Calcium-dependent inactivation of neuronal calcium channels (original) (raw)
Berridge, M. J., Lipp, P. & Bootman, M. D. The versatility and universality of calcium signalling. Nature Rev. Mol. Cell Biol.1, 11–21 (2000).An excellent paper that provides a review of all aspects of cellular Ca2+signalling. CAS Google Scholar
Catterall, W. A. Structure and function of neuronal Ca2+ channels and their role in neurotransmitter release. Cell Calcium24, 307–323 (1998). CASPubMed Google Scholar
Choi, D. W. Calcium and excitotoxic neuronal injury. Ann. NY Acad. Sci.747, 162–171 (1994). CASPubMed Google Scholar
Brehm, P. & Eckert, R. Calcium entry leads to inactivation of calcium channel in Paramecium. Science202, 1203–1206 (1978). CASPubMed Google Scholar
Tillotson, D. Inactivation of Ca conductance dependent on entry of Ca ions in molluscan neurons. Proc. Natl Acad. Sci. USA76, 1497–1500 (1979).References4and5are pioneering descriptions of CDI inParameciumand molluscan neurons, and have directed the study of Ca2+channels towards the analysis of localized Ca2+signalling. CASPubMedPubMed Central Google Scholar
Lee, A. et al. Ca2+/calmodulin binds to and modulates P/Q-type calcium channels. Nature399, 155–159 (1999). ArticleCASPubMed Google Scholar
Peterson, B. Z., DeMaria, C. D., Adelman, J. P. & Yue, D. T. Calmodulin is the Ca2+ sensor for Ca2+-dependent inactivation of L-type calcium channels. Neuron22, 549–558 (1999). CASPubMed Google Scholar
Qin, N., Olcese, R., Bransby, M., Lin, T. & Birnbaumer, L. Ca2+-induced inhibition of the cardiac Ca2+ channel depends on calmodulin. Proc. Natl Acad. Sci. USA96, 2435–2438 (1999). CASPubMedPubMed Central Google Scholar
Zühlke, R. D., Pitt, G. S., Deisseroth, K., Tsien, R. W. & Reuter, H. Calmodulin supports both inactivation and facilitation of L-type calcium channels. Nature399, 159–162 (1999).References6–9show for the first time that CaM is essential for the inactivation of L- and P/Q-type Ca2+channels. PubMed Google Scholar
Hering, S. et al. Molecular determinants of inactivation in voltage-gated Ca2+ channels. J. Physiol. (Lond.)528, 237–249 (2000). CAS Google Scholar
Stotz, S. C. & Zamponi, G. W. Structural determinants of fast inactivation of high voltage-activated Ca2+ channels. Trends Neurosci.24, 176–181 (2001). CASPubMed Google Scholar
Eckert, R. & Tillotson, D. L. Calcium-mediated inactivation of the calcium conductance in caesium-loaded giant neurones of Aplysia californica. J. Physiol. (Lond.)314, 265–280 (1981). CASPubMed Central Google Scholar
Deitmer, J. W. Evidence for two voltage-dependent calcium currents in the membrane of the ciliate Stylonychia. J. Physiol. (Lond.)355, 137–159 (1984). CAS Google Scholar
McDonald, T. F., Pelzer, S., Trautwein, W. & Pelzer, D. J. Regulation and modulation of calcium channels in cardiac, skeletal, and smooth muscle cells. Physiol. Rev.74, 365–507 (1994). CASPubMed Google Scholar
Gera, S. & Byerly, L. Measurement of calcium channel inactivation is dependent upon the test pulse potential. Biophys. J.76, 3076–3088 (1999). CASPubMedPubMed Central Google Scholar
Nägerl, U. V. & Mody, I. Calcium-dependent inactivation of high-threshold calcium currents in human dentate gyrus granule cells. J. Physiol. (Lond.)509, 39–45 (1998). Google Scholar
Patil, P. G., Brody, D. L. & Yue, D. T. Preferential closed-state inactivation of neuronal calcium channels. Neuron20, 1027–1038 (1998). CASPubMed Google Scholar
Jones, S. W. & Marks, T. N. Calcium currents in bullfrog sympathetic neurons. II. Inactivation. J. Gen. Physiol.94, 169–182 (1989). CASPubMed Google Scholar
Jones, L. P., DeMaria, C. D. & Yue, D. T. N-type calcium channel inactivation probed by gating-current analysis. Biophys. J.76, 2530–2552 (1999). CASPubMedPubMed Central Google Scholar
Gera, S. & Byerly, L. Voltage- and calcium-dependent inactivation of calcium channels in Lymnaea neurons. J. Gen. Physiol.114, 535–550 (1999). CASPubMedPubMed Central Google Scholar
Ferreira, G., Yi, J., Rios, E. & Shirokov, R. Ion-dependent inactivation of barium current through L-type calcium channels. J. Gen. Physiol.109, 449–461 (1997). CASPubMedPubMed Central Google Scholar
Kay, A. R. Inactivation kinetics of calcium currents of acutely dissociated CA1 pyramidal cells of the mature guinea-pig hippocampus. J. Physiol. (Lond.)437, 27–48 (1991).This monograph provides a comprehensive analysis of native Ca2+current inactivation in central neurons, and points to the importance of local Ca2+domains for CDI. CAS Google Scholar
Gutnick, M. J., Lux, H. D., Swandulla, D. & Zucker, H. Voltage-dependent and calcium-dependent inactivation of calcium channel current in identified snail neurones. J. Physiol. (Lond.)412, 197–220 (1989). CAS Google Scholar
Chad, J. E. & Eckert, R. An enzymatic mechanism for calcium current inactivation in dialysed Helix neurones. J. Physiol. (Lond.)378, 31–51 (1986).This pioneering work provided the first mechanistic explanation for CDI in neurons. CAS Google Scholar
Imredy, J. P. & Yue, D. T. Submicroscopic Ca2+ diffusion mediates inhibitory coupling between individual Ca2+ channels. Neuron9, 197–207 (1992).This paper shows that Ca2+currents are controlled not only by intrinsic channel properties, but also by local diffusive interactions between neighbouring channels. CASPubMed Google Scholar
Johnson, B. D. & Byerly, L. A cytoskeletal mechanism for Ca2+ channel metabolic dependence and inactivation by intracellular Ca2+. Neuron10, 797–804 (1993). CASPubMed Google Scholar
Johnson, B. D. & Byerly, L. Ca2+ channel Ca2+-dependent inactivation in a mammalian central neuron involves the cytoskeleton. Pflugers Arch.429, 14–21 (1994).References26and27introduced the cytoskeleton as a mediator of CDI in molluscan and mammalian neurons. CASPubMed Google Scholar
Naraghi, M. & Neher, E. Linearized buffered Ca2+ diffusion in microdomains and its implications for calculation of [Ca2+] at the mouth of a calcium channel. J. Neurosci.17, 6961–6973 (1997).This theoretical paper describes the development of standing Ca2+gradients within hundreds of microseconds and a few hundred nanometres after Ca2+channel opening. In addition, it shows that every Ca2+buffer can be assigned a uniquely defined length constant as a measure of its ability to buffer calcium close to the channel. CASPubMedPubMed Central Google Scholar
Yue, D. T., Backx, P. H. & Imredy, J. P. Calcium-sensitive inactivation in the gating of single calcium channels. Science250, 1735–1738 (1990). CASPubMed Google Scholar
Kalman, D., O'Lague, P. H., Erxleben, C. & Armstrong, D. L. Calcium-dependent inactivation of the dihydropyridine-sensitive calcium channels in GH3 cells. J. Gen. Physiol.92, 531–548 (1988). CASPubMed Google Scholar
Lacerda, A. E. et al. Normalization of current kinetics by interaction between the α1 and β subunits of the skeletal muscle dihydropyridine-sensitive Ca2+ channel. Nature352, 527–530 (1991). CASPubMed Google Scholar
Varadi, G., Lory, P., Schultz, D., Varadi, M. & Schwartz, A. Acceleration of activation and inactivation by the β subunit of the skeletal muscle calcium channel. Nature352, 159–162 (1991). CASPubMed Google Scholar
Hell, J. W. et al. Identification and differential subcellular localization of the neuronal class C and class D L-type calcium channel α1 subunits. J. Cell Biol.123, 949–962 (1993). CASPubMed Google Scholar
Hell, J. W., Westenbroek, R. E., Elliott, E. M. & Catterall, W. A. Differential phosphorylation, localization, and function of distinct α1 subunits of neuronal calcium channels. Two size forms for class B, C, and D α1 subunits with different COOH-termini. Ann. NY Acad. Sci.747, 282–293 (1994). CASPubMed Google Scholar
Meuth, S., Budde, T. & Pape, H.-C. Differential control of high-voltage activated Ca2+ current components by a Ca2+-dependent inactivation mechanism in thalamic relay neurons. Thalamus Relat. Syst.1, 31–38 (2001). CAS Google Scholar
Zeilhofer, H. U., Blank, N. M., Neuhuber, W. L. & Swandulla, D. Calcium-dependent inactivation of neuronal calcium channel currents is independent of calcineurin. Neuroscience95, 235–241 (2000). CASPubMed Google Scholar
Lee, A., Scheuer, T. & Catterall, W. A. Ca2+/calmodulin-dependent facilitation and inactivation of P/Q-type Ca2+ channels. J. Neurosci.20, 6830–6838 (2000).This paper points to the possible functional significance of CDI and CDF in presynaptic neurotransmitter release. CASPubMedPubMed Central Google Scholar
Lukyanetz, E. A., Piper, T. P. & Sihra, T. S. Calcineurin involvement in the regulation of high-threshold Ca2+ channels in NG108-15 (rodent neuroblastoma × glioma hybrid) cells. J. Physiol. (Lond.)510, 371–385 (1998). | PubMed | CAS Google Scholar
Cox, D. H. & Dunlap, K. Inactivation of N-type calcium current in chick sensory neurons: calcium and voltage dependence. J. Gen. Physiol.104, 311–336 (1994). CASPubMed Google Scholar
Shirokov, R. Interaction between permeant ions and voltage sensor during inactivation of N-type Ca2+ channels. J. Physiol. (Lond.)518, 697–703 (1999). CAS Google Scholar
Sham, J. S., Cleemann, L. & Morad, M. Functional coupling of Ca2+ channels and ryanodine receptors in cardiac myocytes. Proc. Natl Acad. Sci. USA92, 121–125 (1995). CASPubMedPubMed Central Google Scholar
Fabiato, A. Calcium-induced release of calcium from the cardiac sarcoplasmic reticulum. Am. J. Physiol.245, C1–C14 (1983). CASPubMed Google Scholar
Sun, H., Leblanc, N. & Nattel, S. Mechanisms of inactivation of L-type calcium channels in human atrial myocytes. Am. J. Physiol.272, H1625–H1635 (1997). CASPubMed Google Scholar
Chavis, P., Fagni, L., Lansman, J. B. & Bockaert, J. Functional coupling between ryanodine receptors and L-type calcium channels in neurons. Nature382, 719–722 (1996). CASPubMed Google Scholar
Armstrong, D. L. Calcium channel regulation by calcineurin, a Ca2+-activated phosphatase in mammalian brain. Trends Neurosci.12, 117–122 (1989). CASPubMed Google Scholar
Hell, J. W. et al. Differential phosphorylation of two size forms of the neuronal class C L-type calcium channel α1 subunit. J. Biol. Chem.268, 19451–19457 (1993). CASPubMed Google Scholar
Hell, J. W. et al. _N_-methyl-d-aspartate receptor-induced proteolytic conversion of postsynaptic class C L-type calcium channels in hippocampal neurons. Proc. Natl Acad. Sci. USA93, 3362–3367 (1996). CASPubMedPubMed Central Google Scholar
Rubin, C. S. A kinase anchor proteins and the intracellular targeting of signals carried by cyclic AMP. Biochim. Biophys. Acta1224, 467–479 (1994). PubMed Google Scholar
Davare, M. A., Dong, F., Rubin, C. S. & Hell, J. W. The A-kinase anchor protein MAP2B and cAMP-dependent protein kinase are associated with class C L-type calcium channels in neurons. J. Biol. Chem.274, 30280–30287 (1999). CASPubMed Google Scholar
Diviani, D. & Scott, J. D. AKAP signaling complexes at the cytoskeleton. J. Cell Sci.114, 1431–1437 (2001). CASPubMed Google Scholar
Theurkauf, W. E. & Vallee, R. B. Molecular characterization of the cAMP-dependent protein kinase bound to microtubule-associated protein 2. J. Biol. Chem.257, 3284–3290 (1982). CASPubMed Google Scholar
Meuth, S., Pape, H.-C. & Budde, T. Modulation of Ca2+ currents in rat thalamocortical relay neurons by activity and phosphorylation. Eur. J. Neurosci.15, 1603–1614 (2002). PubMed Google Scholar
Lukyanetz, E. A. Evidence for colocalization of calcineurin and calcium channels in dorsal root ganglion neurons. Neuroscience78, 625–628 (1997). CASPubMed Google Scholar
Branchaw, J. L., Banks, M. I. & Jackson, M. B. Ca2+- and voltage-dependent inactivation of Ca2+ channels in nerve terminals of the neurohypophysis. J. Neurosci.17, 5772–5781 (1997). CASPubMedPubMed Central Google Scholar
Victor, R. G., Rusnak, F., Sikkink, R., Marban, E. & O'Rourke, B. Mechanism of Ca2+-dependent inactivation of L-type Ca2+ channels in GH3 cells: direct evidence against dephosphorylation by calcineurin. J. Membr. Biol.156, 53–61 (1997). CASPubMed Google Scholar
Burley, J. R. & Sihra, T. S. A modulatory role for protein phosphatase 2B (calcineurin) in the regulation of Ca2+ entry. Eur. J. Neurosci.12, 2881–2891 (2000). CASPubMed Google Scholar
Herzig, S. & Neumann, J. Effects of serine/threonine protein phosphatases on ion channels in excitable membranes. Physiol. Rev.80, 173–210 (2000). CASPubMed Google Scholar
Sculptoreanu, A., Rotman, E., Takahashi, M., Scheuer, T. & Catterall, W. A. Voltage-dependent potentiation of the activity of cardiac L-type calcium channel α1 subunits due to phosphorylation by cAMP-dependent protein kinase. Proc. Natl Acad. Sci. USA90, 10135–10139 (1993). CASPubMedPubMed Central Google Scholar
Hartzell, H. C., Hirayama, Y. & Petit-Jacques, J. Effects of protein phosphatase and kinase inhibitors on the cardiac L-type Ca current suggest two sites are phosphorylated by protein kinase A and another protein kinase. J. Gen. Physiol.106, 393–414 (1995). CASPubMed Google Scholar
Ono, K. & Fozzard, H. A. Two phosphatase sites on the Ca2+ channel affecting different kinetic functions. J. Physiol. (Lond.)470, 73–84 (1993). CAS Google Scholar
Davare, M. A., Horne, M. C. & Hell, J. W. Protein phosphatase 2A is associated with class C L-type calcium channels (Cav1.2) and antagonizes channel phosphorylation by cAMP-dependent protein kinase. J. Biol. Chem.275, 39710–39717 (2000). CASPubMed Google Scholar
Beck, H., Steffens, R., Heinemann, U. & Elger, C. E. Ca2+-dependent inactivation of high-threshold Ca2+ currents in hippocampal granule cells of patients with chronic temporal lobe epilepsy. J. Neurophysiol.82, 946–954 (1999). CASPubMed Google Scholar
Bennett, J. & Weeds, A. Calcium and the cytoskeleton. Br. Med. Bull.42, 385–390 (1986). CASPubMed Google Scholar
Hanlon, M. R., Berrow, N. S., Dolphin, A. C. & Wallace, B. A. Modelling of a voltage-dependent Ca2+ channel β subunit as a basis for understanding its functional properties. FEBS Lett.445, 366–370 (1999). CASPubMed Google Scholar
Sheng, M. & Wyszynski, M. Ion channel targeting in neurons. Bioessays19, 847–853 (1997). CASPubMed Google Scholar
Garner, C. C., Nash, J. & Huganir, R. L. PDZ domains in synapse assembly and signalling. Trends Cell Biol.10, 274–280 (2000). CASPubMed Google Scholar
Rosenmund, C. & Westbrook, G. L. Calcium-induced actin depolymerization reduces NMDA channel activity. Neuron10, 805–814 (1993). CASPubMed Google Scholar
Bickler, P. E. & Buck, L. T. Adaptations of vertebrate neurons to hypoxia and anoxia: maintaining critical Ca2+ concentrations. J. Exp. Biol.201, 1141–1152 (1998). CASPubMed Google Scholar
Sherman, A., Keizer, J. & Rinzel, J. Domain model for Ca2+-inactivation of Ca2+ channels at low channel density. Biophys. J.58, 985–995 (1990). CASPubMedPubMed Central Google Scholar
Standen, N. B. & Stanfield, P. R. A binding-site model for calcium channel inactivation that depends on calcium entry. Proc. R. Soc. Lond. B217, 101–110 (1982). CASPubMed Google Scholar
Chad, J. E. & Eckert, R. Calcium domains associated with individual channels can account for anomalous voltage relations of Ca-dependent responses. Biophys. J.45, 993–999 (1984). CASPubMedPubMed Central Google Scholar
Giannattasio, B., Jones, S. W. & Scarpa, A. Calcium currents in the A7r5 smooth muscle-derived cell line. Calcium-dependent and voltage-dependent inactivation. J. Gen. Physiol.98, 987–1003 (1991). CASPubMed Google Scholar
Zong, X. & Hofmann, F. Ca2+-dependent inactivation of the class C L-type Ca2+ channel is a property of the α1 subunit. FEBS Lett.378, 121–125 (1996). CASPubMed Google Scholar
Imredy, J. P. & Yue, D. T. Mechanism of Ca2+-sensitive inactivation of L-type Ca2+ channels. Neuron12, 1301–1318 (1994). CASPubMed Google Scholar
de Leon, M. et al. Essential Ca2+-binding motif for Ca2+-sensitive inactivation of L-type Ca2+ channels. Science270, 1502–1506 (1995).This paper provided the first indication of the importance of the carboxy-terminal region of L-type Ca2+channels for CDI. CASPubMed Google Scholar
Zhou, J. et al. Feedback inhibition of Ca2+ channels by Ca2+ depends on a short sequence of the C terminus that does not include the Ca2+-binding function of a motif with similarity to Ca2+-binding domains. Proc. Natl Acad. Sci. USA94, 2301–2305 (1997). CASPubMedPubMed Central Google Scholar
Zühlke, R. D. & Reuter, H. Ca2+-sensitive inactivation of L-type Ca2+ channels depends on multiple cytoplasmic amino acid sequences of the α1C subunit. Proc. Natl Acad. Sci. USA95, 3287–3294 (1998). PubMedPubMed Central Google Scholar
Rhoads, A. R. & Friedberg, F. Sequence motifs for calmodulin recognition. FASEB J.11, 331–340 (1997). CASPubMed Google Scholar
Peterson, B. Z. et al. Critical determinants of Ca2+-dependent inactivation within an EF-hand motif of L-type Ca2+ channels. Biophys. J.78, 1906–1920 (2000). CASPubMedPubMed Central Google Scholar
Anderson, M. E. Ca2+-dependent regulation of cardiac L-type Ca2+ channels: is a unifying mechanism at hand? J. Mol. Cell. Cardiol.33, 639–650 (2001). CASPubMed Google Scholar
Erickson, M. G., Alseikhan, B. A., Peterson, B. Z. & Yue, D. T. Preassociation of calmodulin with voltage-gated Ca2+ channels revealed by FRET in single living cells. Neuron31, 973–985 (2001).By use of a modified FRET technique, the authors showed the constitutive association of CaM with several types of Ca2+channel. CASPubMed Google Scholar
Pitt, G. S. et al. Molecular basis of calmodulin tethering and Ca2+-dependent inactivation of L-type Ca2+ channels. J. Biol. Chem.276, 30794–30802 (2001).The authors present a model in which CaM is tethered at two sites to L-type Ca2+channels and signals actively to slow inactivation. When the carboxy-terminal lobe of CaM binds to the nearby CaM-effector sequence (the IQ motif), the braking effect is relieved and CDI is accelerated. CASPubMed Google Scholar
Romanin, C. et al. Ca2+ sensors of L-type Ca2+ channel. FEBS Lett.487, 301–306 (2000). CASPubMed Google Scholar
Pate, P. et al. Determinants for calmodulin binding on voltage-dependent Ca2+ channels. J. Biol. Chem.275, 39786–39792 (2000). CASPubMed Google Scholar
Soldatov, N. M., Oz, M., O'Brien, K. A., Abernethy, D. R. & Morad, M. Molecular determinants of L-type Ca2+ channel inactivation. Segment exchange analysis of the carboxyl-terminal cytoplasmic motif encoded by exons 40–42 of the human α1C subunit gene. J. Biol. Chem.273, 957–963 (1998). CASPubMed Google Scholar
DeMaria, C. D., Soong, T. W., Alseikhan, B. A., Alvania, R. S. & Yue, D. T. Calmodulin bifurcates the local Ca2+ signal that modulates P/Q-type Ca2+ channels. Nature411, 484–489 (2001).The surprising finding of this study is that the two competing processes of CDI and CDF both require Ca2+/CaM binding to a single IQ-like domain on the carboxyl tail of the CaV2.1 Ca2+channel. The bifunctional capability of CaM arises from the bifurcation of Ca2+signalling by the lobes of CaM. CASPubMed Google Scholar
Zühlke, R. D., Pitt, G. S., Tsien, R. W. & Reuter, H. Ca2+-sensitive inactivation and facilitation of L-type Ca2+ channels both depend on specific amino acid residues in a consensus calmodulin-binding motif in the α1C subunit. J. Biol. Chem.275, 21121–21129 (2000). PubMed Google Scholar
Davare, M. A. et al. A β2 adrenergic receptor signaling complex assembled with the Ca2+ channel CaV1.2. Science293, 98–101 (2001).This paper impressively shows the existence of large multi-protein signalling complexes in mammalian central neurons, which provide highly localized, specific and rapid signalling by G-protein-coupled receptors. CASPubMed Google Scholar
Hille, B. Ionic Channels of Excitable Membranes (Sinauer Associates, Sunderland, Massachusetts, 2001). Google Scholar
Baimbridge, K. G. & Miller, J. J. Hippocampal calcium-binding protein during commissural kindling-induced epileptogenesis: progressive decline and effects of anticonvulsants. Brain Res.324, 85–90 (1984). CASPubMed Google Scholar
Nägerl, U. V. et al. Surviving granule cells of the sclerotic human hippocampus have reduced Ca2+ influx because of a loss of calbindin-D28k in temporal lobe epilepsy. J. Neurosci.20, 1831–1836 (2000).This paper points to the possible neuroprotective role of CDI in temporal lobe epilepsy, and highlights the ability of exogenous calbindin-D28kto disrupt the CDI mechanism in hippocampal neurons. PubMedPubMed Central Google Scholar
Cens, T., Restituito, S., Galas, S. & Charnet, P. Voltage and calcium use the same molecular determinants to inactivate calcium channels. J. Biol. Chem.274, 5483–5490 (1999). CASPubMed Google Scholar
Ivanina, T., Blumenstein, Y., Shistik, E., Barzilai, R. & Dascal, N. Modulation of L-type Ca2+ channels by Gβγ and calmodulin via interactions with N and C termini of α1C. J. Biol. Chem.275, 39846–39854 (2000). CASPubMed Google Scholar
Xiao, R. P., Cheng, H., Lederer, W. J., Suzuki, T. & Lakatta, E. G. Dual regulation of Ca2+/calmodulin-dependent kinase II activity by membrane voltage and by calcium influx. Proc. Natl Acad. Sci. USA91, 9659–9663 (1994). CASPubMedPubMed Central Google Scholar
Wu, Y., Dzhura, I., Colbran, R. J. & Anderson, M. E. Calmodulin kinase and a calmodulin-binding 'IQ' domain facilitate L-type Ca2+ current in rabbit ventricular myocytes by a common mechanism. J. Physiol. (Lond.)535, 679–687 (2001). CAS Google Scholar
Witcher, R. D. et al. Subunit identification and reconstitution of the N-type Ca2+ channel complex purified from brain. Science261, 486–489 (1993). CASPubMed Google Scholar
Dolphin, A. C. Mechanisms of modulation of voltage-dependent calcium channels by G proteins. J. Physiol. (Lond.)506, 3–11 (1998). CAS Google Scholar
Armstrong, C. M. & Hille, B. Voltage-gated ion channels and electrical excitability. Neuron20, 371–380 (1998). CASPubMed Google Scholar
Guerini, D. Calcineurin: not just a simple protein phosphatase. Biochem. Biophys. Res. Commun.235, 271–275 (1997). CASPubMed Google Scholar
Saimi, Y. & Kung, C. Calmodulin as an ion channel subunit. Annu. Rev. Physiol.64, 289–311 (2002). CASPubMed Google Scholar
Heizmann, C. W. Calcium signaling in the brain. Acta Neurobiol. Exp. (Warsz.)53, 15–23 (1993). CAS Google Scholar
Meuth, S., Pape, H.-C. & Budde, T. in Göttingen Neurobiology Report 2001 (eds Elsner, N. & Kreutzberg, G. W.) 837 (Thieme, Stuttgart, 2001). Google Scholar
Meyers, M. B. et al. Sorcin associates with the pore-forming subunit of voltage-dependent L-type Ca2+ channels. J. Biol. Chem.273, 18930–18935 (1998). CASPubMed Google Scholar