Hereditary disorders of renal phosphate wasting (original) (raw)
Reilly, R. F. & Perazella, M. A. Nephrology in 30 Days (McGraw-Hill Medical Pub. Division, New York, 2005). Google Scholar
Amanzadeh, J. & Reilly, R. F. Jr. Hypophosphatemia: an evidence-based approach to its clinical consequences and management. Nat. Clin. Pract. Nephrol.2, 136–148 (2006). ArticleCASPubMed Google Scholar
Hilfiker, H. et al. Characterization of a murine type II sodium-phosphate cotransporter expressed in mammalian small intestine. Proc. Natl Acad. Sci. USA95, 14564–14569 (1998). ArticleCASPubMedPubMed Central Google Scholar
Giral, H. et al. Regulation of rat intestinal Na-dependent phosphate transporters by dietary phosphate. Am. J. Physiol. Renal Physiol.297, F1466–F1475 (2009). ArticleCASPubMedPubMed Central Google Scholar
Danisi, G., Bonjour, J. P. & Straub, R. W. Regulation of Na-dependent phosphate influx across the mucosal border of duodenum by 1,25-dihydroxycholecalciferol. Pflugers Arch.388, 227–232 (1980). ArticleCASPubMed Google Scholar
Danisi, G., Caverzasio, J., Trechsel, U., Bonjour, J. P. & Straub, R. W. Phosphate transport adaptation in rat jejunum and plasma level of 1,25-dihydroxyvitamin D3. Scand. J. Gastroenterol.25, 210–215 (1990). CASPubMed Google Scholar
Hildmann, B., Storelli, C., Danisi, G. & Murer, H. Regulation of Na+-Pi cotransport by 1,25-dihydroxyvitamin D3 in rabbit duodenal brush-border membrane. Am. J. Physiol.242, G533–G539 (1982). CASPubMed Google Scholar
Radanovic, T., Wagner, C. A., Murer, H. & Biber, J. Regulation of intestinal phosphate transport. I. Segmental expression and adaptation to low-P(i) diet of the type IIb Na(+)-P(i) cotransporter in mouse small intestine. Am. J. Physiol. Gastrointest. Liver Physiol.288, G496–G500 (2005). ArticleCASPubMed Google Scholar
Xu, H., Bai, L., Collins, J. F. & Ghishan, F. K. Age-dependent regulation of rat intestinal type IIb sodium-phosphate cotransporter by 1,25-(OH)2 vitamin D3 . Am. J. Physiol. Cell Physiol.282, C487–C493 (2002). ArticleCASPubMed Google Scholar
Coe, F. L. & Favus, M. J. Disorders of Bone and Mineral Metabolism, 2nd edn (Lippincott Williams & Wilkins, Philadelphia, 2002). Google Scholar
Lang, F., Greger, R., Marchand, G. R. & Knox, F. G. Stationary microperfusion study of phosphate reabsorption in proximal and distal nephron segments. Pflugers Arch.368, 45–48 (1977). ArticleCASPubMed Google Scholar
Villa-Bellosta, R. et al. The Na+-Pi cotransporter PiT-2 (SLC20A2) is expressed in the apical membrane of rat renal proximal tubules and regulated by dietary Pi. Am. J. Physiol. Renal Physiol.296, F691–F699 (2009). ArticleCASPubMed Google Scholar
Segawa, H. et al. Npt2a and Npt2c in mice play distinct and synergistic roles in inorganic phosphate metabolism and skeletal development. Am. J. Physiol. Renal Physiol.297, F671–F678 (2009). ArticleCASPubMed Google Scholar
Murer, H., Forster, I. & Biber, J. The sodium phosphate cotransporter family SLC34. Pflugers Arch.447, 763–767 (2004). ArticleCASPubMed Google Scholar
Werner, A. et al. Cloning and expression of cDNA for a Na/Pi cotransport system of kidney cortex. Proc. Natl Acad. Sci. USA88, 9608–9612 (1991). ArticleCASPubMedPubMed Central Google Scholar
Busch, A. E. et al. Expression of a renal type I sodium/phosphate transporter (NaPi-1) induces a conductance in Xenopus oocytes permeable for organic and inorganic anions. Proc. Natl Acad. Sci. USA93, 5347–5351 (1996). ArticleCASPubMedPubMed Central Google Scholar
Virkki, L. V., Biber, J., Murer, H. & Forster, I. C. Phosphate transporters: a tale of two solute carrier families. Am. J. Physiol. Renal Physiol.293, F643–F654 (2007). ArticleCASPubMed Google Scholar
Reimer, R. J. & Edwards, R. H. Organic anion transport is the primary function of the SLC17/type I phosphate transporter family. Pflugers Arch.447, 629–635 (2004). ArticleCASPubMed Google Scholar
Beck, L. et al. Targeted inactivation of Npt2 in mice leads to severe renal phosphate wasting, hypercalciuria, and skeletal abnormalities. Proc. Natl Acad. Sci. USA95, 5372–5377 (1998). ArticleCASPubMedPubMed Central Google Scholar
Prie, D. et al. Nephrolithiasis and osteoporosis associated with hypophosphatemia caused by mutations in the type 2a sodium-phosphate cotransporter. N. Engl. J. Med.347, 983–991 (2002). ArticleCASPubMed Google Scholar
Virkki, L. V., Forster, I. C., Hernando, N., Biber, J. & Murer, H. Functional characterization of two naturally occurring mutations in the human sodium-phosphate cotransporter type IIa. J. Bone Miner. Res.18, 2135–2141 (2003). ArticleCASPubMed Google Scholar
Lapointe, J. Y. et al. NPT2a gene variation in calcium nephrolithiasis with renal phosphate leak. Kidney Int.69, 2261–2267 (2006). ArticleCASPubMed Google Scholar
Magen, D. et al. A loss-of-function mutation in NaPi-IIa and renal Fanconi's syndrome. N. Engl. J. Med.362, 1102–1109 (2010). ArticleCASPubMed Google Scholar
Kavanaugh, M. P. et al. Cell-surface receptors for gibbon ape leukemia virus and amphotropic murine retrovirus are inducible sodium-dependent phosphate symporters. Proc. Natl Acad. Sci. USA91, 7071–-7075 (1994).
Miller, D. G. & Miller, A. D. A family of retroviruses that utilize related phosphate transporters for cell entry. J. Virol.68, 8270–8276 (1994). CASPubMedPubMed Central Google Scholar
Tenenhouse, H. S., Roy, S., Martel, J. & Gauthier, C. Differential expression, abundance, and regulation of Na+-phosphate cotransporter genes in murine kidney. Am. J. Physiol.275, F527–F534 (1998). ArticleCASPubMed Google Scholar
Leung, J. C., Barac-Nieto, M., Hering-Smith, K. & Silverstein, D. M. Expression of the rat renal PiT-2 phosphate transporter. Horm. Metab. Res.37, 265–269 (2005). ArticleCASPubMed Google Scholar
Nowik, M. et al. Renal phosphaturia during metabolic acidosis revisited: molecular mechanisms for decreased renal phosphate reabsorption. Pflugers Arch.457, 539–549 (2008). ArticleCASPubMed Google Scholar
Breusegem, S. Y. et al. Differential regulation of the renal sodium-phosphate cotransporters NaPi-IIa, NaPi-IIc, and PiT-2 in dietary potassium deficiency. Am. J. Physiol. Renal Physiol.297, F350–F361 (2009). ArticleCASPubMedPubMed Central Google Scholar
Villa-Bellosta, R. & Sorribas, V. Compensatory regulation of the sodium/phosphate cotransporters NaPi-IIc (SCL34A3) and Pit-2 (SLC20A2) during Pi deprivation and acidosis. Pflugers Arch.459, 499–508 (2010). ArticleCASPubMed Google Scholar
Moe, O. W. PiT-2 coming out of the pits. Am. J. Physiol. Renal Physiol.296, F689–F690 (2009). ArticleCASPubMed Google Scholar
Forster, I. C., Loo, D. D. & Eskandari, S. Stoichiometry and Na+ binding cooperativity of rat and flounder renal type II Na+-Pi cotransporters. Am. J. Physiol.276, F644–F649 (1999). CASPubMed Google Scholar
Segawa, H. et al. Growth-related renal type II Na/Pi cotransporter. J. Biol. Chem.277, 19665–19672 (2002). ArticleCASPubMed Google Scholar
Ravera, S., Virkki, L. V., Murer, H. & Forster, I. C. Deciphering PiT transport kinetics and substrate specificity using electrophysiology and flux measurements. Am. J. Physiol. Cell Physiol.293, C606–C620 (2007). ArticleCASPubMed Google Scholar
Berndt, T. & Kumar, R. Phosphatonins and the regulation of phosphate homeostasis. Annu. Rev. Physiol.69, 341–359 (2007). ArticleCASPubMed Google Scholar
Miyamoto, K., Ito, M., Tatsumi, S., Kuwahata, M. & Segawa, H. New aspect of renal phosphate reabsorption: the type IIc sodium-dependent phosphate transporter. Am. J. Nephrol.27, 503–515 (2007). ArticleCASPubMed Google Scholar
Murer, H., Hernando, N., Forster, I. & Biber, J. Proximal tubular phosphate reabsorption: molecular mechanisms. Physiol. Rev.80, 1373–1409 (2000). ArticleCASPubMed Google Scholar
Cai, Q. et al. Brief report: inhibition of renal phosphate transport by a tumor product in a patient with oncogenic osteomalacia. N. Engl. J. Med.330, 1645–1649 (1994). ArticleCASPubMed Google Scholar
Econs, M. J. & Drezner, M. K. Tumor-induced osteomalacia—unveiling a new hormone. N. Engl. J. Med.330, 1679–1681 (1994). ArticleCASPubMed Google Scholar
Weidner, N. & Santa Cruz, D. Phosphaturic mesenchymal tumors. A polymorphous group causing osteomalacia or rickets. Cancer59, 1442–1454 (1987). ArticleCASPubMed Google Scholar
ADHR Consortium. Autosomal dominant hypophosphataemic rickets is associated with mutations in FGF23. Nat. Genet.26, 345–348 (2000).
Carpenter, T. O. et al. Fibroblast growth factor 7: an inhibitor of phosphate transport derived from oncogenic osteomalacia-causing tumors. J. Clin. Endocrinol. Metab.90, 1012–1020 (2005). ArticleCASPubMed Google Scholar
Dobbie, H., Unwin, R. J., Faria, N. J. & Shirley, D. G. Matrix extracellular phosphoglycoprotein causes phosphaturia in rats by inhibiting tubular phosphate reabsorption. Nephrol. Dial. Transplant.23, 730–733 (2008). ArticleCASPubMed Google Scholar
Berndt, T. et al. Secreted frizzled-related protein 4 is a potent tumor-derived phosphaturic agent. J. Clin. Invest.112, 785–794 (2003). ArticleCASPubMedPubMed Central Google Scholar
Shaikh, A., Berndt, T. & Kumar, R. Regulation of phosphate homeostasis by the phosphatonins and other novel mediators. Pediatr. Nephrol.23, 1203–1210 (2008). ArticlePubMedPubMed Central Google Scholar
Shimada, T. et al. FGF-23 is a potent regulator of vitamin D metabolism and phosphate homeostasis. J. Bone Miner. Res.19, 429–435 (2004). ArticleCASPubMed Google Scholar
Perwad, F., Zhang, M. Y., Tenenhouse, H. S. & Portale, A. A. Fibroblast growth factor 23 impairs phosphorus and vitamin D metabolism in vivo and suppresses 25-hydroxyvitamin D-1-alpha-hydroxylase expression in vitro. Am. J. Physiol. Renal Physiol.293, F1577–F1583 (2007). ArticleCASPubMed Google Scholar
Perwad, F. et al. Dietary and serum phosphorus regulate fibroblast growth factor 23 expression and 1,25-dihydroxyvitamin D metabolism in mice. Endocrinology146, 5358–5364 (2005). ArticleCASPubMed Google Scholar
Antoniucci, D. M., Yamashita, T. & Portale, A. A. Dietary phosphorus regulates serum fibroblast growth factor-23 concentrations in healthy men. J. Clin. Endocrinol. Metab.91, 3144–3149 (2006). ArticleCASPubMed Google Scholar
Nishida, Y. et al. Acute effect of oral phosphate loading on serum fibroblast growth factor 23 levels in healthy men. Kidney Int.70, 2141–2147 (2006). ArticleCASPubMed Google Scholar
Shimada, T. et al. FGF-23 transgenic mice demonstrate hypophosphatemic rickets with reduced expression of sodium phosphate cotransporter type IIa. Biochem. Biophys. Res. Commun.314, 409–414 (2004). ArticleCASPubMed Google Scholar
Shimada, T. et al. Cloning and characterization of FGF23 as a causative factor of tumor-induced osteomalacia. Proc. Natl Acad. Sci. USA98, 6500–6505 (2001). ArticleCASPubMedPubMed Central Google Scholar
Urakawa, I. et al. Klotho converts canonical FGF receptor into a specific receptor for FGF23. Nature444, 770–774 (2006). ArticleCASPubMed Google Scholar
Prie, D., Urena Torres, P. & Friedlander, G. Latest findings in phosphate homeostasis. Kidney Int.75, 882–889 (2009). ArticleCASPubMed Google Scholar
Gaasbeek, A. & Meinders, A. E. Hypophosphatemia: an update on its etiology and treatment. Am. J. Med.118, 1094–1101 (2005). ArticleCASPubMed Google Scholar
Young, J. A., Lichtman, M. A. & Cohen, J. Reduced red cell 2,3-diphosphoglycerate and adenosine triphosphate, hypophosphatemia, and increased hemoglobin-oxygen affinity after cardiac surgery. Circulation47, 1313–1318 (1973). ArticleCASPubMed Google Scholar
Hettleman, B. D., Sabina, R. L., Drezner, M. K., Holmes, E. W. & Swain, J. L. Defective adenosine triphosphate synthesis. An explanation for skeletal muscle dysfunction in phosphate-deficient mice. J. Clin. Invest.72, 582–589 (1983). ArticleCASPubMedPubMed Central Google Scholar
de Menezes Filho, H., de Castro, L. C. & Damiani, D. Hypophosphatemic rickets and osteomalacia. Arq. Bras. Endocrinol. Metabol.50, 802–813 (2006). ArticlePubMed Google Scholar
Hypophosphatemic rickets, X-linked dominant Online Mendelian Inheritance in Man[online].
Winters, R. W., Graham, J. B., Williams, T. F., McFalls, V. W. & Burnett, C. H. A genetic study of familial hypophosphatemia and vitamin D resistant rickets with a review of the literature. Medicine (Baltimore)37, 97–142 (1958). ArticleCAS Google Scholar
Morgan, J. M., Hawley, W. L, Chenoweth, A. I., Retan, W. J. & Diethelm, A. G. Renal transplantation in hypophosphatemia with vitamin D-resistant rickets. Arch. Intern. Med.134, 549–552 (1974). ArticleCASPubMed Google Scholar
Phosphate-regulating endopeptidase homolog, X-linked; PHEX Online Mendelian Inheritance in Man[online].
HYP Consortium. A gene (PEX) with homologies to endopeptidases is mutated in patients with X-linked hypophosphatemic rickets. The HYP Consortium. Nat. Genet.11, 130–136 (1995).
Guo, R. & Quarles, L. D. Cloning and sequencing of human PEX from a bone cDNA library: evidence for its developmental stage-specific regulation in osteoblasts. J. Bone Miner. Res.12, 1009–1017 (1997). ArticleCASPubMed Google Scholar
Holm, I. A., Huang, X. & Kunkel, L. M. Mutational analysis of the PEX gene in patients with X-linked hypophosphatemic rickets. Am. J. Hum. Genet.60, 790–797 (1997). CASPubMedPubMed Central Google Scholar
Dixon, P. H. et al. Mutational analysis of PHEX gene in X-linked hypophosphatemia. J. Clin. Endocrinol. Metab.83, 3615–3623 (1998). CASPubMed Google Scholar
Filisetti, D. et al. Non-random distribution of mutations in the PHEX gene, and under-detected missense mutations at non-conserved residues. Eur. J. Hum. Genet.7, 615–619 (1999). ArticleCASPubMed Google Scholar
Bowe, A. E. et al. FGF-23 inhibits renal tubular phosphate transport and is a PHEX substrate. Biochem. Biophys. Res. Commun.284, 977–981 (2001). ArticleCASPubMed Google Scholar
Benet-Pages, A. et al. FGF23 is processed by proprotein convertases but not by PHEX. Bone35, 455–462 (2004). ArticleCASPubMed Google Scholar
Liu, S. et al. Regulation of fibroblastic growth factor 23 expression but not degradation by PHEX. J. Biol. Chem.278, 37419–37426 (2003). ArticleCASPubMed Google Scholar
Strom, T. M. & Juppner, H. PHEX, FGF23, DMP1 and beyond. Curr. Opin. Nephrol. Hypertens.17, 357–362 (2008). ArticleCASPubMed Google Scholar
Hypophosphatemic rickets, Autosomal dominant; ADHR Online Mendelian Inheritance in Man[online].
Bianchine, J. W., Stambler, A. A. & Harrison, H. E. Familial hypophosphatemic rickets showing autosomal dominant inheritance. Birth Defects Orig. Artic. Ser.7, 287–295 (1971). CASPubMed Google Scholar
Riminucci, M. et al. FGF-23 in fibrous dysplasia of bone and its relationship to renal phosphate wasting. J. Clin. Invest.112, 683–692 (2003). ArticleCASPubMedPubMed Central Google Scholar
Mirams, M., Robinson, B. G., Mason, R. S. & Nelson, A. E. Bone as a source of FGF23: regulation by phosphate? Bone35, 1192–1199 (2004). ArticleCASPubMed Google Scholar
Shimada, T. et al. Vitamin D receptor-independent FGF23 actions in regulating phosphate and vitamin D metabolism. Am. J. Physiol. Renal Physiol.289, F1088–F1095 (2005). ArticleCASPubMed Google Scholar
Larsson, T. et al. Transgenic mice expressing fibroblast growth factor 23 under the control of the alpha1(I) collagen promoter exhibit growth retardation, osteomalacia, and disturbed phosphate homeostasis. Endocrinology145, 3087–3094 (2004). ArticleCASPubMed Google Scholar
Gribaa, M. et al. An autosomal dominant hypophosphatemic rickets phenotype in a Tunisian family caused by a new FGF23 missense mutation. J. Bone Miner. Metab.28, 111–115 (2009). ArticlePubMed Google Scholar
Econs, M. J. & McEnery, P. T. Autosomal dominant hypophosphatemic rickets/osteomalacia: clinical characterization of a novel renal phosphate-wasting disorder. J. Clin. Endocrinol. Metab.82, 674–681 (1997). ArticleCASPubMed Google Scholar
Feng, J. Q. et al. Loss of DMP1 causes rickets and osteomalacia and identifies a role for osteocytes in mineral metabolism. Nat. Genet.38, 1310–1315 (2006). ArticleCASPubMedPubMed Central Google Scholar
Lorenz-Depiereux, B. et al. DMP1 mutations in autosomal recessive hypophosphatemia implicate a bone matrix protein in the regulation of phosphate homeostasis. Nat. Genet.38, 1248–1250 (2006). ArticleCASPubMedPubMed Central Google Scholar
George, A., Sabsay, B., Simonian, P. A. & Veis, A. Characterization of a novel dentin matrix acidic phosphoprotein. Implications for induction of biomineralization. J. Biol. Chem.268, 12624–12630 (1993). CASPubMed Google Scholar
George, A., Ramachandran, A., Albazzaz, M. & Ravindran, S. _DMP1_-a key regulator in mineralized matrix formation. J. Musculoskelet. Neuronal Interact.7, 308 (2007). CASPubMed Google Scholar
Narayanan, K. et al. Dual functional roles of dentin matrix protein 1. Implications in biomineralization and gene transcription by activation of intracellular Ca2+ store. J. Biol. Chem.278, 17500–17508 (2003). ArticleCASPubMed Google Scholar
Levy-Litan, V. et al. Autosomal-recessive hypophosphatemic rickets is associated with an inactivation mutation in the ENPP1 gene. Am. J. Hum. Genet.86, 273–278 (2010). ArticleCASPubMedPubMed Central Google Scholar
Rutsch, F. et al. Mutations in ENPP1 are associated with 'idiopathic' infantile arterial calcification. Nat. Genet.34, 379–381 (2003). ArticleCASPubMed Google Scholar
Hypophosphatemic rickets with hypercalciuria, hereditary; HHRH Online Mendelian Inheritance in Man, [online].
Lorenz-Depiereux, B. et al. Hereditary hypophosphatemic rickets with hypercalciuria is caused by mutations in the sodium-phosphate cotransporter gene SLC34A3. Am. J. Hum. Genet.78, 193–201 (2006). ArticleCASPubMed Google Scholar
Bergwitz, C. et al. SLC34A3 mutations in patients with hereditary hypophosphatemic rickets with hypercalciuria predict a key role for the sodium-phosphate cotransporter NaPi-IIc in maintaining phosphate homeostasis. Am. J. Hum. Genet.78, 179–192 (2006). ArticleCASPubMed Google Scholar
Solute carrier family 34 (sodium/phosphate cotransporter), member 3; SLC34A3 Online Mendelian Inheritance in Man, [online].
Tieder, M. et al. Hereditary hypophosphatemic rickets with hypercalciuria. N. Engl. J. Med.312, 611–617 (1985). ArticleCASPubMed Google Scholar
Tencza, A. L. et al. Hypophosphatemic rickets with hypercalciuria due to mutation in SLC34A3/type IIc sodium-phosphate cotransporter: presentation as hypercalciuria and nephrolithiasis. J. Clin. Endocrinol. Metab.94, 4433–4438 (2009). ArticleCASPubMedPubMed Central Google Scholar
Kremke, B. et al. Hypophosphatemic rickets with hypercalciuria due to mutation in SLC34A3/NaPi-IIc can be masked by vitamin D deficiency and can be associated with renal calcifications. Exp. Clin. Endocrinol. Diabetes117, 49–56 (2009). ArticleCASPubMed Google Scholar
Page, K., Bergwitz, C., Jaureguiberry, G., Harinarayan, C. V. & Insogna, K. A patient with hypophosphatemia, a femoral fracture, and recurrent kidney stones: report of a novel mutation in SLC34A3. Endocr. Pract.14, 869–874 (2008). ArticlePubMedPubMed Central Google Scholar
Tieder, M. et al. Elevated serum 1,25-dihydroxyvitamin D concentrations in siblings with primary Fanconi's syndrome. N. Engl. J. Med.319, 845–849 (1988). ArticleCASPubMed Google Scholar
McCune-albright syndrome; MAS Online Mendelian Inheritance in Man, [online].
Weinstein, L. S. et al. Activating mutations of the stimulatory G protein in the McCune-Albright syndrome. N. Engl. J. Med.325, 1688–1695 (1991). ArticleCASPubMed Google Scholar
Chapurlat, R. D. & Orcel, P. Fibrous dysplasia of bone and McCune-Albright syndrome. Best Pract. Res. Clin. Rheumatol.22, 55–69 (2008). ArticleCASPubMed Google Scholar
Yamamoto, T. et al. The role of fibroblast growth factor 23 for hypophosphatemia and abnormal regulation of vitamin D metabolism in patients with McCune-Albright syndrome. J. Bone Miner. Metab.23, 231–237 (2005). ArticleCASPubMed Google Scholar
Collins, M. T. et al. Renal phosphate wasting in fibrous dysplasia of bone is part of a generalized renal tubular dysfunction similar to that seen in tumor-induced osteomalacia. J. Bone Miner. Res.16, 806–813 (2001). ArticleCASPubMed Google Scholar
Kobayashi, K. et al. Expression of FGF23 is correlated with serum phosphate level in isolated fibrous dysplasia. Life Sci.78, 2295–2301 (2006). ArticleCASPubMed Google Scholar
Faroqui, S., Levi, M., Soleimani, M. & Amlal, H. Estrogen downregulates the proximal tubule type IIa sodium phosphate cotransporter causing phosphate wasting and hypophosphatemia. Kidney Int.73, 1141–1150 (2008). ArticleCASPubMedPubMed Central Google Scholar
Ishiguro, M. et al. Thyroid hormones regulate phosphate homoeostasis through transcriptional control of the renal type IIa sodium-dependent phosphate co-transporter (Npt2a) gene. Biochem. J.427, 161–169 (2010). ArticleCASPubMed Google Scholar