Is there more to gaba than synaptic inhibition? (original) (raw)
Goodman, C. S. & Shatz, C. J. Developmental mechanisms that generate precise patterns of neuronal connectivity. Cell72, 77–98 (1993). PubMed Google Scholar
Edlund, T. & Jessell, T. M. Progression from extrinsic to intrinsic signaling in cell fate specification: a view from the nervous system. Cell96, 211–224 (1999). CASPubMed Google Scholar
Lauder, J. M. Neurotransmitters as growth regulatory signals: role of receptors and second messengers. Trends Neurosci.16, 233–240 (1993). CASPubMed Google Scholar
Levitt, P., Harvey, J. A., Friedman, E., Simansky, K. & Murphy, E. H. New evidence for neurotransmitter influences on brain development. Trends Neurosci.20, 269–274 (1997). CASPubMed Google Scholar
Meier, E., Hertz, L. & Schousboe, A. Neurotransmitters as developmental signals. Neurochem. Int.19, 1–15 (1991). CAS Google Scholar
Cameron, H. A., Hazel, T. G. & McKay, R. D. Regulation of neurogenesis by growth factors and neurotransmitters. J. Neurobiol.36, 287–306 (1998). CASPubMed Google Scholar
Barker, J. L. et al. GABAergic cells and signals in CNS development. Perspect. Dev. Neurobiol.5, 305–322 (1998). CASPubMed Google Scholar
Morse, D. E., Duncan, H., Hooker, N., Baloun, A. & Young, G. GABA induces behavioral and developmental metamorphosis in planktonic molluscan larvae. Fed. Proc.39, 3237–3241 (1980). CASPubMed Google Scholar
Elliott, K. A. C. & Jasper, H. H. γ-Aminobutyric acid. Physiol. Rev.39, 383–406 (1959). CASPubMed Google Scholar
Cowan, W. M. & Kandel, E. R. in Synapses (eds Cowan, W. M., Sudhof, T. C. & Stevens, C. F.) 1–87 (Johns Hopkins Univ. Press, Baltimore and London, 2001). Google Scholar
Awapara, J., Landau, A., Fuerst, F. & Seale, B. L. Free γ-aminobutyric acid in brain. J. Biol. Chem.187, 35–39 (1950). CASPubMed Google Scholar
Roberts, E. & Frankel, S. γ-Aminobutyric acid in brain: its formation from glutamic acid. J. Biol. Chem.187, 55–63 (1950). CASPubMed Google Scholar
Roberts, E. in GABA and Benzodiazepine Receptors (ed. Squires, R. F.) 1–21 (CRC, Boca Raton, Florida, 1988). Google Scholar
Elliott, K. A. C. & Florey, E. Factor I-inhibitory factor from brain. J. Neurochem.1, 181–191 (1956). CASPubMed Google Scholar
Bazemore, A. W., Elliott, K. A. C. & Florey, E. Isolation of factor I. J. Neurochem.1, 334–339 (1957). CAS Google Scholar
Kravitz, E. A., Kuffler, S. W. & Potter, D. D. γ-Aminobutyric acid and other blocking compounds in crustacea. III. Their relative concentrations in separated motor and inhibitory axons. J. Neurophysiol.26, 739–751 (1963). CASPubMed Google Scholar
Kravitz, E. A. & Potter, D. D. A further study of the distribution of γ-aminobutyric acid between excitatory and inhibitory axons of the lobster. J. Neurochem.12, 323–328 (1965). CASPubMed Google Scholar
Otsuka, M., Iverson, L. L., Hall, Z. W. & Kravitz, E. A. Release of γ-aminobutyric acid from inhibitory nerves of lobster. Proc. Natl Acad. Sci. USA56, 1110–1115 (1966). CASPubMedPubMed Central Google Scholar
Obata, K. The inhibitory action of γ-aminobutyric acid, a probable synaptic transmitter. Int. Rev. Neurobiol.15, 167–187 (1972). CASPubMed Google Scholar
Purpura, D. P., Girado, M. & Grundfest, H. Selective blockade of excitatory synapses in the cat brain by γ-aminobutyric acid. Science125, 1200–1202 (1957). CASPubMed Google Scholar
Kuffler, S. W. & Edwards, C. Mechanisms of γ-aminobutyric acid (GABA) action and its relation to synaptic inhibition. J. Neurophysiol.21, 589–610 (1958). CASPubMed Google Scholar
Kuffler, S. W. Excitation and inhibition in single nerve cells. Harvey Lect.54, 176–218 (1960).An early review article that discusses inhibitory synaptic transmission. Written by one of the founders of the field. CAS Google Scholar
Boistel, J. & Fatt, P. Membrane permeability change during inhibitory transmitter action in crustacean muscle. J. Physiol. (Lond.)144, 176–191 (1958). CAS Google Scholar
Takeuchi, A. & Takeuchi, N. On the permeability of the presynaptic terminal of the crayfish neuromuscular junction during synaptic inhibition and the action of γ-aminobutyric acid. J. Physiol. (Lond.)183, 433–449 (1966). CAS Google Scholar
Krnjevic, K. & Schwartz, S. The action of γ-aminobutyric acid on cortical neurones. Exp. Brain Res.3, 320–336 (1967). CASPubMed Google Scholar
Dreifuss, J. J., Kelly, J. S. & Krnjevic, K. Cortical inhibition and γ-aminobutyric acid. Exp. Brain Res.9, 137–154 (1969). CASPubMed Google Scholar
Takeuchi, A. & Takeuchi, N. Localized action of γ-aminobutyric acid on crayfish muscle. J. Physiol. (Lond.)177, 225–238 (1965). CAS Google Scholar
Bloom, F. E. & Iversen, L. L. Localizing 3H-GABA in nerve terminals of rat cerebral cortex by electron microscopic autoradiography. Nature229, 628–630 (1971). CASPubMed Google Scholar
Erlander, M. G., Tillakaratne, N. J., Feldblum, S., Patel, N. & Tobin, A. J. Two genes encode distinct glutamate decarboxylases. Neuron7, 91–100 (1991). CASPubMed Google Scholar
Fon, E. A. & Edwards, R. H. Molecular mechanisms of neurotransmitter release. Muscle Nerve24, 581–601 (2001). CASPubMed Google Scholar
Attwell, D., Barbour, B. & Szatkowski, M. Nonvesicular release of neurotransmitter. Neuron11, 401–407 (1993). CASPubMed Google Scholar
Taylor, J. & Gordon-Weeks, P. R. Calcium-independent γ-aminobutyric acid release from growth cones: role of γ-aminobutyric acid transport. J. Neurochem.56, 273–280 (1991). CASPubMed Google Scholar
Cherubini, E. & Conti, F. Generating diversity at GABAergic synapses. Trends Neurosci.24, 155–162 (2001). CASPubMed Google Scholar
Hendry, S. H., Schwark, H. D., Jones, E. G. & Yan, J. Numbers and proportions of GABA-immunoreactive neurons in different areas of monkey cerebral cortex. J. Neurosci.7, 1503–1519 (1987). CASPubMedPubMed Central Google Scholar
Jones, E. G. in The Cortical Neuron (eds Gutnick, M. J. & Mody, I.) 111–122 (Oxford Univ. Press, New York, 1995). Google Scholar
Douglas, R. & Martin, K. in The Synaptic Organization of the Brain (ed. Shepherd, G. M.) 459–509 (Oxford Univ. Press, New York, 1998). Google Scholar
Houser, C. R., Vaughn, J. E., Hendry, S. H. C., Jones, E. G. & Peters, A. in Cerebral Cortex (eds Jones, E. G. & Peters, A.) 63–89 (Plenum, New York, 1984). Google Scholar
Micheva, K. D. & Beaulieu, C. Quantitative aspects of synaptogenesis in the rat barrel field cortex with special reference to GABA circuitry. J. Comp. Neurol.373, 340–354 (1996). CASPubMed Google Scholar
De Felipe, J., Marco, P., Fairen, A. & Jones, E. G. Inhibitory synaptogenesis in mouse somatosensory cortex. Cereb. Cortex7, 619–634 (1997). CASPubMed Google Scholar
Connors, B. W. & Gutnick, M. J. Intrinsic firing patterns of diverse neocortical neurons. Trends Neurosci.13, 99–104 (1990). CASPubMed Google Scholar
Gupta, A., Wang, Y. & Markram, H. Organizing principles for a diversity of GABAergic interneurons and synapses in the neocortex. Science287, 273–278 (2000). CASPubMed Google Scholar
Anderson, S. A., Eisenstat, D. D., Shi, L. & Rubenstein, J. Interneuron migration from basal forebrain to neocortex: dependence on dlx genes. Science278, 474–476 (1997). CASPubMed Google Scholar
Letinic, K., Zoncu, R. & Rakic, P. Origin of GABAergic neurons in the human neocortex. Nature417, 645–649 (2002). CASPubMed Google Scholar
Dammerman, R. S., Flint, A. C., Noctor, S. & Kriegstein, A. R. An excitatory GABAergic plexus in developing neocortical layer 1. J. Neurophysiol.84, 428–434 (2000). CASPubMed Google Scholar
Freund, T. F. & Meskenaite, V. γ-Aminobutyric acid-containing basal forebrain neurons innervate inhibitory interneurons in the neocortex. Proc. Natl Acad. Sci. USA89, 738–742 (1992). CASPubMedPubMed Central Google Scholar
Nicolelis, M. A., Chapin, J. K. & Lin, R. C. Development of direct GABAergic projections from the zona incerta to the somatosensory cortex of the rat. Neuroscience65, 609–631 (1995). CASPubMed Google Scholar
Grey, E. G. Axo-somatic and axo-dendritic synapses of the cerebral cortex: an electron-microscopic study. J. Anat.93, 420–433 (1959). Google Scholar
Colonnier, M. Synaptic patterns on different cell types in the different laminae of the cat visual cortex. An electron microscope study. Brain Res.9, 268–287 (1968). CASPubMed Google Scholar
Bormann, J. Electrophysiology of GABAA and GABAB receptor subtypes. Trends Neurosci.11, 112–116 (1988). CASPubMed Google Scholar
Connors, B. W., Malenka, R. C. & Silva, L. R. Two inhibitory postsynaptic potentials, and GABAA and GABAB receptor-mediated responses in neocortex of rat and cat. J. Physiol. (Lond.)406, 443–468 (1988).A nice demonstration of biphasic GABA-mediated postsynaptic potentials in neocortical neurons. This study also illustrates that, when exogenous GABA is applied to different cell regions, a range of changes in membrane potential can be produced. CAS Google Scholar
Kaila, K. Ionic basis of GABAA receptor channel function in the nervous system. Prog. Neurobiol.42, 489–537 (1994). CASPubMed Google Scholar
Bormann, J., Hamill, O. P. & Sakmann, B. Mechanism of anion permeation through channels gated by glycine and γ-aminobutyric acid in mouse cultured spinal neurones. J. Physiol. (Lond.)385, 243–286 (1987). CAS Google Scholar
Macdonald, R. L. & Olsen, R. W. GABAA receptor channels. Annu. Rev. Neurosci.17, 569–602 (1994). CASPubMed Google Scholar
Schofield, P. R. et al. Sequence and functional expression of the GABAA receptor shows a ligand-gated receptor super-family. Nature328, 221–227 (1987). CASPubMed Google Scholar
Mehta, A. K. & Ticku, M. K. An update on GABAA receptors. Brain Res. Brain Res. Rev.29, 196–217 (1999). CASPubMed Google Scholar
McKernan, R. M. & Whiting, P. J. Which GABAA-receptor subtypes really occur in the brain? Trends Neurosci.19, 139–143 (1996). CASPubMed Google Scholar
Mody, I. Distinguishing between GABAA receptors responsible for tonic and phasic conductances. Neurochem. Res.26, 907–913 (2001). CASPubMed Google Scholar
Bormann, J. & Feigenspan, A. GABAC receptors. Trends Neurosci.18, 515–519 (1995). CASPubMed Google Scholar
Bormann, J. The 'ABC' of GABA receptors. Trends Pharmacol. Sci.21, 16–19 (2000). CASPubMed Google Scholar
Hill, D. R. & Bowery, N. G. 3H-Baclofen and 3H-GABA bind to bicuculline-insensitive GABAB sites in rat brain. Nature290, 149–152 (1981). CASPubMed Google Scholar
Bowery, N. G. et al. (−)Baclofen decreases neurotransmitter release in the mammalian CNS by an action at a novel GABA receptor. Nature283, 92–94 (1980). CASPubMed Google Scholar
Nicoll, R. A. The coupling of neurotransmitter receptors to ion channels in the brain. Science241, 545–551 (1988). CASPubMed Google Scholar
LeVine, H. III. Structural features of heterotrimeric G-protein-coupled receptors and their modulatory proteins. Mol. Neurobiol.19, 111–149 (1999). CASPubMed Google Scholar
Kaupmann, K. et al. Expression cloning of GABAB receptors uncovers similarity to metabotropic glutamate receptors. Nature386, 239–246 (1997). CASPubMed Google Scholar
Kaupmann, K. et al. GABAB-receptor subtypes assemble into functional heteromeric complexes. Nature396, 683–687 (1998). CASPubMed Google Scholar
Billinton, A., Upton, N. & Bowery, N. G. GABAB receptor isoforms GBR1a and GBR1b, appear to be associated with pre- and post-synaptic elements respectively in rat and human cerebellum. Br. J. Pharmacol.126, 1387–1392 (1999). CASPubMedPubMed Central Google Scholar
LoTurco, J. J. & Kriegstein, A. R. Clusters of coupled neuroblasts in embryonic neocortex. Science252, 563–566 (1991). CAS Google Scholar
LoTurco, J. J., Owens, D. F., Heath, M. J. S., Davis, M. B. E. & Kriegstein, A. R. GABA and glutamate depolarize cortical progenitor cells and inhibit DNA synthesis. Neuron15, 1287–1298 (1995).The first indication that GABA-mediated signalling might regulate the proliferation of cortical precursor cells. CASPubMed Google Scholar
Owens, D. F., Boyce, L. H., Davis, M. B. E. & Kriegstein, A. R. Excitatory GABA responses in embryonic and neonatal cortical slices demonstrated by gramicidin perforated patch recordings and calcium imaging. J. Neurosci.16, 6414–6423 (1996).Using the gramicidin-perforated-patch technique in brain slices, this study reveals a developmental shift in, which is dependent on changes in [Cl−]i. CASPubMedPubMed Central Google Scholar
Owens, D. F., Liu, X. & Kriegstein, A. R. Changing properties of GABAA receptor-mediated signaling during early neocortical development. J. Neurophysiol.82, 570–583 (1999). CASPubMed Google Scholar
Noctor, S. C. et al. Dividing precursor cells of the embryonic cortical ventricular zone have morphological and molecular characteristics of radial glia. J. Neurosci.22, 3161–3173 (2002). CASPubMedPubMed Central Google Scholar
Serafini, R. et al. Initially expressed early rat embryonic GABAA receptor Cl− ion channels exhibit heterogeneous channel properties. Eur. J. Neurosci.10, 1771–1783 (1998). CASPubMed Google Scholar
Araki, T., Kiyama, H. & Tohyama, M. GABAA receptor subunit messenger RNAs show differential expression during cortical development in the rat brain. Neuroscience51, 583–591 (1992). CASPubMed Google Scholar
Fritschy, J. M., Paysan, J., Enna, A. & Mohler, H. Switch in the expression of rat GABAA-receptor subtypes during postnatal development: an immunohistochemical study. J. Neurosci.14, 5302–5324 (1994). CASPubMedPubMed Central Google Scholar
Laurie, D. J., Wisden, W. & Seeburg, P. H. The distribution of thirteen GABAA receptor subunit mRNAs in the rat brain. III. Embryonic and postnatal development. J. Neurosci.12, 4151–4172 (1992). CASPubMedPubMed Central Google Scholar
Ma, W. & Barker, J. L. Complementary expressions of transcripts encoding GAD67 and GABAA receptor α4, β1, and γ1 subunits in the proliferative zone of the embryonic rat central nervous system. J. Neurosci.15, 2547–2560 (1995). CASPubMedPubMed Central Google Scholar
Poulter, M. O., Barker, J. L., O'Carroll, A. M., Lolait, S. J. & Mahan, L. C. Differential and transient expression of GABAA receptor α-subunit mRNAs in the developing rat CNS. J. Neurosci.12, 2888–2900 (1992). CASPubMedPubMed Central Google Scholar
Poulter, M. O., Barker, J. L., O'Carroll, A. M., Lolait, S. J. & Mahan, L. C. Co-existent expression of GABAA receptor β2, β3 and γ2 subunit messenger RNAs during embryogenesis and early postnatal development of the rat central nervous system. Neuroscience53, 1019–1033 (1993). CASPubMed Google Scholar
Saxena, N. C. & Macdonald, R. L. Assembly of GABAA receptor subunits: role of the δ subunit. J. Neurosci.14, 7077–7086 (1994). CASPubMedPubMed Central Google Scholar
Essrich, C., Lorez, M., Benson, J., Fritschy, J. & Luscher, B. Postsynaptic clustering of major GABAA receptor subtypes requires the γ2 subunit and gephyrin. Nature Neurosci.1, 563–571 (1998). CASPubMed Google Scholar
Hollrigel, G. S. & Soltesz, I. Slow kinetics of miniature IPSCs during early postnatal development in granule cells of the dentate gyrus. J. Neurosci.17, 5119–5128 (1997). CASPubMedPubMed Central Google Scholar
Dunning, D. D., Hoover, C. L., Soltesz, I., Smith, M. A. & O'Dowd, D. K. GABAA receptor-mediated miniature postsynaptic currents and α-subunit expression in developing cortical neurons. J. Neurophysiol.82, 3286–3297 (1999). CASPubMed Google Scholar
Mishina, M. et al. Molecular distinction between fetal and adult forms of muscle acetylcholine receptor. Nature321, 406–411 (1986). CASPubMed Google Scholar
Carmignoto, G. & Vicini, S. Activity-dependent decrease in NMDA receptor responses during development of the visual cortex. Science258, 1007–1011 (1992). CASPubMed Google Scholar
Singer, J. H. & Berger, A. J. Development of inhibitory synaptic transmission to motoneurons. Brain Res. Bull.53, 553–560 (2000). CASPubMed Google Scholar
Chen, L., Wang, H., Vicini, S. & Olsen, R. W. The γ-aminobutyric acid type A (GABAA) receptor-associated protein (GABARAP) promotes GABAA receptor clustering and modulates the channel kinetics. Proc. Natl Acad. Sci. USA97, 11557–11562 (2000). CASPubMedPubMed Central Google Scholar
Moss, S. J. & Smart, T. G. Modulation of amino acid-gated ion channels by protein phosphorylation. Int. Rev. Neurobiol.39, 1–52 (1996). CASPubMed Google Scholar
Mozrzymas, J. W. & Cherubini, E. Changes in intracellular calcium concentration affect desensitization of GABAA receptors in acutely dissociated P2–P6 rat hippocampal neurons. J. Neurophysiol.79, 1321–1328 (1998). CASPubMed Google Scholar
Van Eden, C. G., Mrzljak, L., Voorn, P. & Uylings, H. B. Prenatal development of GABA-ergic neurons in the neocortex of the rat. J. Comp. Neurol.289, 213–227 (1989). CASPubMed Google Scholar
Cobas, A., Fairen, A., Alvarez-Bolado, G. & Sanchez, M. P. Prenatal development of the intrinsic neurons of the rat neocortex: a comparative study of the distribution of GABA-immunoreactive cells and the GABAA receptor. Neuroscience40, 375–397 (1991). CASPubMed Google Scholar
Behar, T. N. et al. GABA stimulates chemotaxis and chemokinesis of embryonic cortical neurons via calcium-dependent mechanisms. J. Neurosci.16, 1808–1818 (1996). CASPubMedPubMed Central Google Scholar
Jursky, F. & Nelson, N. Developmental expression of GABA transporters GAT1 and GAT4 suggests involvement in brain maturation. J. Neurochem.67, 857–867 (1996). CASPubMed Google Scholar
Balslev, Y., Saunders, N. R. & Mollgard, K. Synaptogenesis in the neocortical anlage and early developing neocortex of rat embryos. Acta Anat (Basel)156, 2–10 (1996). CAS Google Scholar
LoTurco, J. J., Blanton, M. G. & Kriegstein, A. R. Initial expression and endogenous activation of NMDA channels in early neocortical development. J. Neurosci.11, 792–799 (1991). CASPubMedPubMed Central Google Scholar
Haydar, T. F., Wang, F., Schwartz, M. L. & Rakic, P. Differential modulation of proliferation in the neocortical ventricular and subventricular zones. J. Neurosci.20, 5764–5774 (2000).Experiments in slice culture indicating that GABA receptor activation differentially regulates precursor proliferation in cells of the VZ and the subventricular zone. CASPubMedPubMed Central Google Scholar
Metin, C., Denizot, J. P. & Ropert, N. Intermediate zone cells express calcium-permeable AMPA receptors and establish close contact with growing axons. J. Neurosci.20, 696–708 (2000). CASPubMedPubMed Central Google Scholar
Soria, J. M. & Valdeolmillos, M. Receptor-activated calcium signals in tangentially migrating cortical cells. Cereb. Cortex12, 831–839 (2002). CASPubMed Google Scholar
Tyzio, R. et al. The establishment of GABAergic and glutamatergic synapses on CA1 pyramidal neurons is sequential and correlates with the development of the apical dendrite. J. Neurosci.19, 10372–10382 (1999).A clear demonstration of the sequential formation of GABA and glutamate synapses in hippocampal neurons. Evidence is provided that GABA synapses are the first to form. CASPubMedPubMed Central Google Scholar
Khazipov, R. et al. Early development of neuronal activity in the primate hippocampus in utero. J. Neurosci.21, 9770–9781 (2001). CASPubMedPubMed Central Google Scholar
Agmon, A. & O'Dowd, D. K. NMDA receptor-mediated currents are prominent in the thalamocortical synaptic response before maturation of inhibition. J. Neurophysiol.68, 345–349 (1992). CASPubMed Google Scholar
Luhmann, H. J. & Prince, D. A. Postnatal maturation of the GABAergic system in rat neocortex. J. Neurophysiol.65, 247–263 (1991).A detailed study of the developmental changes in GABA-mediated synaptic signalling in neocortical neurons. CASPubMed Google Scholar
Kim, H. G., Fox, K. & Connors, B. W. Properties of excitatory synaptic events in neurons of primary somatosensory cortex of neonatal rats. Cereb. Cortex5, 148–157 (1995). CASPubMed Google Scholar
Burgard, E. C. & Hablitz, J. J. Developmental changes in NMDA and non-NMDA receptor-mediated synaptic potentials in rat neocortex. J. Neurophysiol.69, 230–240 (1993). CASPubMed Google Scholar
Agmon, A., Hollrigel, G. & O'Dowd, D. K. Functional GABAergic synaptic connection in neonatal mouse barrel cortex. J. Neurosci.16, 4684–4695 (1996). CASPubMedPubMed Central Google Scholar
Kilb, W. & Luhmann, H. J. Spontaneous GABAergic postsynaptic currents in Cajal–Retzius cells in neonatal rat cerebral cortex. Eur. J. Neurosci.13, 1387–1390 (2001). CASPubMed Google Scholar
Hanganu, I. L., Kilb, W. & Luhmann, H. J. Spontaneous synaptic activity of subplate neurons in neonatal rat somatosensory cortex. Cereb. Cortex11, 400–410 (2001). CASPubMed Google Scholar
Allendoerfer, K. L. & Shatz, C. J. The subplate, a transient neocortical structure: its role in the development of connections between thalamus and cortex. Annu. Rev. Neurosci.17, 185–218 (1994). CASPubMed Google Scholar
Marin-Padilla, M. Cajal–Retzius cells and the development of the neocortex. Trends Neurosci.21, 64–71 (1998). CASPubMed Google Scholar
Fukuda, A., Mody, I. & Prince, D. A. Differential ontogenesis of presynaptic and postsynaptic GABAB inhibition in rat somatosensory cortex. J. Neurophysiol.70, 448–452 (1993). CASPubMed Google Scholar
McLean, H. A., Caillard, O., Khazipov, R., Ben-Ari, Y. & Gaiarsa, J. L. Spontaneous release of GABA activates GABAB receptors and controls network activity in the neonatal rat hippocampus. J. Neurophysiol.76, 1036–1046 (1996). CASPubMed Google Scholar
Gaiarsa, J. L., Tseeb, V. & Ben-Ari, Y. Postnatal development of pre- and postsynaptic GABAB-mediated inhibitions in the CA3 hippocampal region of the rat. J. Neurophysiol.73, 246–255 (1995). CASPubMed Google Scholar
Fritschy, J. M. et al. GABAB-receptor splice variants GB1a and GB1b in rat brain: developmental regulation, cellular distribution and extrasynaptic localization. Eur. J. Neurosci.11, 761–768 (1999). CASPubMed Google Scholar
Behar, T. N., Schaffner, A. E., Scott, C. A., Greene, C. L. & Barker, J. L. GABA receptor antagonists modulate postmitotic cell migration in slice cultures of embryonic rat cortex. Cereb. Cortex10, 899–909 (2000).Using a slice-culture system, this paper provides evidence that each class of GABA receptor (A, B and C) might influence a different aspect of neuronal migration. CASPubMed Google Scholar
Behar, T. N. et al. GABAB receptors mediate motility signals for migrating embryonic cortical cells. Cereb. Cortex11, 744–753 (2001). CASPubMed Google Scholar
Maric, D. et al. GABA expression dominates neuronal lineage progression in the embryonic rat neocortex and facilitates neurite outgrowth via GABAA autoreceptor/Cl− channels. J. Neurosci.21, 2343–2360 (2001).Anin vitrostudy showing that GABA receptor subunit expression changes as cortical cells progress through development. In addition, GABAAreceptor activation is shown to regulate the morphological development of cortical neurons through membrane depolarization and increases in [Ca2+]i. CASPubMedPubMed Central Google Scholar
Brock, L. G., Coombs, J. S. & Eccles, J. C. The recording of potentials from motoneurones with an intracellular electrode. J. Physiol. (Lond.)117, 431–460 (1952). CAS Google Scholar
Coombs, J. S., Eccles, J. C. & Fatt, P. The specific ionic conductances and the ionic movements across the motoneuronal membrane that produce the inhibitory postsynaptic potential. J. Physiol. (Lond.)130, 326–373 (1955). CAS Google Scholar
Kandel, E. R., Spencer, W. A. & Brinley, F. J. Electrophysiology of hippocampal neurons. 1. Sequential invasion and synaptic organization. J. Neurophysiol.24, 225–242 (1961). CASPubMed Google Scholar
Fatt, P. & Katz, B. The effect of inhibitory nerve impulses on a crustacean muscle fiber. J. Physiol. (Lond.)121, 374–389 (1953). CAS Google Scholar
Scharfman, H. E. & Sarvey, J. M. Responses to GABA recorded from identified rat visual cortical neurons. Neuroscience23, 407–422 (1987). CASPubMed Google Scholar
McCormick, D. A. GABA as an inhibitory neurotransmitter in human cerebral cortex. J. Neurophysiol.62, 1018–1027 (1989). CASPubMed Google Scholar
Ben-Ari, Y., Cherubini, E., Corradetti, R. & Gaiarsa, J. L. Giant synaptic potentials in immature rat CA3 hippocampal neurones. J. Physiol. (Lond.)416, 303–325 (1989).Recordings from hippocampal neurons in early postnatal brain slices showing that GABAA-receptor-mediated synaptic transmission drives the production of giant membrane depolarizations. This finding led to the concept that GABA-mediated synaptic signalling is excitatory in the developing brain. CAS Google Scholar
Brickley, S. G., Cull-Candy, S. G. & Farrant, M. Development of a tonic form of synaptic inhibition in rat cerebellar granule cells resulting from persistent activation of GABAA receptors. J. Physiol. (Lond.)497, 753–759 (1996). CAS Google Scholar
Chen, G., Trombley, P. Q. & van den Pol, A. N. Excitatory actions of GABA in developing rat hypothalamic neurones. J. Physiol. (Lond.)494, 451–464 (1996).Using the gramicidin-perforated-patch technique in cultured hypothalamic neurons, this study nicely illustrates the developmental shift in. This study also shows that GABAAreceptor activation can directly excite developing neurons. CAS Google Scholar
Wang, Y. F., Gao, X. B. & van den Pol, A. N. Membrane properties underlying patterns of GABA-dependent action potentials in developing mouse hypothalamic neurons. J. Neurophysiol.86, 1252–1265 (2001). CASPubMed Google Scholar
Gao, X. B. & van den Pol, A. N. GABA, not glutamate, a primary transmitter driving action potentials in developing hypothalamic neurons. J. Neurophysiol.85, 425–434 (2001). CASPubMed Google Scholar
Rohrbough, J. & Spitzer, N. C. Regulation of intracellular Cl− levels by Na+-dependent Cl− cotransport distinguishes depolarizing from hyperpolarizing GABAA receptor-mediated responses in spinal neurons. J. Neurosci.16, 82–91 (1996). CASPubMedPubMed Central Google Scholar
Kriegstein, A. R., Suppes, T. & Prince, D. A. Cellular and synaptic physiology and epileptogenesis of developing rat neocortical neurons in vitro. Brain Res.431, 161–171 (1987). CASPubMed Google Scholar
Wells, J. E., Porter, J. T. & Agmon, A. GABAergic inhibition suppresses paroxysmal network activity in the neonatal rodent hippocampus and neocortex. J. Neurosci.20, 8822–8830 (2000). CASPubMedPubMed Central Google Scholar
Clayton, G. H., Owens, G. C., Wolff, J. S. & Smith, R. L. Ontogeny of cation-Cl− cotransporter expression in rat neocortex. Brain Res. Dev. Brain Res.109, 281–292 (1998). CASPubMed Google Scholar
Rivera, C. et al. The K+/Cl− co-transporter KCC2 renders GABA hyperpolarizing during neuronal maturation. Nature397, 251–255 (1999).This study provides evidence that the potassium–chloride co-transporter KCC2 is at least partially responsible for the developmental shift in . CASPubMed Google Scholar
Hubner, C. A. et al. Disruption of KCC2 reveals an essential role of K–Cl cotransport already in early synaptic inhibition. Neuron30, 515–524 (2001). CASPubMed Google Scholar
Blue, M. E. & Parnavelas, J. G. The formation and maturation of synapses in the visual cortex of the rat. II. Quantitative analysis. J. Neurocytol.12, 697–712 (1983). CASPubMed Google Scholar
Hosokawa, Y., Sciancalepore, M., Stratta, F., Martina, M. & Cherubini, E. Developmental changes in spontaneous GABAA-mediated synaptic events in rat hippocampal CA3 neurons. Eur. J. Neurosci.6, 805–813 (1994). CASPubMed Google Scholar
Cherubini, E., Gaiarsa, J. L. & Ben-Ari, Y. GABA: an excitatory transmitter in early postnatal life. Trends Neurosci.14, 515–519 (1991). CASPubMed Google Scholar
Ben-Ari, Y., Khazipov, R., Leinekugel, X., Caillard, O. & Gaiarsa, J. L. GABAA, NMDA and AMPA receptors: a developmentally regulated 'menage a trois'. Trends Neurosci.20, 523–529 (1997). CASPubMed Google Scholar
Gao, X. B., Chen, G. & van den Pol, A. N. GABA-dependent firing of glutamate-evoked action potentials at AMPA/kainate receptors in developing hypothalamic neurons. J. Neurophysiol.79, 716–726 (1998). CASPubMed Google Scholar
Lu, T. & Trussell, L. O. Mixed excitatory and inhibitory GABA-mediated transmission in chick cochlear nucleus. J. Physiol. (Lond.)535, 125–131 (2001).A nice demonstration that even when GABAA-receptor-mediated synaptic responses are themselves excitatory, they still have the ability to inhibit other excitatory inputs. CAS Google Scholar
Wolff, J. R., Joo, F. & Dames, W. Plasticity in dendrites shown by continuous GABA administration in superior cervical ganglion of adult rat. Nature274, 72–74 (1978).One of the earliest demonstrations that GABA signalling can influence nervous system development. CASPubMed Google Scholar
Wolff, J. R., Joo, F. & Kasa, P. in Neurotrophic Activity of GABA During Development (eds Redburn, D. & Schousboe, A.) 221–252 (Alan R. Liss, New York, 1987). Google Scholar
Redburn, D. & Schousboe, A. (eds) Neurotrophic Activity of GABA During Development (Alan R. Liss, New York, 1987). Google Scholar
Hansen, G. H., Meier, E., Abraham, J. & Schousboe, A. in Neurotrophic Activity of GABA During Development (eds Redburn, D. & Schousboe, A.) 109–138 (Alan R. Liss, New York, 1987). Google Scholar
Meier, E., Belhage, B., Drejer, J. & Schousboe, A. in Neurotrophic Activity of GABA During Development (eds Redburn, D. & Schousboe, A.) 139–159 (Alan R. Liss, New York, 1987). Google Scholar
Spoerri, P. E. Neurotrophic effects of GABA in cultures of embryonic chick brain and retina. Synapse2, 11–22 (1988). CASPubMed Google Scholar
Spoerri, P. E. & Wolff, J. R. Effect of GABA-administration on murine neuroblastoma cells in culture. I. Increased membrane dynamics and formation of specialized contacts. Cell Tissue Res.218, 567–579 (1981). CASPubMed Google Scholar
Ben-Ari, Y. Excitatory actions of GABA during development: the nature of the nurture. Nature Rev. Neurosci.3, 728–739 (2002). CAS Google Scholar
Yuste, R. & Katz, L. C. Control of postsynaptic Ca2+ influx in developing neocortex by excitatory and inhibitory neurotransmitters. Neuron6, 333–344 (1991).The first study to show clearly that GABAAreceptor activation in early postnatal cortical neurons produces increases in [Ca2+]i. CASPubMed Google Scholar
Lin, M.-H., Takahashi, M. P., Takahashi, Y. & Tsumoto, T. Intracellualr calcium increase induced by GABA in visual cortex of fetal and neonatal rats and its disappearance with development. Neurosci. Res.20, 85–94 (1994). CASPubMed Google Scholar
Leinekugel, X., Tseeb, V., Ben-Ari, Y. & Bregestovski, P. Synaptic GABAA activation induces Ca2+ rise in pyramidal cells and interneurons from rat neonatal hippocampal slices. J. Physiol. (Lond.)487, 319–329 (1995). CAS Google Scholar
Antonopoulos, J., Pappas, I. & Parnavelas, J. Activation of the GABAA receptor inhibits the proliferative effects of bFGF in cortical progenitor cells. Eur. J. Neurosci.9, 291–298 (1997). CASPubMed Google Scholar
Borodinsky, L. N. & Fiszman, M. L. Extracellular potassium concentration regulates proliferation of immature cerebellar granule cells. Brain Res. Dev. Brain Res.107, 43–48 (1998). CASPubMed Google Scholar
Cui, H. & Bulleit, R. F. Potassium chloride inhibits proliferation of cerebellar granule neuron progenitors. Brain Res. Dev. Brain Res.106, 129–135 (1998). CASPubMed Google Scholar
Behar, T. N. et al. Glutamate acting at NMDA receptors stimulates embryonic cortical neuronal migration. J. Neurosci.19, 4449–4461 (1999). CASPubMedPubMed Central Google Scholar
Barbin, G., Pollard, H., Gaiarsa, J. L. & Ben-Ari, Y. Involvement of GABAA receptors in the outgrowth of cultured hippocampal neurons. Neurosci. Lett.152, 150–154 (1993). CASPubMed Google Scholar
Marty, S., Berninger, B., Carroll, P. & Thoenen, H. GABAergic stimulation regulates the phenotype of hippocampal interneurons through the regulation of brain-derived neurotrophic factor. Neuron16, 565–570 (1996). CASPubMed Google Scholar
Berninger, B., Marty, S., Zafra, F., da Penha Berzaghi, M. & Thoenen, H. GABAergic stimulation switches from enhancing to repressing BDNF expression in rat hippocampal neurons during maturation in vitro. Development121, 2327–2335 (1995).These two studies (references155and156), which used cultured hippocampal neurons, indicate that GABA stimulation regulates BDNF expression, which, in turn, facilitates interneuron development. These effects are observed only early in culture, when GABAAreceptor activation produces membrane depolarization and increases in [Ca2+]i. CASPubMed Google Scholar
Ikeda, Y., Nishiyama, N., Saito, H. & Katsuki, H. GABAA receptor stimulation promotes survival of embryonic rat striatal neurons in culture. Brain Res. Dev. Brain Res.98, 253–258 (1997). CASPubMed Google Scholar
Vicario-Abejon, C., Collin, C., McKay, R. D. & Segal, M. Neurotrophins induce formation of functional excitatory and inhibitory synapses between cultured hippocampal neurons. J. Neurosci.18, 7256–7271 (1998). CASPubMedPubMed Central Google Scholar
Durand, G. M., Kovalchuk, Y. & Konnerth, A. Long-term potentiation and functional synapse induction in developing hippocampus. Nature381, 71–75 (1996). CASPubMed Google Scholar
Leinekugel, X., Medina, I., Khalilov, I., Ben-Ari, Y. & Khazipov, R. Ca2+ oscillations mediated by the synergistic excitatory actions of GABAA and NMDA receptors in the neonatal hippocampus. Neuron18, 243–255 (1997). CASPubMed Google Scholar
Ganguly, K., Schinder, A. F., Wong, S. T. & Poo, M. GABA itself promotes the developmental switch of neuronal GABAergic responses from excitation to inhibition. Cell105, 521–532 (2001).This study provides evidence that the shift inis mediated by the activation of GABAAreceptors themselves. Experiments using cultured hippocampal neurons show that membrane depolarization and increases in [Ca2+]ithat are provided by GABAAreceptor activation early in culture ultimately lead to an increase in KCC2 expression. CASPubMed Google Scholar
Ji, F., Kanbara, N. & Obata, K. GABA and histogenesis in fetal and neonatal mouse brain lacking both the isoforms of glutamic acid decarboxylase. Neurosci. Res.33, 187–194 (1999).This paper shows that mutant mice that lack the ability to synthesize GABA develop a grossly normal-appearing cortex by birth. However, these animals have not yet been subject to rigorous analysis. CASPubMed Google Scholar
Dellovade, T. L. et al. GABA influences the development of the ventromedial nucleus of the hypothalamus. J. Neurobiol.49, 264–276 (2001). CASPubMed Google Scholar
Asada, H. et al. Mice lacking the 65 kDa isoform of glutamic acid decarboxylase (GAD65) maintain normal levels of GAD67 and GABA in their brains but are susceptible to seizures. Biochem. Biophys. Res. Commun.229, 891–895 (1996). CASPubMed Google Scholar
Kash, S. F. et al. Epilepsy in mice deficient in the 65-kDa isoform of glutamic acid decarboxylase. Proc. Natl Acad. Sci. USA94, 14060–14065 (1997). CASPubMedPubMed Central Google Scholar
Homanics, G. E. et al. Mice devoid of γ-aminobutyrate type A receptor β3 subunit have epilepsy, cleft palate, and hypersensitive behavior. Proc. Natl Acad. Sci. USA94, 4143–4148 (1997). CASPubMedPubMed Central Google Scholar
Culiat, C. T. et al. Concordance between isolated cleft palate in mice and alterations within a region including the gene encoding the β3 subunit of the type A γ-aminobutyric acid receptor. Proc. Natl Acad. Sci. USA90, 5105–5109 (1993). CASPubMedPubMed Central Google Scholar
Culiat, C. T. et al. Deficiency of the β3 subunit of the type A γ-aminobutyric acid receptor causes cleft palate in mice. Nature Genet.11, 344–346 (1995). CASPubMed Google Scholar
Flint, A. C., Liu, X. & Kriegstein, A. R. Nonsynaptic glycine receptor activation during early neocortical development. Neuron20, 43–53 (1998). CASPubMed Google Scholar
Varoqueaux, F. et al. Total arrest of spontaneous and evoked synaptic transmission but normal synaptogenesis in the absence of Munc13-mediated vesicle priming. Proc. Natl Acad. Sci. USA99, 9037–9042 (2002). CASPubMedPubMed Central Google Scholar
Verhage, M. et al. Synaptic assembly of the brain in the absence of neurotransmitter secretion. Science287, 864–869 (2000). CASPubMed Google Scholar
Woo, N. S. et al. Hyperexcitability and epilepsy associated with disruption of the mouse neuronal-specific K–Cl cotransporter gene. Hippocampus12, 258–268 (2002). CASPubMed Google Scholar
Prosser, H. M. et al. Epileptogenesis and enhanced prepulse inhibition in GABAB1-deficient mice. Mol. Cell. Neurosci.17, 1059–1070 (2001). CASPubMed Google Scholar
Schuler, V. et al. Epilepsy, hyperalgesia, impaired memory, and loss of pre- and postsynaptic GABAB responses in mice lacking GABAB1 . Neuron31, 47–58 (2001). CASPubMed Google Scholar
Blanton, M. G. & Kriegstein, A. R. Appearance of putative amino acid neurotransmitters during differentiation of neurons in embryonic turtle cerebral cortex. J. Comp. Neurol.310, 571–592 (1991). CASPubMed Google Scholar
Schwartz, M. L. & Meinecke, D. L. Early expression of GABA-containing neurons in the prefrontal and visual cortices of rhesus monkeys. Cereb. Cortex2, 16–37 (1992). CASPubMed Google Scholar
Gao, W. J., Wormington, A. B., Newman, D. E. & Pallas, S. L. Development of inhibitory circuitry in visual and auditory cortex of postnatal ferrets: immunocytochemical localization of calbindin- and parvalbumin-containing neurons. J. Comp. Neurol.422, 140–157 (2000). CASPubMed Google Scholar
Zecevic, N. & Milosevic, A. Initial development of γ-aminobutyric acid immunoreactivity in the human cerebral cortex. J. Comp. Neurol.380, 495–506 (1997). CASPubMed Google Scholar
Jones, E. G. GABA–peptide neurons of the primate cerebral cortex. J. Mind Behav.8, 519–536 (1987). Google Scholar