Heart failure and kidney dysfunction: epidemiology, mechanisms and management (original) (raw)
Schocken, D. D. et al. Prevention of heart failure: a scientific statement from the American Heart Association Councils on Epidemiology and Prevention, Clinical Cardiology, Cardiovascular Nursing, and High Blood Pressure Research; Quality of Care and Outcomes Research Interdisciplinary Working Group; and Functional Genomics and Translational Biology Interdisciplinary Working Group. Circulation117, 2544–2565 (2008). PubMed Google Scholar
van Riet, E. E. et al. Epidemiology of heart failure: the prevalence of heart failure and ventricular dysfunction in older adults over time. A systematic review. Eur. J. Heart Fail.18, 242–252 (2016). PubMed Google Scholar
Redfield, M. M. et al. Burden of systolic and diastolic ventricular dysfunction in the community: appreciating the scope of the heart failure epidemic. JAMA289, 194–202 (2003). PubMed Google Scholar
Bagshaw, S. M. et al. Epidemiology of cardio-renal syndromes: workgroup statements from the 7th ADQI Consensus Conference. Nephrol. Dial. Transplant.25, 1406–1416 (2010). PubMed Google Scholar
House, A. A. et al. Definition and classification of cardio-renal syndromes: workgroup statements from the 7th ADQI Consensus Conference. Nephrol. Dial. Transplant.25, 1416–1420 (2010). PubMed Google Scholar
Segall, L., Nistor, I. & Covic, A. Heart failure in patients with chronic kidney disease: a systematic integrative review. BioMed Res. Int.2014, 937398 (2014). PubMedPubMed Central Google Scholar
Mentz, R. J., O'Connor, C. M. Pathophysiology and clinical evaluation of acute heart failure. Nat. Rev. Cardiol.13, 28–35 (2016). CASPubMed Google Scholar
Filippatos, G., Farmakis, D. & Parissis, J. Renal dysfunction and heart failure: things are seldom what they seem. Eur. Heart J.35, 416–418 (2014). PubMed Google Scholar
Mehta, R. L. et al. Acute Kidney Injury Network. Report of an initiative to improve outcomes in acute kidney injury. Crit. Care11, R31 (2007). PubMedPubMed Central Google Scholar
Damman, K., Tang, W. H., Testani, J. M. & McMurray, J. J. Terminology and definition of changes renal function in heart failure. Eur. Heart J.35, 3413–3416 (2014). CASPubMedPubMed Central Google Scholar
Hogg, K., Swedberg, K. & McMurray, J. Heart failure with preserved left ventricular systolic function; epidemiology, clinical characteristics, and prognosis. J. Am. College Cardiol.43, 317–327 (2004). Google Scholar
McMurray, J. J. et al. ESC Guidelines for the diagnosis and treatment of acute and chronic heart failure 2012: the Task Force for the Diagnosis and Treatment of Acute and Chronic Heart Failure 2012 of the European Society of Cardiology. Developed in collaboration with the Heart Failure Association (HFA) of the ESC. Eur. Heart J.33, 1787–1847 (2012). PubMed Google Scholar
Ezekowitz, J. et al. The association among renal insufficiency, pharmacotherapy, and outcomes in 6,427 patients with heart failure and coronary artery disease. J. Am. College Cardiol.44, 1587–1592 (2004). Google Scholar
Hillege, H. L. et al. Renal function as a predictor of outcome in a broad spectrum of patients with heart failure. Circulation113, 671–678 (2006). PubMed Google Scholar
McAlister, F. A., Ezekowitz, J., Tonelli, M. & Armstrong, P. W. Renal insufficiency and heart failure: prognostic and therapeutic implications from a prospective cohort study. Circulation109, 1004–1009 (2004). PubMed Google Scholar
McClellan, W. M., Langston, R. D. & Presley, R. Medicare patients with cardiovascular disease have a high prevalence of chronic kidney disease and a high rate of progression to end-stage renal disease. J. Am. Soc. Nephrol.15, 1912–1919 (2004). PubMed Google Scholar
van Deursen, V. M. et al. Co-morbidities in patients with heart failure: an analysis of the European Heart Failure Pilot Survey. Eur. J. Heart Fail.16, 103–111 (2014). PubMed Google Scholar
Morley, J. E., Anker, S. D. & von Haehling, S. Prevalence, incidence, and clinical impact of sarcopenia: facts, numbers, and epidemiology-update 2014. J. Cachexia Sarcopenia Muscle5, 253–259 (2014). PubMedPubMed Central Google Scholar
Adams, K. F. et al. Characteristics and outcomes of patients hospitalized for heart failure in the United States: rationale, design, and preliminary observations from the first 100,000 cases in the Acute Decompensated Heart Failure National Registry (ADHERE). Am. Heart J.149, 209–216 (2005). PubMed Google Scholar
Tonelli, M. et al. Chronic kidney disease and mortality risk: a systematic review. J. Am. Soc. Nephrol.17, 2034–2047 (2006). PubMed Google Scholar
Sud, M., Tangri, N., Pintilie, M., Levey, A. S. & Naimark, D. Risk of end-stage renal disease and death after cardiovascular events in chronic kidney disease. Circulation130, 458–465 (2014). PubMed Google Scholar
Gansevoort, R. T. et al. Chronic kidney disease and cardiovascular risk: epidemiology, mechanisms, and prevention. Lancet382, 339–352 (2013). PubMed Google Scholar
Levey, A. S. et al. The definition, classification, and prognosis of chronic kidney disease: a KDIGO Controversies Conference report. Kidney Int.80, 17–28 (2011). PubMed Google Scholar
Kottgen, A. et al. Reduced kidney function as a risk factor for incident heart failure: the atherosclerosis risk in communities (ARIC) study. J. Am. Soc. Nephrol.18, 1307–1315 (2007). CASPubMed Google Scholar
Sud, M., Tangri, N., Pintilie, M., Levey, A. S. & Naimark, D. M. ESRD and death after heart failure in CKD. J. Am. Soc. Nephrol.26, 715–722 (2015). PubMed Google Scholar
Tsuruya, K., Eriguchi, M., Yamada, S., Hirakata, H. & Kitazono, T. Cardio-renal syndrome in end-stage kidney disease. Blood Purif.40, 337–343 (2015). CASPubMed Google Scholar
Johnson, D. W., Craven, A. M. & Isbel, N. M. Modification of cardiovascular risk in hemodialysis patients: an evidence-based review. Hemodial. Int.11, 1–14 (2007). PubMed Google Scholar
Go, A. S., Chertow, G. M., Fan, D., McCulloch, C. E. & Hsu, C. Y. Chronic kidney disease and the risks of death, cardiovascular events, and hospitalization. New Engl. J. Med.351, 1296–1305 (2004). CASPubMed Google Scholar
Foley, R. N., Parfrey, P. S. & Sarnak, M. J. Clinical epidemiology of cardiovascular disease in chronic renal disease. Am. J. Kidney Dis.32 (Suppl. 3), S112–S119 (1998). CASPubMed Google Scholar
Foley, R. N. et al. Clinical and echocardiographic disease in patients starting end-stage renal disease therapy. Kidney Int.47, 186–192 (1995). CASPubMed Google Scholar
Soucie, J. M. & McClellan, W. M. Early death in dialysis patients: risk factors and impact on incidence and mortality rates. J. Am. Soc. Nephrol.7, 2169–2175 (1996). CASPubMed Google Scholar
Harnett, J. D. et al. Congestive heart failure in dialysis patients: prevalence, incidence, prognosis and risk factors. Kidney Int.47, 884–890 (1995). CASPubMed Google Scholar
Wang, A. Y. et al. Heart failure in long-term peritoneal dialysis patients: a 4-year prospective analysis. Clin. J. Am. Soc. Nephrol.6, 805–812 (2011). CASPubMedPubMed Central Google Scholar
Basile, D. P., Anderson, M. D. & Sutton, T. A. Pathophysiology of acute kidney injury. Comprehensive Physiol.2, 1303–1353 (2012). Google Scholar
Berl, T. & Henrich, W. Kidney-heart interactions: epidemiology, pathogenesis, and treatment. Clin. J. Am. Soc. Nephrol.1, 8–18 (2006). CASPubMed Google Scholar
Chertow, G. M., Burdick, E., Honour, M., Bonventre, J. V. & Bates, D. W. Acute kidney injury, mortality, length of stay, and costs in hospitalized patients. J. Am. Soc. Nephrol.16, 3365–3370 (2005). PubMed Google Scholar
Nash, K., Hafeez, A. & Hou, S. Hospital-acquired renal insufficiency. Am. J. Kidney Dis.39, 930–936 (2002). PubMed Google Scholar
Uchino, S. et al. Acute renal failure in critically ill patients: a multinational, multicenter study. JAMA294, 813–818 (2005). CASPubMed Google Scholar
Bagshaw, S. M., George, C., Dinu, I. & Bellomo, R. A multi-centre evaluation of the RIFLE criteria for early acute kidney injury in critically ill patients. Nephrol. Dial. Transplant.23, 1203–1210 (2008). PubMed Google Scholar
Waikar, S. S., Curhan, G. C., Wald, R., McCarthy, E. P. & Chertow, G. M. Declining mortality in patients with acute renal failure, 1988 to 2002. J. Am. Soc. Nephrol.17, 1143–1150 (2006). PubMed Google Scholar
Kolhe, N. V., Muirhead, A. W., Wilkes, S. R., Fluck, R. J. & Taal, M. W. The epidemiology of hospitalised acute kidney injury not requiring dialysis in England from 1998 to 2013: retrospective analysis of hospital episode statistics. Int. J. Clin. Practice70, 330–339 (2016). CAS Google Scholar
Martensson, J. & Bellomo, R. Sepsis-induced acute kidney injury. Crit. Care Clin.31, 649–660 (2015). PubMed Google Scholar
Rossaint, J. & Zarbock, A. Acute kidney injury: definition, diagnosis and epidemiology. Minerva Urol. Nefrol.68, 49–57 (2015). PubMed Google Scholar
Damman, K. et al. Renal impairment, worsening renal function, and outcome in patients with heart failure: an updated meta-analysis. Eur. Heart J.35, 455–469 (2014). PubMed Google Scholar
Davison, B. A. et al. Worsening heart failure following admission for acute heart failure: a pooled analysis of the PROTECT and RELAX-AHF Studies. JACC Heart Fail.3, 395–403 (2015). PubMed Google Scholar
Grams, M. E. & Rabb, H. The distant organ effects of acute kidney injury. Kidney Int.81, 942–948 (2012). PubMed Google Scholar
Metra, M. et al. Is worsening renal function an ominous prognostic sign in patients with acute heart failure? The role of congestion and its interaction with renal function. Circul. Heart Fail.5, 54–62 (2012). Google Scholar
Whitman, I. R., Feldman, H. I. & Deo, R. CKD and sudden cardiac death: epidemiology, mechanisms, and therapeutic approaches. J. Am. Soc. Nephrol.23, 1929–1939 (2012). CASPubMedPubMed Central Google Scholar
Ronco, C., Haapio, M., House, A. A., Anavekar, N. & Bellomo, R. Cardio-renal syndrome. J. Am. College Cardiol.52, 1527–1539 (2008). Google Scholar
McCullough, P. A. et al. Pathophysiology of the cardio-renal syndromes: executive summary from the eleventh consensus conference of the Acute Dialysis Quality Initiative (ADQI). Contrib. Nephrol.182, 82–98 (2013). PubMed Google Scholar
Hadjiphilippou, S. & Kon, S. P. Cardio-renal syndrome: review of our current understanding. J. R. Soc. Med.109, 12–17 (2016). PubMedPubMed Central Google Scholar
Tsuruya, K. & Eriguchi, M. Cardio-renal syndrome in chronic kidney disease. Curr. Opin. Nephrol. Hypertension24, 154–162 (2015). CAS Google Scholar
Mall, G., Huther, W., Schneider, J., Lundin, P. & Ritz, E. Diffuse intermyocardiocytic fibrosis in uraemic patients. Nephrol. Dial. Transplant.5, 39–44 (1990). CASPubMed Google Scholar
Wali, R. K. et al. Effect of kidney transplantation on left ventricular systolic dysfunction and congestive heart failure in patients with end-stage renal disease. J. Am. College Cardiol.45, 1051–1060 (2005). Google Scholar
Bock, J. S. & Gottlieb, S. S. Cardio-renal syndrome: new perspectives. Circulation121, 2592–2600 (2010). PubMed Google Scholar
Waldum, B. & Os, I. The cardio-renal syndrome: what the cardiologist needs to know. Cardiology126, 175–186 (2013). PubMed Google Scholar
Graziani, G. et al. Renal dysfunction in acute congestive heart failure: a common problem for cardiologists and nephrologists. Heart Fail. Rev.19, 699–708 (2014). CASPubMed Google Scholar
Carlstrom, M., Wilcox, C. S. & Arendshorst, W. J. Renal autoregulation in health and disease. Physiol. Rev.95, 405–511 (2015). CASPubMedPubMed Central Google Scholar
Ljungman, S., Laragh, J. H. & Cody, R. J. Role of the kidney in congestive heart failure. Relationship of cardiac index to kidney function. Drugs39 (Suppl. 4), 10–21 (1990). PubMed Google Scholar
Singh, D. K., Winocour, P. & Farrington, K. Mechanisms of disease: the hypoxic tubular hypothesis of diabetic nephropathy. Nat. Clin. Practice Nephrol.4, 216–226 (2008). CAS Google Scholar
Manotham, K. et al. Transdifferentiation of cultured tubular cells induced by hypoxia. Kidney Int.65, 871–880 (2004). PubMed Google Scholar
Norman, J. T., Clark, I. M. & Garcia, P. L. Hypoxia promotes fibrogenesis in human renal fibroblasts. Kidney Int.58, 2351–2366 (2000). CASPubMed Google Scholar
Heywood, J. T. et al. High prevalence of renal dysfunction and its impact on outcome in 118,465 patients hospitalized with acute decompensated heart failure: a report from the ADHERE database. J. Cardiac Fail.13, 422–430 (2007). Google Scholar
Nohria, A. et al. Cardio-renal interactions: insights from the ESCAPE trial. J. Am. College Cardiol.51, 1268–1274 (2008). Google Scholar
Mullens, W. et al. Importance of venous congestion for worsening of renal function in advanced decompensated heart failure. J. Am. College Cardiol.53, 589–596 (2009). Google Scholar
Drazner, M. H., Rame, J. E., Stevenson, L. W. & Dries, D. L. Prognostic importance of elevated jugular venous pressure and a third heart sound in patients with heart failure. New Engl. J. Med.345, 574–581 (2001). CASPubMed Google Scholar
Maeder, M. T., Holst, D. P. & Kaye, D. M. Tricuspid regurgitation contributes to renal dysfunction in patients with heart failure. J. Cardiac Fail.14, 824–830 (2008). Google Scholar
Mullens, W. et al. Elevated intra-abdominal pressure in acute decompensated heart failure: a potential contributor to worsening renal function? J. Am. College Cardiol.51, 300–306 (2008). Google Scholar
Chen, K. P. et al. Peripheral edema, central venous pressure, and risk of AKI in critical illness. Clin. J. Am. Soc. Nephrol.11, 602–608 (2016). CASPubMedPubMed Central Google Scholar
Damman, K. et al. Increased central venous pressure is associated with impaired renal function and mortality in a broad spectrum of patients with cardiovascular disease. J. Am. College Cardiol.53, 582–588 (2009). Google Scholar
Guyton, A. C. Determination of cardiac output by equating venous return curves with cardiac response curves. Physiol. Rev.35, 123–129 (1955). CASPubMed Google Scholar
Uemura, K. et al. A novel framework of circulatory equilibrium. Am. J. Physiol. Heart Circulatory Physiol.286, H2376–2385 (2004). CAS Google Scholar
Magder, S. Point: the classical Guyton view that mean systemic pressure, right atrial pressure, and venous resistance govern venous return is/is not correct. J. Appl. Physiol.101, 1523–1525 (2006). CASPubMed Google Scholar
Gottschalk, C. W. & Mylle, M. Micropuncture study of pressures in proximal tubules and peritubular capillaries of the rat kidney and their relation to ureteral and renal venous pressures. Am. J. Physiol.185, 430–439 (1956). CASPubMed Google Scholar
Doty, J. M. et al. Effect of increased renal venous pressure on renal function. J. Trauma47, 1000–1003 (1999). CASPubMed Google Scholar
Braam, B., Joles, J. A., Danishwar, A. H. & Gaillard, C. A. Cardio-renal syndrome — current understanding and future perspectives. Nat. Rev. Nephrol.10, 48–55 (2014). CASPubMed Google Scholar
Ronco, C. et al. Cardio-renal syndromes: report from the consensus conference of the acute dialysis quality initiative. Eur. Heart J.31, 703–711 (2010). PubMed Google Scholar
Damman, K., Voors, A. A., Navis, G., van Veldhuisen, D. J. & Hillege, H. L. The cardio-renal syndrome in heart failure. Prog. Cardiovasc. Dis.54, 144–153 (2011). PubMed Google Scholar
Afsar, B. et al. Focus on renal congestion in heart failure. Clin. Kidney J.9, 39–47 (2016). CASPubMed Google Scholar
Erly, B. et al. Hepatorenal syndrome: a review of pathophysiology and current treatment options. Semin. Intervent. Radiol.32, 445–454 (2015). PubMedPubMed Central Google Scholar
Verbrugge, F. H. et al. Abdominal contributions to cardio-renal dysfunction in congestive heart failure. J. Am. College Cardiol.62, 485–495 (2013). Google Scholar
Volpe, M., Carnovali, M. & Mastromarino, V. The natriuretic peptides system in the pathophysiology of heart failure: from molecular basis to treatment. Clin. Sci.130, 57–77 (2016). CASPubMed Google Scholar
Ruiz-Ortega, M. et al. Angiotensin II regulates the synthesis of proinflammatory cytokines and chemokines in the kidney. Kidney Int. Suppl.82, S12–S22 (2002). CAS Google Scholar
Sharma, U. C. et al. Galectin-3 marks activated macrophages in failure-prone hypertrophied hearts and contributes to cardiac dysfunction. Circulation110, 3121–3128 (2004). CASPubMed Google Scholar
de Boer, R. A. et al. Galectin-3 in heart failure with preserved ejection fraction. Eur. J. Heart Fail.15, 1095–1101 (2013). CASPubMed Google Scholar
AbouEzzeddine, O.F. et al. Galectin-3 in heart failure with preserved ejection fraction. A RELAX trial substudy (phosphodiesterase-5 inhibition to improve clinical status and exercise capacity in diastolic heart failure). JACC Heart Fail.3, 245–252 (2015). PubMedPubMed Central Google Scholar
Shenker, Y., Sider, R. S., Ostafin, E. A. & Grekin, R. J. Plasma levels of immunoreactive atrial natriuretic factor in healthy subjects and in patients with edema. J. Clin. Invest.76, 1684–1687 (1985). CASPubMedPubMed Central Google Scholar
Trimarco, B. et al. Blunted sympathetic response to cardiopulmonary receptor unloading in hypertensive patients with left ventricular hypertrophy. A possible compensatory role of atrial natriuretic factor. Circulation80, 883–892 (1989). CASPubMed Google Scholar
Volpe, M. et al. Carotid baroreceptor unloading decreases plasma atrial natriuretic factor in hypertensive patients. J. Hypertension4, S519–S522 (1986). CAS Google Scholar
von Haehling, S. et al. Comparison of midregional pro-atrial natriuretic peptide with N-terminal pro-B-type natriuretic peptide in predicting survival in patients with chronic heart failure. J. Am. College Cardiol.50, 1973–1980 (2007). CAS Google Scholar
Gegenhuber, A. et al. Midregional pro-A-type natriuretic peptide measurements for diagnosis of acute destabilized heart failure in short-of-breath patients: comparison with B-type natriuretic peptide (BNP) and amino-terminal proBNP. Clin. Chem.52, 827–831 (2006). CASPubMed Google Scholar
Moertl, D. et al. Comparison of midregional pro-atrial and B-type natriuretic peptides in chronic heart failure: influencing factors, detection of left ventricular systolic dysfunction, and prediction of death. J. Am. College Cardiol.53, 1783–1790 (2009). CAS Google Scholar
Voors, A. A. et al. C-terminal provasopressin (copeptin) is a strong prognostic marker in patients with heart failure after an acute myocardial infarction: results from the OPTIMAAL study. Eur. Heart J.30, 1187–1194 (2009). CASPubMed Google Scholar
Farmakis, D., Filippatos, G., Kremastinos, D. T. & Gheorghiade, M. Vasopressin and vasopressin antagonists in heart failure and hyponatremia. Curr. Heart Fail. Rep.5, 91–96 (2008). CASPubMed Google Scholar
Grassi, G. et al. Early sympathetic activation in the initial clinical stages of chronic renal failure. Hypertension57, 846–851 (2011). CASPubMed Google Scholar
Zoccali, C. et al. Plasma norepinephrine predicts survival and incident cardiovascular events in patients with end-stage renal disease. Circulation105, 1354–1359 (2002). CASPubMed Google Scholar
Dibona, G. F., Jones, S. Y. & Sawin, L. L. Reflex influences on renal nerve activity characteristics in nephrosis and heart failure. J. Am. Soc. Nephrol.8, 1232–1239 (1997). CASPubMed Google Scholar
DiBona, G. F. & Kopp, U. C. Neural control of renal function. Physiol. Rev.77, 75–197 (1997). CASPubMed Google Scholar
Ramchandra, R. & Barrett, C. J. Regulation of the renal sympathetic nerves in heart failure. Frontiers Physiol.6, 238 (2015). Google Scholar
Krum, H. et al. Catheter-based renal sympathetic denervation for resistant hypertension: a multicentre safety and proof-of-principle cohort study. Lancet373, 1275–1281 (2009). PubMed Google Scholar
Schepers, E. et al. Symmetric dimethylarginine as a proinflammatory agent in chronic kidney disease. Clin. J. Am. Soc. Nephrol.6, 2374–2383 (2011). CASPubMedPubMed Central Google Scholar
Bongartz, L. G. et al. Transient nitric oxide reduction induces permanent cardiac systolic dysfunction and worsens kidney damage in rats with chronic kidney disease. Am. J. Physiol. Regul. Integr. Comp. Physiol.298, R815–R823 (2010). CASPubMed Google Scholar
Bongartz, L. G. et al. Subtotal nephrectomy plus coronary ligation leads to more pronounced damage in both organs than either nephrectomy or coronary ligation. Am. J. Physiol. Heart Circulatory Physiol.302, H845–H854 CASPubMed Google Scholar
Voors, A. A. et al. Effects of the adenosine A1 receptor antagonist rolofylline on renal function in patients with acute heart failure and renal dysfunction: results from PROTECT (Placebo-Controlled Randomized Study of the selective adenosine A1 receptor antagonist rolofylline for patients hospitalized with acute decompensated heart failure and volume overload to assess treatment effect on congestion and renal function). J. Am. College Cardiol.57, 1899–1907 (2011). CAS Google Scholar
Kato, S. et al. Aspects of immune dysfunction in end-stage renal disease. Clin. J. Am. Soc. Nephrol.3, 1526–1533 (2008). PubMedPubMed Central Google Scholar
Machowska, A., Carrero, J. J., Lindholm, B. & Stenvinkel, P. Therapeutics targeting persistent inflammation in chronic kidney disease. Translat. Res.167, 204–213 (2016). CAS Google Scholar
von Haehling, S. et al. Leukocyte redistribution: effects of beta blockers in patients with chronic heart failure. PLoS ONE4, e6411 (2009). PubMedPubMed Central Google Scholar
Stenvinkel, P., Heimburger, O., Lindholm, B., Kaysen, G.A. & Bergstrom, J. Are there two types of malnutrition in chronic renal failure? Evidence for relationships between malnutrition, inflammation and atherosclerosis (MIA syndrome). Nephrol. Dial. Transplant.15, 953–960 (2000). CASPubMed Google Scholar
Silverberg, D. S., Wexler, D., Blum, M. & Iaina, A. The cardio renal anemia syndrome: correcting anemia in patients with resistant congestive heart failure can improve both cardiac and renal function and reduce hospitalizations. Clin. Nephrol.60 (Suppl. 1), S93–S102 (2003). PubMed Google Scholar
Silverberg, D. S. et al. The effect of correction of anaemia in diabetics and non-diabetics with severe resistant congestive heart failure and chronic renal failure by subcutaneous erythropoietin and intravenous iron. Nephrol. Dial. Transplant.18, 141–146 (2003). CASPubMed Google Scholar
Kidney disease: improving global outcomes (KDIGO) CKD-MBD Work Group. KDIGO clinical practice guideline for the diagnosis, evaluation, prevention, and treatment of Chronic Kidney Disease-Mineral and Bone Disorder (CKD-MBD). Kidney Int.113, S1–S130 (2009).
Mangner, N. et al. Skeletal muscle alterations in chronic heart failure: differential effects on quadriceps and diaphragm. J. Cachexia Sarcopenia Muscle6, 381–390 (2015). PubMedPubMed Central Google Scholar
Josiak, K., Jankowska, E. A., Piepoli, M. F., Banasiak, W. & Ponikowski, P. Skeletal myopathy in patients with chronic heart failure: significance of anabolic-androgenic hormones. J. Cachexia, Sarcopenia Muscle5, 287–296 (2014). Google Scholar
von Haehling, S., Schefold, J. C., Lainscak, M., Doehner, W. & Anker, S. D. Inflammatory biomarkers in heart failure revisited: much more than innocent bystanders. Heart Fail. Clin.5, 549–560 (2009). PubMed Google Scholar
Colombo, P. C. et al. Inflammatory activation: cardiac, renal, and cardio-renal interactions in patients with the cardio-renal syndrome. Heart Fail. Rev.17, 177–190 (2012). CASPubMed Google Scholar
Stenvinkel, P. & Larsson, T. E. Chronic kidney disease. a clinical model of premature aging. Am. J. Kidney Diseases62, 339–351 (2013). Google Scholar
Kooman, J. P., Kotanko, P., Schols, A. M., Shiels, P. G. & Stenvinkel, P. Chronic kidney disease and premature ageing. Nat. Rev. Nephrol.10, 732–742 (2014). CASPubMed Google Scholar
Schefold, J. P. et al. Increased Indoleamine 2,3-Dioxygenase (IDO) activity and elevated serum levels of tryptophan catabolites in patients with chronic kidney disease: a possible link between chronic inflammation and uraemic symptoms. Nephrol. Dial. Transplant.24, 1901–1908 (2009). CASPubMed Google Scholar
Kitai, T., Kirsop, J. & Tang, W. H. Exploring the Microbiome in Heart Failure. Curr. Heart Fail. Rep.13, 103–109 (2016). CASPubMedPubMed Central Google Scholar
Barreto, D. V. et al. Plasma interleukin-6 is independently associated with mortality in both hemodialysis and pre-dialysis patients with chronic kidney disease. Kidney Int.77, 550–556 (2010). CASPubMed Google Scholar
Ismahil, M. A. et al. Remodeling of the mononuclear phagocyte network underlies chronic inflammation and disease progression in heart failure: critical importance of the cardiosplenic axis. Circul. Res.114, 266–282 (2014). CAS Google Scholar
Hoffmann, J. et al. Myocardial ischemia and reperfusion leads to transient CD8 immune deficiency and accelerated immunosenescence in CMV-seropositive patients. Circul. Res.116, 87–98 (2015). CAS Google Scholar
von Haehling, S. The wasting continuum in heart failure: from sarcopenia to cachexia. Proc. Nutr. Soc.74, 367–377 (2015). PubMed Google Scholar
Ebner, N., Elsner, S., Springer, J. & von Haehling, S. Molecular mechanisms and treatment targets of muscle wasting and cachexia in heart failure: an overview. Curr. Opin. Supportive Palliative Care8, 15–24 (2014). PubMed Google Scholar
Ebner, N. et al. Mechanism and novel therapeutic approaches to wasting in chronic disease. Maturitas75, 199–206 (2013). CASPubMed Google Scholar
von Haehling, S., Lainscak, M., Springer, J. & Anker, S. D. Cardiac cachexia: a systematic overview. Pharmacol. Ther.121, 227–252 (2009). CASPubMed Google Scholar
von Haehling, S., Steinbeck, L., Doehner, W., Springer, J. & Anker, S. D. Muscle wasting in heart failure: an overview. Int. J. Biochem. Cell Biol.45, 2257–2265 (2013). CASPubMed Google Scholar
Pecoits-Filho, R., Lindholm, B. & Stenvinkel, P. The malnutrition, inflammation, and atherosclerosis (MIA) syndrome — the heart of the matter. Nephrol. Dial. Transpl.17 (Suppl. 11), 28–31 (2002). CAS Google Scholar
Griendling, K. K., Minieri, C. A., Ollerenshaw, J. D. & Alexander, R. W. Angiotensin II stimulates NADH and NADPH oxidase activity in cultured vascular smooth muscle cells. Circul. Res.74, 1141–1148 (1994). CAS Google Scholar
Heymes, C. et al. Increased myocardial NADPH oxidase activity in human heart failure. J. Am. College Cardiol.41, 2164–2171 (2003). CAS Google Scholar
Vaziri, N. D., Dicus, M., Ho, N. D., Boroujerdi-Rad, L. & Sindhu, R. K. Oxidative stress and dysregulation of superoxide dismutase and NADPH oxidase in renal insufficiency. Kidney Int.63, 179–185 (2003). CASPubMed Google Scholar
Munzel, T., Gori, T. & Keaney, J. F. Jr., Maack, C. & Daiber, A. Pathophysiological role of oxidative stress in systolic and diastolic heart failure and its therapeutic implications. Eur. Heart J.36, 2555–2564 (2015). PubMed Google Scholar
Ratcliffe, P. J. From erythropoietin to oxygen: hypoxia-inducible factor hydroxylases and the hypoxia signal pathway. Blood Purif.20, 445–450 (2002). CASPubMed Google Scholar
Pschowski, R. et al. Effects of dialysis modality on blood loss, bleeding complications and transfusion requirements in critically ill patients with dialysis-dependent acute renal failure. Anaesth. Intensive Care43, 764–770 (2015). CASPubMed Google Scholar
Lin, C. L. et al. Increased blood loss from access cannulation site during hemodialysis is associated with anemia and arteriovenous graft use. Ther. Apher. Dial.18, 51–56 (2014). CASPubMed Google Scholar
Groenveld, H. F. et al. Anemia and mortality in heart failure patients a systematic review and meta-analysis. J. Am. College Cardiol.52, 818–827 (2008). Google Scholar
Maggioni, A. P. et al. Anemia in patients with heart failure: prevalence and prognostic role in a controlled trial and in clinical practice. J. Cardiac Fail.11, 91–98 (2005). Google Scholar
Kawashiro, N. et al. Clinical characteristics and outcome of hospitalized patients with congestive heart failure: results of the HIJC-HF registry. Circul. J.72, 2015–2020 (2008). Google Scholar
Young, J. B. et al. Relation of low hemoglobin and anemia to morbidity and mortality in patients hospitalized with heart failure (insight from the OPTIMIZE-HF registry). Am. J. Cardiol.101, 223–230 (2008). CASPubMed Google Scholar
von Haehling, S. et al. Anaemia is an independent predictor of death in patients hospitalized for acute heart failure. Clin. Res. Cardiol.99, 107–113 (2010). PubMed Google Scholar
von Haehling, S. et al. Anaemia among patients with heart failure and preserved or reduced ejection fraction: results from the SENIORS study. Eur. J. Heart Fail.13, 656–663 (2011). PubMed Google Scholar
van der Meer, P., Groenveld, H. F. & Januzzi, J. L. Jr., van Veldhuisen, D. J. Erythropoietin treatment in patients with chronic heart failure: a meta-analysis. Heart95, 1309–1314 (2009). CASPubMed Google Scholar
Anker, S. D. et al. Ferric carboxymaltose in patients with heart failure and iron deficiency. New Engl. J. Med.361, 2436–2448 (2009). CASPubMed Google Scholar
Ponikowski, P. et al. Beneficial effects of long-term intravenous iron therapy with ferric carboxymaltose in patients with symptomatic heart failure and iron deficiencydagger. Eur. Heart J.36, 657–668 (2015). CASPubMed Google Scholar
von Haehling, S., Jankowska, E. A., van Veldhuisen, D. J., Ponikowski, P. & Anker, S. D. Iron deficiency and cardiovascular disease. Nat. Rev. Cardiol.12, 659–669 (2015). CASPubMed Google Scholar
Levin, A. et al. Left ventricular mass index increase in early renal disease: impact of decline in hemoglobin. Am. J. Kidney Dis.34, 125–134 (1999). CASPubMed Google Scholar
Calvillo, L. et al. Recombinant human erythropoietin protects the myocardium from ischemia-reperfusion injury and promotes beneficial remodeling. Proc. Natl Acad. Sci. USA100, 4802–4806 (2003). CASPubMed Google Scholar
Charytan, D. M., Fishbane, S., Malyszko, J., McCullough, P. A. & Goldsmith, D. Cardio-renal syndrome and the role of the bone-mineral axis and anemia. Am. J. Kidney Dis.66, 196–205 (2015). PubMedPubMed Central Google Scholar
Kovesdy, C. P. & Quarles, L. D. The role of fibroblast growth factor-23 in cardio-renal syndrome. Nephron Clin. Pract.123, 194–201 (2013). CASPubMedPubMed Central Google Scholar
Achinger, S. G. & Ayus, J. C. Left ventricular hypertrophy: is hyperphosphatemia among dialysis patients a risk factor? J. Am. Soc. Nephrol.17 S255–S261 (2006). CASPubMed Google Scholar
Fujii, H., Kim, J. I., Abe, T., Umezu, M. & Fukagawa, M. Relationship between parathyroid hormone and cardiac abnormalities in chronic dialysis patients. Internal Med.46, 1507–1512 (2007). Google Scholar
Scialla, J. J. & Wolf, M. Roles of phosphate and fibroblast growth factor 23 in cardiovascular disease. Nat. Rev. Nephrol.10, 268–278 (2014). CASPubMed Google Scholar
Rozentryt, P. et al. Higher serum phosphorus is associated with catabolic/anabolic imbalance in heart failure. J. Cachexia Sarcopenia Muscle6, 325–334 (2015). PubMedPubMed Central Google Scholar
Moe, S. M. et al. Cinacalcet, Fibroblast growth factor-23, and cardiovascular disease in hemodialysis: the Evaluation of Cinacalcet HCl Therapy to Lower Cardiovascular Events (EVOLVE) trial. Circulation132, 27–39 (2015). CASPubMed Google Scholar
Wang, A. Y. et al. Serum 25-hydroxyvitamin D status and cardiovascular outcomes in chronic peritoneal dialysis patients: a 3-y prospective cohort study. Am. J. Clin. Nutr.87, 1631–1638 (2008). CASPubMed Google Scholar
Panizo, S. et al. Vitamin D receptor activation, left ventricular hypertrophy and myocardial fibrosis. Nephrol. Dial. Transplant.28, 2735–2744 (2013). CASPubMed Google Scholar
de Zeeuw, D. et al. Selective vitamin D receptor activation with paricalcitol for reduction of albuminuria in patients with type 2 diabetes (VITAL study): a randomised controlled trial. Lancet376, 1543–1551 (2010). CASPubMed Google Scholar
Thadhani, R. et al. Vitamin D therapy and cardiac structure and function in patients with chronic kidney disease: the PRIMO randomized controlled trial. JAMA307, 674–684 (2012). CASPubMed Google Scholar
Garg, N. et al. Cardiac resynchronization therapy in CKD: a systematic review. Clin. J. Am. Soc. Nephrol.8, 1293–1303 (2013). PubMedPubMed Central Google Scholar
Kidney disease: improving global outcomes (KDIGO) CKD-MBD Work Group. KDIGO clinical practice guideline for anemia in chronic kidney disease. Kidney Int.2, 9–335 (2012).
Gastelurrutia, P. et al. Body mass index, body fat, and nutritional status of patients with heart failure: The PLICA study. Clin. Nutr.34, 1233–1238 (2015). PubMed Google Scholar
Khalid, U. et al. Pre-morbid body mass index and mortality after incident heart failure: the ARIC study. J. Am. College Cardiol.64, 2743–2749 (2014). Google Scholar
Rozentryt, P. et al. The effects of a high-caloric protein-rich oral nutritional supplement in patients with chronic heart failure and cachexia on quality of life, body composition, and inflammation markers: a randomized, double-blind pilot study. J. Cachexia Sarcopenia Muscle1, 35–42 (2010). PubMedPubMed Central Google Scholar
Witte, K. K. et al. The effect of micronutrient supplementation on quality-of-life and left ventricular function in elderly patients with chronic heart failure. Eur. Heart J.26, 2238–2244 (2005). CASPubMed Google Scholar
Valentova, M. et al. Intestinal congestion and right ventricular dysfunction: a link with appetite loss, inflammation, and cachexia in chronic heart failure. Eur. Heart J.37, 1684–1691 (2016). PubMed Google Scholar
[No authors listed] Retraction. Low sodium versus normal sodium diets in systolic heart failure: systematic review and meta-analysis. Heart99, 820 (2013).
DiNicolantonio, J. J., Di Pasquale, P., Taylor, R. S. & Hackam, D. G. Low sodium versus normal sodium diets in systolic heart failure: systematic review and meta-analysis. Hearthttp://dx.doi.org/10.1136/heartjnl-2012-302337 (2013).
Kidney disease: improving global outcomes (KDIGO) Blood Pressure Work Group. KDIGO clinical practice guideline for the management of blood pressure in chronic kidney disease. Kidney Int.2, 337–414 (2012).
McMurray, J. J. et al. Angiotensin-neprilysin inhibition versus enalapril in heart failure. New Engl. J. Med.371, 993–1004 (2014). PubMed Google Scholar
Eshaghian, S., Horwich, T. B. & Fonarow, G. C. Relation of loop diuretic dose to mortality in advanced heart failure. Am. J. Cardiol.97, 1759–1764 (2006). CASPubMed Google Scholar
ter Maaten, J. M. et al. Diuretic response in acute heart failure-pathophysiology, evaluation, and therapy. Nat. Rev. Cardiol.12, 184–192 (2015). CASPubMed Google Scholar
Costanzo, M. R., Fonarow, G. C. & Filippatos, G. S. Ultrafiltration in heart failure with cardio-renal syndrome. New Engl. J. Med.368, 1158–1159 (2013). PubMed Google Scholar
Lala, A. et al. Relief and recurrence of congestion during and after hospitalization for acute heart failure: insights from diuretic optimization strategy evaluation in acute decompensated heart failure (DOSE-AHF) and cardio-renal rescue study in acute decompensated heart failure (CARESS-HF). Circul. Heart Fail.8, 741–748 (2015). Google Scholar
Yancy, C. W. et al. 2013 ACCF/AHA guideline for the management of heart failure: executive summary: a report of the American College of Cardiology Foundation/American Heart Association Task Force on practice guidelines. Circulation128, 1810–1852 (2013). PubMed Google Scholar
Lins, R. L. et al. Intermittent versus continuous renal replacement therapy for acute kidney injury patients admitted to the intensive care unit: results of a randomized clinical trial. Nephrol. Dial. Transplant.24, 512–518 (2009). PubMed Google Scholar
Schefold, J.C. et al. The effect of continuous versus intermittent renal replacement therapy on the outcome of critically ill patients with acute renal failure (CONVINT): a prospective randomized controlled trial. Crit. Care18, R11 (2014). PubMedPubMed Central Google Scholar
Vinsonneau, C. et al. Continuous venovenous haemodiafiltration versus intermittent haemodialysis for acute renal failure in patients with multiple-organ dysfunction syndrome: a multicentre randomised trial. Lancet368, 379–385 (2006). PubMed Google Scholar
Zarbock, A. et al. Randomized Clinical Trial. JAMA20, 2190–2199 (2016). Google Scholar
Seabra, V. F. et al. Timing of renal replacement therapy initiation in acute renal failure: a meta-analysis. Am. J. Kidney Dis.52, 272–284 (2008). PubMed Google Scholar
Kellum, J. A. & Ronco, C. Dialysis: results of RENAL — what is the optimal CRRT target dose? Nat. Rev. Nephrol.6, 191–192 (2010). PubMed Google Scholar
Kidney disease: improving global outcomes (KDIGO). KDIGO clinical practice guideline for acute kidney injury. Kidney Int.2, 1–138 (2012).
Lin, T. E., Adams, K. F. Jr. & Patterson, J.H. Potential roles of vaptans in heart failure: experience from clinical trials and considerations for optimizing therapy in target patients. Heart Fail. Clin.10, 607–620 (2014). PubMed Google Scholar
Lehrich, R. W., Ortiz-Melo, D. I., Patel, M. B. & Greenberg, A. Role of vaptans in the management of hyponatremia. Am. J. Kidney Dis.62, 364–376 (2013). CASPubMed Google Scholar
Konstam, M. A. et al. Effects of oral tolvaptan in patients hospitalized for worsening heart failure: the EVEREST outcome trial. JAMA297, 1319–1331 (2007). CASPubMed Google Scholar
Morooka, H. et al. Chronic administration of oral vasopressin type 2 receptor antagonist tolvaptan exerts both myocardial and renal protective effects in rats with hypertensive heart failure. Circul. Heart Fail.5, 484–492 (2012). CAS Google Scholar
Cannella, G. et al. Prolonged therapy with ACE inhibitors induces a regression of left ventricular hypertrophy of dialyzed uremic patients independently from hypotensive effects. Am. J. Kidney Dis.30, 659–664 (1997). CASPubMed Google Scholar
O'Connor, C. M. et al. Effect of nesiritide in patients with acute decompensated heart failure. New Engl. J. Med.365, 32–43 (2011). CASPubMed Google Scholar
van Deursen, V. M. et al. Nesiritide, renal function, and associated outcomes during hospitalization for acute decompensated heart failure: results from the Acute Study of Clinical Effectiveness of Nesiritide and Decompensated Heart Failure (ASCEND-HF). Circulation130, 958–965 (2014). CASPubMed Google Scholar
Singh, A., Laribi, S., Teerlink, J. R. & Mebazaa, A. Agents with vasodilator properties in acute heart failure. Eur. Heart J.http://dx.doi.org/10.1093/eurheartj/ehv755 (2013).
Teerlink, J. R. et al. Serelaxin, recombinant human relaxin-2, for treatment of acute heart failure (RELAX-AHF): a randomised, placebo-controlled trial. Lancet381, 29–39 (2013). CASPubMed Google Scholar
Metra, M. et al. Effect of serelaxin on cardiac, renal, and hepatic biomarkers in the Relaxin in Acute Heart Failure (RELAX-AHF) development program: correlation with outcomes. J. Am. College Cardiol.61, 196–206 (2013). CAS Google Scholar
Nimmo, A. J., Than, N., Orchard, C. H. & Whitaker, E. M. The effect of acidosis on β-adrenergic receptors in ferret cardiac muscle. Exp. Physiol.78, 95–103 (1993). CASPubMed Google Scholar
Ponikowski, P. et al. 2016 ESC Guidelines for the diagnosis and treatment of acute and chronic heart failure: The Task Force for the diagnosis and treatment of acute and chronic heart failure of the European Society of Cardiology (ESC). Developed with the special contribution of the Heart Failure Association (HFA) of the ESC. Eur. Heart J.27, 2129–200 (2016). Google Scholar