Role of proinflammatory cytokines in the pathophysiology of osteoarthritis (original) (raw)
Felson, D. T. Clinical practice. Osteoarthritis of the knee. N. Engl. J. Med.354, 841–848 (2006). ArticleCASPubMed Google Scholar
Ayral, X., Pickering, E. H., Woodworth, T. G., Mackillop, N. & Dougados, M. Synovitis: a potential predictive factor of structural progression of medial tibiofemoral knee osteoarthritis—results of a 1 year longitudinal arthroscopic study in 422 patients. Osteoarthritis Cartilage13, 361–367 (2005). ArticleCASPubMed Google Scholar
Pozgan, U. et al. Expression and activity profiling of selected cysteine cathepsins and matrix metalloproteinases in synovial fluids from patients with rheumatoid arthritis and osteoarthritis. Biol. Chem.391, 571–579 (2010). ArticleCASPubMed Google Scholar
Martel-Pelletier, J., Lajeunesse, D. & Pelletier, J. P. in Arthritis and Allied Conditions. A Textbook of Rheumatology 15th edn (eds Koopman, W. J. & Moreland, L. W.) 2199–2226 (Lippincott Williams & Wilkins, Baltimore, USA, 2005). Google Scholar
Page Thomas, D. P., King, B., Stephens, T. & Dingle, J. T. In vivo studies of cartilage regeneration after damage induced by catabolin/interleukin-1. Ann. Rheum. Dis.50, 75–80 (1991). ArticleCASPubMedPubMed Central Google Scholar
Henderson, B. & Pettipher, E. R. Arthritogenic actions of recombinant IL-1 and tumour necrosis factor α in the rabbit: evidence for synergistic interactions between cytokines in vivo. Clin. Exp. Immunol.75, 306–310 (1989). CASPubMedPubMed Central Google Scholar
Clements, K. M. et al. Gene deletion of either interleukin-1β, interleukin-1β-converting enzyme, inducible nitric oxide synthase, or stromelysin 1 accelerates the development of knee osteoarthritis in mice after surgical transection of the medial collateral ligament and partial medial meniscectomy. Arthritis Rheum.48, 3452–3463 (2003). ArticleCASPubMed Google Scholar
Martel-Pelletier, J. et al. The interleukin-1 receptor in normal and osteoarthritic human articular chondrocytes. Identification as the type I receptor and analysis of binding kinetics and biologic function. Arthritis Rheum.35, 530–540 (1992). ArticleCASPubMed Google Scholar
Sadouk, M. B. et al. Human synovial fibroblasts coexpress IL-1 receptor type I and type II mRNA. The increased level of the IL-1 receptor in osteoarthritic cells is related to an increased level of the type I receptor. Lab. Invest.73, 347–355 (1995). CASPubMed Google Scholar
Colotta, F., Dower, S. K., Sims, J. E. & Mantovani, A. The type II 'decoy' receptor: a novel regulatory pathway for interleukin 1. Immunol. Today15, 562–566 (1994). ArticleCASPubMed Google Scholar
Seitz, M. et al. Production of interleukin-1 receptor antagonist, inflammatory chemotactic proteins, and prostaglandin E by rheumatoid and osteoarthritic synoviocytes—regulation by IFN-γ and IL-4. J. Immunol.152, 2060–2065 (1994). CASPubMed Google Scholar
Alaaeddine, N. et al. Osteoarthritic synovial fibroblasts possess an increased level of tumor necrosis factor-receptor 55 (TNF-R55) that mediates biological activation by TNFα. J. Rheumatol.24, 1985–1994 (1997). CASPubMed Google Scholar
Naume, B., Shalaby, R., Lesslauer, W. & Espevik, T. Involvement of the 55- and 75-kDa tumor necrosis factor receptors in the generation of lymphokine-activated killer cell activity and proliferation of natural killer cells. J. Immunol.146, 3045–3048 (1991). CASPubMed Google Scholar
Hohmann, H. P. et al. Expression of the types A and B tumor necrosis factor (TNF) receptors is independently regulated, and both receptors mediate activation of the transcription factor NF-κB. TNFα is not needed for induction of a biological effect via TNF receptors. J. Biol. Chem.265, 22409–22417 (1990). CASPubMed Google Scholar
Westacott, C. I., Atkins, R. M., Dieppe, P. A. & Elson, C. J. Tumor necrosis factor α receptor expression on chondrocytes isolated from human articular cartilage. J. Rheumatol.21, 1710–1715 (1994). CASPubMed Google Scholar
Saklatvala, J. Tumour necrosis factor α stimulates resorption and inhibits synthesis of proteoglycan in cartilage. Nature322, 547–549 (1986). ArticleCASPubMedPubMed Central Google Scholar
Goldring, M. B., Fukuo, K., Birkhead, J. R., Dudek, E. & Sandell, L. J. Transcriptional suppression by interleukin-1 and interferon-γ of type II collagen gene expression in human chondrocytes. J. Cell. Biochem.54, 85–99 (1994). ArticleCASPubMed Google Scholar
Chadjichristos, C. et al. Sp1 and Sp3 transcription factors mediate interleukin-1β down-regulation of human type II collagen gene expression in articular chondrocytes. J. Biol. Chem.278, 39762–39772 (2003). ArticleCASPubMed Google Scholar
Shakibaei, M., Schulze-Tanzil, G., John, T. & Mobasheri, A. Curcumin protects human chondrocytes from IL-l1β -induced inhibition of collagen type II and β1-integrin expression and activation of caspase-3: an immunomorphological study. Ann. Anat.187, 487–497 (2005). ArticleCASPubMed Google Scholar
Stöve, J., Huch, K., Günther, K. P. & Scharf, H. P. Interleukin-1β induces different gene expression of stromelysin, aggrecan and tumor-necrosis-factor-stimulated gene 6 in human osteoarthritic chondrocytes in vitro. Pathobiology68, 144–149 (2000). ArticlePubMed Google Scholar
Nietfeld, J. J., Wilbrink, B., Den Otter, W., Huber, J. & Huber-Bruning, O. The effect of human interleukin 1 on proteoglycan metabolism in human and porcine cartilage explants. J. Rheumatol.17, 818–826 (1990). CASPubMed Google Scholar
Gouze, J. N. et al. Interleukin-1β down-regulates the expression of glucuronosyltransferase I, a key enzyme priming glycosaminoglycan biosynthesis: influence of glucosamine on interleukin-1β-mediated effects in rat chondrocytes. Arthritis Rheum.44, 351–360 (2001). ArticleCASPubMed Google Scholar
Séguin, C. A. & Bernier, S. M. TNFα suppresses link protein and type II collagen expression in chondrocytes: Role of MEK1/2 and NF-κB signaling pathways. J. Cell. Physiol.197, 356–369 (2003). ArticleCASPubMed Google Scholar
Mengshol, J. A., Vincenti, M. P., Coon, C. I., Barchowsky, A. & Brinckerhoff, C. E. Interleukin-1 induction of collagenase 3 (matrix metalloproteinase 13) gene expression in chondrocytes requires p38, c-Jun N-terminal kinase, and nuclear factor κB: differential regulation of collagenase 1 and collagenase 3. Arthritis Rheum.43, 801–811 (2000). ArticleCASPubMed Google Scholar
Lefebvre, V., Peeters-Joris, C. & Vaes, G. Modulation by interleukin 1 and tumor necrosis factor α of production of collagenase, tissue inhibitor of metalloproteinases and collagen types in differentiated and dedifferentiated articular chondrocytes. Biochim. Biophys. Acta1052, 366–378 (1990). ArticleCASPubMed Google Scholar
Reboul, P., Pelletier, J. P., Tardif, G., Cloutier, J. M. & Martel-Pelletier, J. The new collagenase, collagenase-3, is expressed and synthesized by human chondrocytes but not by synoviocytes. A role in osteoarthritis. J. Clin. Invest.97, 2011–2019 (1996). ArticleCASPubMedPubMed Central Google Scholar
Glasson, S. S. et al. Characterization of and osteoarthritis susceptibility in ADAMTS-4-knockout mice. Arthritis Rheum.50, 2547–2558 (2004). ArticleCASPubMed Google Scholar
Glasson, S. S. et al. Deletion of active ADAMTS5 prevents cartilage degradation in a murine model of osteoarthritis. Nature434, 644–648 (2005). ArticleCASPubMed Google Scholar
Tortorella, M. D., Malfait, A. M., Deccico, C. & Arner, E. The role of ADAM-TS4 (aggrecanase-1) and ADAM-TS5 (aggrecanase-2) in a model of cartilage degradation. Osteoarthritis Cartilage9, 539–552 (2001). ArticleCASPubMed Google Scholar
Bondeson, J., Wainwright, S. D., Lauder, S., Amos, N. & Hughes, C. E. The role of synovial macrophages and macrophage-produced cytokines in driving aggrecanases, matrix metalloproteinases, and other destructive and inflammatory responses in osteoarthritis. Arthritis Res. Ther.8, R187 (2006). ArticleCASPubMedPubMed Central Google Scholar
Guerne, P. A., Carson, D. A. & Lotz, M. IL-6 production by human articular chondrocytes. Modulation of its synthesis by cytokines, growth factors, and hormones in vitro. J. Immunol.144, 499–505 (1990). CASPubMed Google Scholar
Lotz, M., Terkeltaub, R. & Villiger, P. M. Cartilage and joint inflammation. Regulation of IL-8 expression by human articular chondrocytes. J. Immunol.148, 466–473 (1992). CASPubMed Google Scholar
Villiger, P. M., Terkeltaub, R. & Lotz, M. Monocyte chemoattractant protein-1 (MCP-1) expression in human articular cartilage. Induction by peptide regulatory factors and differential effects of dexamethasone and retinoic acid. J. Clin. Invest.90, 488–496 (1992). ArticleCASPubMedPubMed Central Google Scholar
Alaaeddine, N., Olee, T., Hashimoto, S., Creighton-Achermann, L. & Lotz, M. Production of the chemokine RANTES by articular chondrocytes and role in cartilage degradation. Arthritis Rheum.44, 1633–1643 (2001). ArticleCASPubMed Google Scholar
Afonso, V., Champy, R., Mitrovic, D., Collin, P. & Lomri, A. Reactive oxygen species and superoxide dismutases: role in joint diseases. Joint Bone Spine74, 324–329 (2007). ArticleCASPubMed Google Scholar
Mathy-Hartert, M. et al. Interleukin-1β and interleukin-6 disturb the antioxidant enzyme system in bovine chondrocytes: a possible explanation for oxidative stress generation. Osteoarthritis Cartilage16, 756–763 (2008). ArticleCASPubMed Google Scholar
Scott, J. L. et al. Superoxide dismutase downregulation in osteoarthritis progression and end-stage disease. Ann. Rheum. Dis.69, 1502–1510 (2010). ArticleCASPubMed Google Scholar
Roman-Blas, J. A. & Jimenez, S. A. NF-κB as a potential therapeutic target in osteoarthritis and rheumatoid arthritis. Osteoarthritis Cartilage14, 839–848 (2006). ArticleCASPubMed Google Scholar
Chen, L. X. et al. Suppression of early experimental osteoarthritis by in vivo delivery of the adenoviral vector-mediated NF-κBp65-specific siRNA. Osteoarthritis Cartilage16, 174–184 (2008). ArticleCASPubMed Google Scholar
Blom, A. B. et al. Involvement of the Wnt signaling pathway in experimental and human osteoarthritis: prominent role of Wnt-induced signaling protein 1. Arthritis Rheum.60, 501–512 (2009). ArticleCASPubMed Google Scholar
Yuasa, T., Otani, T., Koike, T., Iwamoto, M. & Enomoto-Iwamoto, M. Wnt/β-catenin signaling stimulates matrix catabolic genes and activity in articular chondrocytes: its possible role in joint degeneration. Lab. Invest.88, 264–274 (2008). ArticleCASPubMed Google Scholar
Lane, N. E., Nevitt, M. C., Lui, L. Y., de Leon, P. & Corr, M. Wnt signaling antagonists are potential prognostic biomarkers for the progression of radiographic hip osteoarthritis in elderly Caucasian women. Arthritis Rheum.56, 3319–3325 (2007). ArticleCASPubMed Google Scholar
Fahmi, H., Pelletier, J. P. & Martel-Pelletier, J. PPARg ligands as modulators of inflammatory and catabolic responses in arthritis. An overview. J. Rheumatol.29, 3–14 (2002). CASPubMed Google Scholar
Kobayashi, T. et al. Pioglitazone, a peroxisome proliferator-activated receptor γ agonist, reduces the progression of experimental osteoarthritis in guinea pigs. Arthritis Rheum.52, 479–487 (2005). ArticleCASPubMed Google Scholar
Boileau, C. et al. The peroxisome proliferator-activated receptor γ agonist pioglitazone reduces the development of cartilage lesions in an experimental dog model of osteoarthritis: in vivo protective effects mediated through the inhibition of key signaling and catabolic pathways. Arthritis Rheum.56, 2288–2298 (2007). ArticleCASPubMed Google Scholar
Kobayashi, M. et al. Role of interleukin-1 and tumor necrosis factor α in matrix degradation of human osteoarthritic cartilage. Arthritis Rheum.52, 128–135 (2005). ArticleCASPubMed Google Scholar
Caron, J. P. et al. Chondroprotective effect of intraarticular injections of interleukin-1 receptor antagonist in experimental osteoarthritis. Suppression of collagenase-1 expression. Arthritis Rheum.39, 1535–1544 (1996). ArticleCASPubMed Google Scholar
Pelletier, J. P. et al. In vivo suppression of early experimental osteoarthritis by interleukin-1 receptor antagonist using gene therapy. Arthritis Rheum.40, 1012–1019 (1997). ArticleCASPubMed Google Scholar
Fernandes, J. et al. In vivo transfer of interleukin-1 receptor antagonist gene in osteoarthritic rabbit knee joints: prevention of osteoarthritis progression. Am. J. Pathol.154, 1159–1169 (1999). ArticleCASPubMedPubMed Central Google Scholar
Zhang, X., Mao, Z. & Yu, C. Suppression of early experimental osteoarthritis by gene transfer of interleukin-1 receptor antagonist and interleukin-10. J. Orthop. Res.22, 742–750 (2004). ArticleCASPubMed Google Scholar
Frisbie, D. D., Ghivizzani, S. C., Robbins, P. D., Evans, C. H. & McIlwraith, C. W. Treatment of experimental equine osteoarthritis by in vivo delivery of the equine interleukin-1 receptor antagonist gene. Gene Ther.9, 12–20 (2002). ArticleCASPubMed Google Scholar
Chevalier, X. et al. Safety study of intraarticular injection of interleukin 1 receptor antagonist in patients with painful knee osteoarthritis: a multicenter study. J. Rheumatol.32, 1317–1323 (2005). CASPubMed Google Scholar
Chevalier, X. et al. Intraarticular injection of anakinra in osteoarthritis of the knee: a multicenter, randomized, double-blind, placebo-controlled study. Arthritis Rheum.61, 344–352 (2009). ArticleCASPubMed Google Scholar
Bacconnier, L., Jorgensen, C. & Fabre, S. Erosive osteoarthritis of the hand: clinical experience with anakinra. Ann. Rheum. Dis.68, 1078–1079 (2009). ArticleCASPubMed Google Scholar
Attur, M. G. et al. Functional genomic analysis of type II IL-1β decoy receptor: potential for gene therapy in human arthritis and inflammation. J. Immunol.168, 2001–2010 (2002). ArticleCASPubMed Google Scholar
Grunke, M. & Schulze-Koops, H. Successful treatment of inflammatory knee osteoarthritis with tumour necrosis factor blockade. Ann. Rheum. Dis.65, 555–556 (2006). ArticleCASPubMedPubMed Central Google Scholar
Fioravanti, A., Fabbroni, M., Cerase, A. & Galeazzi, M. Treatment of erosive osteoarthritis of the hands by intra-articular infliximab injections: a pilot study. Rheumatol. Int.29, 961–965 (2009). ArticleCASPubMed Google Scholar
Magnano, M. D. et al. A pilot study of tumor necrosis factor inhibition in erosive/inflammatory osteoarthritis of the hands. J. Rheumatol.34, 1323–1327 (2007). CASPubMed Google Scholar
Efficacy study of an anti-tumor necrosis factor (TNF)-α agent in patients with hand osteoarthritis (DORA). http://clinicaltrials.gov [online], (2010).
Skiles, J. W., Gonnella, N. C. & Jeng, A. Y. The design, structure, and clinical update of small molecular weight matrix metalloproteinase inhibitors. Curr. Med. Chem.11, 2911–2977 (2004). ArticleCASPubMed Google Scholar
Wojtowicz-Praga, S. et al. Phase I trial of Marimastat, a novel matrix metalloproteinase inhibitor, administered orally to patients with advanced lung cancer. J. Clin. Oncol.16, 2150–2156 (1998). ArticleCASPubMed Google Scholar
Murphy, G. & Nagase, H. Reappraising metalloproteinases in rheumatoid arthritis and osteoarthritis: destruction or repair? Nat. Clin. Pract. Rheumatol.4, 128–135 (2008). ArticleCASPubMed Google Scholar
Krzeski, P. et al. Development of musculoskeletal toxicity without clear benefit after administration of PG-116800, a matrix metalloproteinase inhibitor, to patients with knee osteoarthritis: a randomized, 12-month, double-blind, placebo-controlled study. Arthritis Res. Ther.9, R109 (2007). ArticleCASPubMedPubMed Central Google Scholar
Clutterbuck, A. L., Asplin, K. E., Harris, P., Allaway, D. & Mobasheri, A. Targeting matrix metalloproteinases in inflammatory conditions. Curr. Drug Targets10, 1245–1254 (2009). ArticleCASPubMed Google Scholar
Johnson, A. R. et al. Discovery and characterization of a novel inhibitor of matrix metalloprotease-13 that reduces cartilage damage in vivo without joint fibroplasia side effects. J. Biol. Chem.282, 27781–27791 (2007). ArticleCASPubMed Google Scholar
Tortorella, M. D., Malfait, F., Barve, R. A., Shieh, H. S. & Malfait, A. M. A review of the ADAMTS family, pharmaceutical targets of the future. Curr. Pharm. Des.15, 2359–2374 (2009). ArticleCASPubMed Google Scholar
Marcu, K. B., Otero, M., Olivotto, E., Borzi, R. M. & Goldring, M. B. NF-κB signaling: multiple angles to target OA. Curr. Drug Targets11, 599–613 (2010). ArticleCASPubMedPubMed Central Google Scholar
Wegenka, U. M., Buschmann, J., Lütticken, C., Heinrich, P. C. & Horn, F. Acute-phase response factor, a nuclear factor binding to acute-phase response elements, is rapidly activated by interleukin-6 at the posttranslational level. Mol. Cell. Biol.13, 276–288 (1993). ArticleCASPubMedPubMed Central Google Scholar
Zhong, Z., Wen, Z. & Darnell, J. E. Jr. Stat3: a STAT family member activated by tyrosine phosphorylation in response to epidermal growth factor and interleukin-6. Science264, 95–98 (1994). ArticleCASPubMed Google Scholar
Bender, S. et al. Interleukin-1β induces synthesis and secretion of interleukin-6 in human chondrocytes. FEBS Lett.263, 321–324 (1990). ArticleCASPubMed Google Scholar
Wang, P., Zhu, F. & Konstantopoulos, K. Prostaglandin E2 induces interleukin-6 expression in human chondrocytes via cAMP/protein kinase A- and phosphatidylinositol 3-kinase-dependent NF-κB activation. Am. J. Physiol. Cell Physiol.298, C1445–C1456 (2010). ArticleCASPubMedPubMed Central Google Scholar
Wang, P., Zhu, F., Lee, N. H. & Konstantopoulos, K. Shear-induced interleukin-6 synthesis in chondrocytes: roles of E prostanoid (EP) 2 and EP3 in cAMP/protein kinase A- and PI3-K/Akt-dependent NF-κB activation. J. Biol. Chem.285, 24793–24804 (2010). ArticleCASPubMedPubMed Central Google Scholar
Steensberg, A., Fischer, C. P., Keller, C., Møller, K. & Pedersen, B. K. IL-6 enhances plasma IL-1ra, IL-10, and cortisol in humans. Am. J. Physiol. Endocrinol. Metab.285, E433–E437 (2003). ArticleCASPubMed Google Scholar
Haider, D. G. et al. C-reactive protein is expressed and secreted by peripheral blood mononuclear cells. Clin. Exp. Immunol.146, 533–539 (2006). ArticleCASPubMedPubMed Central Google Scholar
Pearle, A. D. et al. Elevated high-sensitivity C-reactive protein levels are associated with local inflammatory findings in patients with osteoarthritis. Osteoarthritis Cartilage15, 516–523 (2007). ArticleCASPubMed Google Scholar
Pelletier, J. P. et al. Decrease in serum level of matrix metalloproteinases is predictive of the disease-modifying effect of osteoarthritis drugs assessed by quantitative MRI in patients with knee osteoarthritis. Ann. Rheum. Dis. doi:10.1136/ard.2009.122002.
Kugisaki, H. et al. Serum concentrations of interleukin-6 in patients following unilateral versus bilateral total knee arthroplasty. J. Orthop. Sci.14, 437–442 (2009). ArticleCASPubMed Google Scholar
Livshits, G. et al. Interleukin-6 is a significant predictor of radiographic knee osteoarthritis: The Chingford Study. Arthritis Rheum.60, 2037–2045 (2009). ArticleCASPubMedPubMed Central Google Scholar
Kaneko, S. et al. Interleukin-6 and interleukin-8 levels in serum and synovial fluid of patients with osteoarthritis. Cytokines Cell. Mol. Ther.6, 71–79 (2000). ArticleCASPubMed Google Scholar
Cawston, T. E. et al. The role of oncostatin M in animal and human connective tissue collagen turnover and its localization within the rheumatoid joint. Arthritis Rheum.41, 1760–1771 (1998). ArticleCASPubMed Google Scholar
Rowan, A. D. et al. Synergistic effects of glycoprotein 130 binding cytokines in combination with interleukin-1 on cartilage collagen breakdown. Arthritis Rheum.44, 1620–1632 (2001). ArticleCASPubMed Google Scholar
Sui, Y. et al. Mechanical injury potentiates proteoglycan catabolism induced by interleukin-6 with soluble interleukin-6 receptor and tumor necrosis factor α in immature bovine and adult human articular cartilage. Arthritis Rheum.60, 2985–2996 (2009). ArticleCASPubMed Google Scholar
Porée, B. et al. Interleukin-6 (IL-6) and/or soluble IL-6 receptor down-regulation of human type II collagen gene expression in articular chondrocytes requires a decrease of Sp1.Sp3 ratio and of the binding activity of both factors to the COL2A1 promoter. J. Biol. Chem.283, 4850–4865 (2008). ArticleCASPubMed Google Scholar
van de Loo, F. A., Kuiper, S., van Enckevort, F. H., Arntz, O. J. & van den Berg, W. B. Interleukin-6 reduces cartilage destruction during experimental arthritis. A study in interleukin-6-deficient mice. Am. J. Pathol.151, 177–191 (1997). CASPubMedPubMed Central Google Scholar
de Hooge, A. S. et al. Male IL-6 gene knock out mice developed more advanced osteoarthritis upon aging. Osteoarthritis Cartilage13, 66–73 (2005). ArticlePubMed Google Scholar
Tilg, H., Dinarello, C. A. & Mier, J. W. IL-6 and APPs: anti-inflammatory and immunosuppressive mediators. Immunol. Today18, 428–432 (1997). ArticleCASPubMed Google Scholar
Kwan Tat, S., Padrines, M., Théoleyre, S., Heymann, D. & Fortun, Y. IL-6, RANKL, TNFα/IL-1: interrelations in bone resorption pathophysiology. Cytokine Growth Factor Rev.15, 49–60 (2004). ArticleCASPubMed Google Scholar
Liu, X. H., Kirschenbaum, A., Yao, S. & Levine, A. C. The role of the interleukin-6/gp130 signaling pathway in bone metabolism. Vitam. Horm.74, 341–355 (2006). ArticleCASPubMed Google Scholar
Massicotte, F. et al. Can altered production of interleukin-1β, interleukin-6, transforming growth factor β and prostaglandin E(2) by isolated human subchondral osteoblasts identify two subgroups of osteoarthritic patients. Osteoarthritis Cartilage10, 491–500 (2002). ArticleCASPubMed Google Scholar
Kwan Tat, S. et al. The differential expression of osteoprotegerin (OPG) and receptor activator of nuclear factor κB ligand (RANKL) in human osteoarthritic subchondral bone osteoblasts is an indicator of the metabolic state of these disease cells. Clin. Exp. Rheumatol.26, 295–304 (2008). CASPubMed Google Scholar
Chenoufi, H. L. et al. Increased mRNA expression and protein secretion of interleukin-6 in primary human osteoblasts differentiated in vitro from rheumatoid and osteoarthritic bone. J. Cell. Biochem.81, 666–678 (2001). ArticleCASPubMed Google Scholar
Jochems, C., Lagerquist, M., Håkansson, C., Ohlsson, C. & Carlsten, H. Long-term anti-arthritic and anti-osteoporotic effects of raloxifene in established experimental postmenopausal polyarthritis. Clin. Exp. Immunol.152, 593–597 (2008). ArticleCASPubMedPubMed Central Google Scholar
Genovese, M. C. et al. Interleukin-6 receptor inhibition with tocilizumab reduces disease activity in rheumatoid arthritis with inadequate response to disease-modifying antirheumatic drugs: the tocilizumab in combination with traditional disease-modifying antirheumatic drug therapy study. Arthritis Rheum.58, 2968–2980 (2008). ArticleCASPubMed Google Scholar
Smolen, J. S. et al. Effect of interleukin-6 receptor inhibition with tocilizumab in patients with rheumatoid arthritis (OPTION study): a double-blind, placebo-controlled, randomised trial. Lancet371, 987–997 (2008). ArticleCASPubMed Google Scholar
Garnero, P., Thompson, E., Woodworth, T. & Smolen, J. S. Rapid and sustained improvement in bone and cartilage turnover markers with the anti-interleukin-6 receptor inhibitor tocilizumab plus methotrexate in rheumatoid arthritis patients with an inadequate response to methotrexate: results from a substudy of the multicenter double-blind, placebo-controlled trial of tocilizumab in inadequate responders to methotrexate alone. Arthritis Rheum.62, 33–43 (2010). ArticleCASPubMed Google Scholar
Doschak, M. R., Wohl, G. R., Hanley, D. A., Bray, R. C. & Zernicke, R. F. Antiresorptive therapy conserves some periarticular bone and ligament mechanical properties after anterior cruciate ligament disruption in the rabbit knee. J. Orthop. Res.22, 942–948 (2004). ArticleCASPubMed Google Scholar
Jones, M. D. et al. In vivo microfocal computed tomography and micro-magnetic resonance imaging evaluation of antiresorptive and antiinflammatory drugs as preventive treatments of osteoarthritis in the rat. Arthritis Rheum.62, 2726–2735 (2010). ArticlePubMed Google Scholar
Bingham, C. O. 3rd et al. Risedronate decreases biochemical markers of cartilage degradation but does not decrease symptoms or slow radiographic progression in patients with medial compartment osteoarthritis of the knee: results of the two-year multinational knee osteoarthritis structural arthritis study. Arthritis Rheum.54, 3494–3507 (2006). ArticleCASPubMed Google Scholar
Garnero, P. et al. Relationships between biochemical markers of bone and cartilage degradation with radiological progression in patients with knee osteoarthritis receiving risedronate: the Knee Osteoarthritis Structural Arthritis randomized clinical trial. Osteoarthritis Cartilage16, 660–666 (2008). ArticleCASPubMed Google Scholar
Raynauld, J. P. et al. Protective effects of licofelone, a 5-lipoxygenase and cyclo-oxygenase inhibitor, versus naproxen on cartilage loss in knee osteoarthritis: a first multicentre clinical trial using quantitative MRI. Ann. Rheum. Dis.68, 938–947 (2009). ArticleCASPubMed Google Scholar
Scanzello, C. R. et al. Local cytokine profiles in knee osteoarthritis: elevated synovial fluid interleukin-15 differentiates early from end-stage disease. Osteoarthritis Cartilage17, 1040–1048 (2009). ArticleCASPubMed Google Scholar
Martel-Pelletier, J., Mineau, F., Jovanovic, D., Di Battista, J. A. & Pelletier, J. P. Mitogen-activated protein kinase and nuclear factor κB together regulate interleukin-17-induced nitric oxide production in human osteoarthritic chondrocytes: possible role of transactivating factor mitogen-activated protein kinase-activated proten kinase (MAPKAPK). Arthritis Rheum.42, 2399–2409 (1999). ArticleCASPubMed Google Scholar
Lubberts, E., Joosten, L. A., van de Loo, F. A., van den Gersselaar, L. A. & van den Berg, W. B. Reduction of interleukin-17-induced inhibition of chondrocyte proteoglycan synthesis in intact murine articular cartilage by interleukin-4. Arthritis Rheum.43, 1300–1306 (2000). ArticleCASPubMed Google Scholar
Olee, T., Hashimoto, S., Quach, J. & Lotz, M. IL-18 is produced by articular chondrocytes and induces proinflammatory and catabolic responses. J. Immunol.162, 1096–1100 (1999). CASPubMed Google Scholar
Alaaeddine, N. et al. Differential effects of IL-8, LIF (pro-inflammatory) and IL-11 (anti-inflammatory) on TNF-α-induced PGE2 release and on signalling pathways in human OA synovial fibroblasts. Cytokine11, 1020–1030 (1999). ArticleCASPubMed Google Scholar
Ishii, H. et al. Characterization of infiltrating T cells and TH1/TH2-type cytokines in the synovium of patients with osteoarthritis. Osteoarthritis Cartilage10, 277–281 (2002). ArticleCASPubMed Google Scholar
Alsalameh, S. et al. Cellular immune response toward human articular chondrocytes. T cell reactivities against chondrocyte and fibroblast membranes in destructive joint diseases. Arthritis Rheum.33, 1477–1486 (1990). ArticleCASPubMed Google Scholar
Pacquelet, S. et al. Interleukin 17, a nitric oxide-producing cytokine with a peroxynitrite-independent inhibitory effect on proteoglycan synthesis. J. Rheumatol.29, 2602–2610 (2002). CASPubMed Google Scholar
Benderdour, M. et al. Interleukin 17 (IL-17) induces collagenase-3 production in human osteoarthritic chondrocytes via AP-1 dependent activation: differential activation of AP-1 members by IL-17 and IL-1β. J. Rheumatol.29, 1262–1272 (2002). CASPubMed Google Scholar
Honorati, M. C., Bovara, M., Cattini, L., Piacentini, A. & Facchini, A. Contribution of interleukin 17 to human cartilage degradation and synovial inflammation in osteoarthritis. Osteoarthritis Cartilage10, 799–807 (2002). ArticleCASPubMed Google Scholar
Kauffmann, C. et al. Computer-aided method for quantification of cartilage thickness and volume changes using MRI: validation study using a synthetic model. IEEE Trans. Biomed. Eng.50, 978–988 (2003). ArticlePubMed Google Scholar
Raynauld, J. P. et al. Reliability of a quantification imaging system using magnetic resonance images to measure cartilage thickness and volume in human normal and osteoarthritic knees. Osteoarthritis Cartilage11, 351–360 (2003). ArticlePubMed Google Scholar
Berthiaume, M. J. et al. Meniscal tear and extrusion are strongly associated with progression of symptomatic knee osteoarthritis as assessed by quantitative magnetic resonance imaging. Ann. Rheum. Dis.64, 556–563 (2005). ArticlePubMed Google Scholar
Raynauld, J. P. et al. Correlation between bone lesion changes and cartilage volume loss in patients with osteoarthritis of the knee as assessed by quantitative magnetic resonance imaging over a 24-month period. Ann. Rheum. Dis.67, 683–688 (2008). ArticlePubMed Google Scholar
Pelletier, J. P. et al. A new non-invasive method to assess synovitis severity in relation to symptoms and cartilage volume loss in knee osteoarthritis patients using MRI. Osteoarthritis Cartilage16 (Suppl. 3), S8–S13 (2008). ArticlePubMed Google Scholar
Li, W. et al. Human hip joint cartilage: MRI quantitative thickness and volume measurements discriminating acetabulum and femoral head. IEEE Trans. Biomed. Eng.55, 2731–2740 (2008). ArticlePubMed Google Scholar
Li, W. et al. Fully automated system for the quantification of human osteoarthritic knee joint effusion volume using magnetic resonance imaging. Arthritis Res. Ther.12, R173 (2010). ArticlePubMedPubMed Central Google Scholar