaudal neostriatum. Proc. Natl Acad. Sci. USA98, 4196–4201 (2001). ArticleCASPubMedPubMed Central Google Scholar
Toni, I. & Passingham, R. E. Prefrontal–basal ganglia pathways are involved in the learning of arbitrary visuomotor associations: a PET study. Exp. Brain Res.127, 19–32 (1999). ArticleCASPubMed Google Scholar
Bar-Gad, I. & Bergman, H. Stepping out of the box: information processing in the neural networks of the basal ganglia. Curr. Opin. Neurobiol.11, 689–695 (2001). ArticleCASPubMed Google Scholar
Wise, S. P., Murray, E. A. & Gerfen, C. R. The frontal cortex–basal ganglia system in primates. Crit. Rev. Neurobiol.10, 317–356 (1996). ArticleCASPubMed Google Scholar
Holland, P. C. & Rescorla, R. A. The effect of two ways of devaluing the unconditioned stimulus after first- and second-order appetitive conditioning. J. Exp. Psychol. Anim. Behav. Process.1, 355–363 (1975). Article Google Scholar
Holland, P. C. Event representation in Pavlovian conditioning: image and action. Cognition37, 105–131 (1990). ArticleCASPubMed Google Scholar
Holland, P. Amount of training affects associatively-activated event representation. Neuropharmacology37, 461–469 (1998). ArticleCASPubMed Google Scholar
Baxter, M. G., Parker, A., Lindner, C. C. C., Izquierdo, A. D. & Murray, E. A. Control of response selection by reinforcer value requires interaction of amygdala and orbital prefrontal cortex. J. Neurosci.20, 4311–4319 (2000).Using a crossed-disconnection design, these authors show that the amygdala and the orbital/medial prefrontal cortex must functionally interact to guide choices between objects that yield different reward outcomes. ArticleCASPubMedPubMed Central Google Scholar
Ettlinger, G. Visual discrimination following successive temporal ablations in monkeys. Brain82, 232–250 (1959). ArticleCASPubMed Google Scholar
Butter, C. M., McDonald, J. A. & Snyder, D. R. Orality, preference behavior, and reinforcement value of nonfood object in monkeys with orbital frontal lesions. Science164, 1306–1307 (1969). ArticleCASPubMed Google Scholar
Aggleton, J. P. & Passingham, R. E. Syndrome produced by lesions of the amygdala in monkeys (Macaca mulatta). J. Comp. Physiol. Psychol.95, 961–977 (1981). ArticleCASPubMed Google Scholar
Nishijo, H., Ono, T. & Nishino, H. Single neuron responses in amygdala of alert monkey during complex sensory stimulation with affective significance. J. Neurosci.8, 3570–3583 (1988). ArticleCASPubMedPubMed Central Google Scholar
Leonard, C. M., Rolls, E. T., Wilson, F. A. & Baylis, G. C. Neurons in the amygdala of the monkey with responses selective for faces. Behav. Brain Res.15, 159–176 (1985). ArticleCASPubMed Google Scholar
Rolls, E. T. in The Amygdala: a Functional Analysis (ed. Aggleton, J. P.) 447–478 (Oxford Univ. Press, Oxford, UK, 2000). Google Scholar
Sanghera, M. K., Rolls, E. T. & Roper-Hall, A. Visual responses of neurons in the dorsolateral amygdala of the alert monkey. Exp. Neurol.63, 610–626 (1979). ArticleCASPubMed Google Scholar
Rolls, E. T., Sienkiewicz, Z. J. & Yaxley, S. Hunger modulates the responses to gustatory stimuli of single neurons in the caudolateral orbitofrontal cortex of the macaque monkey. Eur. J. Neurosci.1, 53–60 (1989). ArticlePubMed Google Scholar
Critchley, H. D. & Rolls, E. T. Hunger and satiety modify the responses of olfactory and visual neurons in the primate orbitofrontal cortex. J. Neurophysiol.75, 1673–1686 (1996).A neurophysiological study of the effects of motivational state on the response properties of orbital frontal neurons to visual and olfactory stimuli in awake, behaving macaque monkeys. Most neurons that had specific responses to particular foods (either by sight or smell) reduced their responding after satiation with that food, indicating that the orbital frontal cortex has access to information about the current value of a food reinforcer. ArticleCASPubMed Google Scholar
Gewirtz, J. C. & Davis, M. Second-order fear conditioning prevented by blocking NMDA receptors in amygdala. Nature388, 471–474 (1997). ArticleCASPubMed Google Scholar
Cador, M., Robbins, T. W. & Everitt, B. J. Involvement of the amygdala in stimulus–reward associations: interaction with the ventral striatum. Neuroscience30, 77–86 (1989). ArticleCASPubMed Google Scholar
Everitt, B. J., Cador, M. & Robbins, T. W. Interactions between the amygdala and ventral striatum in stimulus–reward associations: studies using a second-order schedule of sexual reinforcement. Neuroscience30, 63–75 (1989). ArticleCASPubMed Google Scholar
Setlow, B., Gallagher, M. & Holland, P. C. Disconnection of the basolateral amygdala complex and nucleus accumbens impairs appetitive Pavlovian second-order conditioned responses. Behav. Neurosci.116, 267–275 (2002). ArticlePubMed Google Scholar
Holland, P. C., Hatfield, T. & Gallagher, M. Rats with basolateral amygdala lesions show normal increases in conditioned stimulus processing but reduced conditioned potentiation of eating. Behav. Neurosci.115, 945–950 (2001). ArticleCASPubMed Google Scholar
Killcross, S., Robbins, T. W. & Everitt, B. J. Different types of fear-conditioned behaviour mediated by separate nuclei within amygdala. Nature388, 377–380 (1997).This classic study showed a double dissociation between the basolateral amygdala and the central nucleus of the amygdala in mediating different types of fear-related behaviour in a conditioned-punishment procedure. ArticleCASPubMed Google Scholar
Parkinson, J. A. et al. The role of the primate amygdala in conditioned reinforcement. J. Neurosci.21, 7770–7780 (2001).This experiment examined the performance of marmoset monkeys in a conditioned-reinforcement task adapted from that used in rats. Marmosets with amygdala lesions were less willing to work for presentations of a preoperatively trained secondary reinforcer. ArticleCASPubMedPubMed Central Google Scholar
Setlow, B., Gallagher, M. & Holland, P. C. The basolateral complex of the amygdala is necessary for acquisition but not expression of CS motivational value in appetitive Pavlovian second-order conditioning. Eur. J. Neurosci. (in the press).The findings of this experiment complement those of reference26. The authors found that when first-order Pavlovian conditioning takes place before damage to the basolateral amygdala, subsequent second-order conditioning (after the amygdala lesion) proceeds normally. So, once a stimulus–value association is acquired in the presence of the basolateral amygdala, some aspects of the reinforcer representation that are necessary to support new learning can be represented and accessed outside the amygdala.
Gallagher, M. & Holland, P. C. in The Amygdala: Neurobiological Aspects of Emotion, Memory, and Mental Dysfunction (ed. Aggleton, J. P.) 307–321 (Wiley–Liss, New York, 1992). Google Scholar
Holland, P. C. Conditioned stimulus as a determinant of the form of the Pavlovian conditioned response. J. Exp. Psychol. Anim. Behav. Process.3, 77–104 (1977). ArticleCASPubMed Google Scholar
Han, J. S., McMahan, R. W., Holland, P. & Gallagher, M. The role of an amygdalo-nigrostriatal pathway in associative learning. J. Neurosci.17, 3913–3919 (1997). ArticleCASPubMedPubMed Central Google Scholar
Bussey, T. J., Everitt, B. J. & Robbins, T. W. Dissociable effects of cingulate and medial frontal cortex lesions on stimulus–reward learning using a novel Pavlovian autoshaping procedure for the rat: implications for the neurobiology of emotion. Behav. Neurosci.111, 908–919 (1997). ArticleCASPubMed Google Scholar
Parkinson, J. A., Robbins, T. W. & Everitt, B. J. Dissociable roles of the central and basolateral amygdala in appetitive emotional learning. Eur. J. Neurosci.12, 405–413 (2000). ArticleCASPubMed Google Scholar
Parkinson, J. A., Willoughby, P. J., Robbins, T. W. & Everitt, B. J. Disconnection of the anterior cingulate cortex and nucleus accumbens core impairs Pavlovian approach behavior: further evidence for limbic cortical–ventral striatopallidal systems. Behav. Neurosci.114, 42–63 (2000). ArticleCASPubMed Google Scholar
Cleland, G. G. & Davey, G. C. L. The effects of satiation and reinforcer devaluation on signal-centered behaviors in the rat. Learn. Motiv.13, 343–360 (1982). Article Google Scholar
Bechara, A., Damasio, A. R., Damasio, H. & Anderson, S. W. Insensitivity to future consequences following damage to human prefrontal cortex. Cognition50, 7–15 (1994). ArticleCASPubMed Google Scholar
Bechara, A., Tranel, D., Damasio, H. & Damasio, A. R. Failure to respond autonomically to anticipated future outcomes following damage to prefrontal cortex. Cereb. Cortex6, 215–225 (1996). ArticleCASPubMed Google Scholar
Bechara, A., Damasio, H., Damasio, A. R. & Lee, G. P. Different contributions of the human amygdala and ventromedial prefrontal cortex to decision-making. J. Neurosci.19, 5473–5481 (1999). ArticleCASPubMedPubMed Central Google Scholar
Schoenbaum, G., Chiba, A. A. & Gallagher, M. Orbitofrontal cortex and basolateral amygdala encode expected outcomes during learning. Nature Neurosci.1, 155–159 (1998).A unit-recording study of reward processing in awake, behaving rats performing a go–no-go olfactory discrimination. During the period after an instruction odour and before the rat's behavioural response, neurons in both the basolateral amygdala and the orbital frontal cortex showed activity that coded either rewarding (sucrose) or aversive (quinine) outcomes of a trial. This selective activity emerged early in training, before the rats had learned the task. ArticleCASPubMed Google Scholar
Schoenbaum, G., Chiba, A. A. & Gallagher, M. Neural encoding in orbitofrontal cortex and basolateral amygdala during olfactory discrimination learning. J. Neurosci.19, 1876–1884 (1999). ArticleCASPubMedPubMed Central Google Scholar
Schoenbaum, G., Chiba, A. A. & Gallagher, M. Changes in functional connectivity in orbitofrontal cortex and basolateral amygdala during learning and reversal training. J. Neurosci.20, 5179–5189 (2000). ArticleCASPubMedPubMed Central Google Scholar
McDonald, R. J. & White, N. M. A triple dissociation of memory systems: hippocampus, amygdala, and dorsal striatum. Behav. Neurosci.107, 3–22 (1993). ArticleCASPubMed Google Scholar
Hiroi, N. & White, N. M. The lateral nucleus of the amygdala mediates expression of the amphetamine-produced conditioned place preference. J. Neurosci.11, 2107–2116 (1991). ArticleCASPubMedPubMed Central Google Scholar
Yin, H. H. & Knowlton, B. J. Reinforcer devaluation abolishes conditioned cue preference: evidence for stimulus–stimulus associations. Behav. Neurosci.116, 174–177 (2002). ArticleCASPubMed Google Scholar
Chiba, A. A., Bucci, D. J., Holland, P. C. & Gallagher, M. Basal forebrain cholinergic lesions disrupt increments but not decrements in conditioned stimulus processing. J. Neurosci.15, 7315–7322 (1995). ArticleCASPubMedPubMed Central Google Scholar
Holland, P. C. & Gallagher, M. Amygdala central nucleus lesions disrupt increments, but not decrements, in conditioned stimulus processing. Behav. Neurosci.107, 246–253 (1993). ArticleCASPubMed Google Scholar
Bucci, D. J., Holland, P. C. & Gallagher, M. Removal of cholinergic input to rat posterior parietal cortex disrupts incremental processing of conditioned stimuli. J. Neurosci.18, 8038–8046 (1998). ArticleCASPubMedPubMed Central Google Scholar
Holland, P. C., Han, J. S. & Gallagher, M. Lesions of the amygdala central nucleus alter performance on a selective attention task. J. Neurosci.20, 6701–6706 (2000). ArticleCASPubMedPubMed Central Google Scholar
Hall, J., Parkinson, J. A., Connor, T. M., Dickinson, A. & Everitt, B. J. Involvement of the central nucleus of the amygdala and nucleus accumbens core in mediating Pavlovian influences on instrumental behaviour. Eur. J. Neurosci.13, 1984–1992 (2001). ArticleCASPubMed Google Scholar
Price, J. L., Carmichael, S. T. & Drevets, W. C. Networks related to the orbital and medial prefrontal cortex; a substrate for emotional behavior? Prog. Brain Res.107, 523–536 (1996). ArticleCASPubMed Google Scholar
Holland, P. C. & Gallagher, M. Amygdala circuitry in attentional and representational processes. Trends Cogn. Sci.3, 65–73 (1999). ArticleCASPubMed Google Scholar