Bone erosion in rheumatoid arthritis: mechanisms, diagnosis and treatment (original) (raw)
Karsenty, G., Kronenberg, H. M. & Settembre, C. Genetic control of bone formation. Annu. Rev. Cell. Dev. Biol.25, 629–648 (2009). ArticleCASPubMed Google Scholar
Teitelbaum, S. L. & Ross, F. P. Genetic regulation of osteoclast development and function. Nat. Rev. Genet.4, 638–649 (2003). ArticleCASPubMed Google Scholar
Boyle, W. J., Simonet, W. S. & Lacey, D. L. Osteoclast differentiation and activation. Nature423, 337–342 (2003). ArticleCASPubMed Google Scholar
Baker, W. M. The formation of abnormal synovial cysts in the connection with the joints. St Bartolomews Hospital Reports21, 177–190 (1855). Google Scholar
Weichselbaum, A. Die feineren Veränderungen des Gelenkknorpels bei fungöser Synovitis und Karies der Gelenkenden [German] Archiv. Pathol. Anat. Physiol. Klin. Med.73, 461–475 (1878). Article Google Scholar
Takayanagi, H. Osteoimmunology: shared mechanisms and crosstalk between the immune and bone systems. Nat. Rev. Immunol.7, 292–304 (2007). ArticleCASPubMed Google Scholar
Arron, J. R. & Choi, Y. Osteoimmunology: bone versus immune system. Nature408, 535–536 (2000). ArticleCASPubMed Google Scholar
Schett, G. & David, J. P. The multiple faces of autoimmune-mediated bone loss. Nat. Rev. Endocrinol.6, 698–706 (2010). ArticleCASPubMed Google Scholar
Schett, G. Saag, K. G. & Bijlsma, J. W. From bone biology to clinical outcome: state of the art and future perspectives. Ann. Rheum. Dis.69, 1415–1419 (2010). ArticleCASPubMed Google Scholar
Sharp, J. T., Lidsky, M. D., Collins, L. C. & Moreland, J. Methods of scoring the progression of radiologic changes in rheumatoid arthritis. Correlation of radiologic, clinical and laboratory abnormalities. Arthritis Rheum.14, 706–720 (1971). ArticleCASPubMed Google Scholar
Aletaha, D. et al. 2010 Rheumatoid arthritis classification criteria: an American College of Rheumatology/ European League Against Rheumatism collaborative initiative. Ann. Rheum. Dis.69, 1580–1588 (2010). ArticlePubMed Google Scholar
Ødegård, S. et al. Association of early radiographic damage with impaired physical function in rheumatoid arthritis: a ten-year, longitudinal observational study in 238 patients. Arthritis Rheum.54, 68–75 (2006). ArticlePubMed Google Scholar
Scott, D. L. et al. The links between joint damage and disability in rheumatoid arthritis. Rheumatology (Oxford)39, 122–132 (2000). ArticleCAS Google Scholar
Welsing, P. M., van Gestel, A. M., Swinkels, H. L., Kiemeney, L. A. & van Riel, P. L. The relationship between disease activity, joint destruction, and functional capacity over the course of rheumatoid arthritis. Arthritis Rheum.44, 2009–2017 (2001). ArticleCASPubMed Google Scholar
McInnes, I. & Schett, G. Cytokines in the pathogenesis of rheumatoid arthritis. Nat. Immunol.7, 429–442 (2007). ArticleCAS Google Scholar
Stach, C.M. et al. Periarticular bone structure in rheumatoid arthritis patients and healthy individuals assessed by high-resolution computed tomography. Arthritis Rheum.62, 330–339 (2010). PubMed Google Scholar
Døhn, U. M. et al. Rheumatoid arthritis bone erosion volumes on CT and MRI: reliability and correlations with erosion scores on CT, MRI and radiography. Ann. Rheum. Dis.66, 1388–1392 (2007). ArticlePubMedPubMed Central Google Scholar
Wakefield, R. J. et al. The value of sonography in the detection of bone erosions in patients with rheumatoid arthritis: a comparison with conventional radiography. Arthritis Rheum.43, 2762–2770 (2000). ArticleCASPubMed Google Scholar
McGonagle, D., Tan, A. L., Møller Døhn, U., Ostergaard, M. & Benjamin, M. Microanatomic studies to define predictive factors for the topography of periarticular erosion formation in inflammatory arthritis. Arthritis Rheum.60, 1042–1051 (2009). ArticlePubMed Google Scholar
Martel, W., Hayes, J. T. & Duff, I. F. The pattern of bone erosion in the hand and wrist in rheumatoid arthritis. Radiology84, 204–214 (1965). ArticleCASPubMed Google Scholar
Ejbjerg, B. et al. Magnetic resonance imaging of wrist and finger joints in healthy subjects occasionally shows changes resembling erosions and synovitis as seen in rheumatoid arthritis. Arthritis Rheum.50, 1097–1106 (2004). ArticlePubMed Google Scholar
Tan, A. L. et al. Role of metacarpophalangeal joint anatomic factors in the distribution of synovitis and bone erosion in early rheumatoid arthritis. Arthritis Rheum.48, 1214–1222 (2003). ArticlePubMed Google Scholar
Hayer, S. et al. Tenosynovitis and osteoclast formation as the initial preclinical changes in a murine model of inflammatory arthritis. Arthritis Rheum.56, 79–88 (2007). ArticlePubMed Google Scholar
Marinova-Mutafchieva, L., Williams, R. O., Funa, K., Maini, R. N. & Zvaifler, N. J. Inflammation is preceded by tumor necrosis factor-dependent infiltration of mesenchymal cells in experimental arthritis. Arthritis Rheum.46, 507–513 (2002). ArticleCASPubMed Google Scholar
Schett, G. et al. Analysis of the kinetics of osteoclastogenesis in arthritic rats. Arthritis Rheum.52, 3192–3201 (2005). ArticlePubMed Google Scholar
Tournis, S. et al. Effect of rheumatoid arthritis on volumetric bone mineral density and bone geometry, assessed by peripheral quantitative computed tomography in postmenopausal women treated with bisphosphonates. J. Rheumatol.39, 1215–1220 (2012). ArticleCASPubMed Google Scholar
Aeberli, D. et al. Reduced trabecular bone mineral density and cortical thickness accompanied by increased outer bone circumference in metacarpal bone of rheumatoid arthritis patients: a cross-sectional study. Arthritis Res. Ther.12, R119 (2010). ArticlePubMedPubMed Central Google Scholar
Sharp, J. T. et al. Denosumab prevents metacarpal shaft cortical bone loss in patients with erosive rheumatoid arthritis. Arthritis Care Res. (Hoboken)62, 537–544 (2010). Article Google Scholar
Hoff, M. et al. Cortical hand bone loss after 1 year in early rheumatoid arthritis predicts radiographic hand joint damage at 5-year and 10-year follow-up. Ann. Rheum. Dis.68, 324–329 (2009). ArticleCASPubMed Google Scholar
Haugeberg, G. et al. Hand cortical bone mass and its associations with radiographic joint damage and fractures in 50–70 year old female patients with rheumatoid arthritis: cross sectional Oslo-Truro-Amsterdam (OSTRA) collaborative study. Ann. Rheum. Dis.63, 1331–1334 (2004). ArticleCASPubMedPubMed Central Google Scholar
Van der Heijde, D. M. Joint erosions and patients with early rheumatoid arthritis. Br. J. Rheumatol.34, 74–78 (1995). ArticlePubMed Google Scholar
Machold, K. P. et al. Very recent onset rheumatoid arthritis: clinical and serological patient characteristics associated with radiographic progression over the first years of disease. Rheumatology (Oxford)46, 342–349 (2007). ArticleCAS Google Scholar
Güler-Yüksel, M. et al. Changes in hand and generalised bone mineral density in patients with recent-onset rheumatoid arthritis. Ann. Rheum. Dis.68, 330–336 (2009). ArticlePubMed Google Scholar
Solomon, D. H. et al. The relationship between focal erosions and generalized osteoporosis in postmenopausal women with rheumatoid arthritis. Arthritis Rheum.60, 1624–1631 (2009). ArticlePubMedPubMed Central Google Scholar
Pye, S. R. et al. Disease activity and severity in early inflammatory arthritis predict hand cortical bone loss. Rheumatology (Oxford)49, 1943–1948 (2010). Article Google Scholar
Møller Døhn, U. et al. No overall progression and occasional repair of erosions despite persistent inflammation in adalimumab-treated rheumatoid arthritis patients: results from a longitudinal comparative MRI, ultrasonography, CT and radiography study. Ann. Rheum. Dis.70, 252–258 (2011). Article Google Scholar
Finzel, S. et al. A detailed comparative study of high-resolution ultrasound and micro-computed tomography for detection of arthritic bone erosions. Arthritis Rheum.63, 1231–1236 (2011). ArticlePubMed Google Scholar
Haavardsholm, E. A., Bøyesen, P., Østergaard, M., Schildvold, A. & Kvien, T. K. Magnetic resonance imaging findings in 84 patients with early rheumatoid arthritis: bone marrow oedema predicts erosive progression. Ann. Rheum. Dis.67, 794–800 (2008). ArticleCASPubMed Google Scholar
McQueen, F. M. et al. Bone edema scored on magnetic resonance imaging scans of the dominant carpus at presentation predicts radiographic joint damage of the hands and feet six years later in patients with rheumatoid arthritis. Arthritis Rheum.48, 1814–1827 (2003). ArticlePubMed Google Scholar
Finzel, S., Englbrecht, M., Engelke, K., Stach, C. & Schett, G. A comparative study of periarticular bone lesions in rheumatoid arthritis and psoriatic arthritis. Ann. Rheum. Dis.70, 122–127 (2011). ArticlePubMed Google Scholar
Bromley, M. & Woolley, D. E. Chondroclasts and osteoclasts at subchondral sites of erosion in the rheumatoid joint. Arthritis Rheum.27, 968–975 (1984). ArticleCASPubMed Google Scholar
Leisen, J. C. D. H., Riddle, J. M. & Pitchford, W. C. The erosive front: a topographic study of the junction between the pannus and the subchondral plate in the macerated rheumatoid metacarpal head. J. Rheumatol.15, 17–22 (1988). CASPubMed Google Scholar
Gravallese, E. M. et al. Identification of cell types responsible for bone resorption in rheumatoid arthritis and juvenile rheumatoid arthritis. Am. J. Pathol.152, 943–951 (1998). CASPubMedPubMed Central Google Scholar
Kong, Y. Y. et al. Activated T cells regulate bone loss and joint destruction in adjuvant arthritis through osteoprotegerin ligand. Nature402, 304–309 (1999). ArticleCASPubMed Google Scholar
Romas, E. et al. Osteoprotegerin reduces osteoclast numbers and prevents bone erosion in collagen-induced arthritis. Am. J. Pathol.161, 1419–1427 (2002). ArticleCASPubMedPubMed Central Google Scholar
Lubberts, E. et al. Increase in expression of receptor activator of nuclear factor κB at sites of bone erosion correlates with progression of inflammation in evolving collagen-induced arthritis. Arthritis Rheum.46, 3055–3064 (2002). ArticleCASPubMed Google Scholar
Pettit, A. R. et al. TRANCE/RANKL knockout mice are protected from bone erosion in a serum transfer model of arthritis. Am. J. Pathol.159, 1689–1699 (2001). ArticleCASPubMedPubMed Central Google Scholar
Redlich, K. et al. Tumor necrosis factor α-mediated joint destruction is inhibited by targeting osteoclasts with osteoprotegerin. Arthritis Rheum.46, 785–792 (2002). ArticleCASPubMed Google Scholar
Yoshida, H. et al. The murine mutation osteopetrosis is in the coding region of the macrophage colony stimulating factor gene. Nature345, 442–444 (1990). ArticleCASPubMed Google Scholar
Firestein, G. S. et al. Cytokines in chronic inflammatory arthritis. I. Failure to detect T cell lymphokines (interleukin 2 and interleukin 3) and presence of macrophage colony-stimulating factor (CSF-1) and a novel mast cell growth factor in rheumatoid synovitis. J. Exp. Med.168, 1573–1586 (1988). ArticleCASPubMed Google Scholar
Wong, B. R. et al. TRANCE is a novel ligand of the tumor necrosis factor receptor family that activates c-Jun N-terminal kinase in T cells. J. Biol. Chem.272, 25190–25194 (1997). ArticleCASPubMed Google Scholar
Yasuda, H. et al. Osteoclast differentiation factor is a ligand for osteoprotegerin/osteoclastogenesis-inhibitory factor and is identical to TRANCE/RANKL. Proc. Natl Acad. Sci. USA95, 3597–3602 (1998). ArticleCASPubMedPubMed Central Google Scholar
Lacey, D. L. et al. Osteoprotegerin ligand is a cytokine that regulates osteoclast differentiation and activation. Cell93, 165–176 (1998). ArticleCASPubMed Google Scholar
Kong, Y.-Y. et al. OPGL is a key regulator of osteoclastogenesis, lymphocyte development and lymph-node organogenesis. Nature397, 315–323 (1999). ArticleCASPubMed Google Scholar
Gravallese, E. M. et al. Synovial tissue in rheumatoid arthritis is a source of osteoclast differentiation factor. Arthritis Rheum.43, 250–258 (2000). ArticleCASPubMed Google Scholar
Shigeyama, Y. et al. Expression of osteoclast differentiation factor in rheumatoid arthritis. Arthritis Rheum.43, 2523–2530 (2000). ArticleCASPubMed Google Scholar
Li, P. et al. RANK signaling is not required for TNFα-mediated increase in CD11hi osteoclast precursors but is essential for mature osteoclast formation in TNFα-mediated inflammatory arthritis. J. Bone Miner. Res.19, 207–213 (2004). ArticleCASPubMed Google Scholar
Ritchlin, C. T., Haas-Smith, S. A., Li, P., Hicks, D. G. & Schwarz, E. M. Mechanisms of TNF-α- and RANKL-mediated osteoclastogenesis and bone resorption in psoriatic arthritis. J. Clin. Invest.111, 821–831 (2003). ArticleCASPubMedPubMed Central Google Scholar
Hermann, S. et al. OSCAR—a key co-stimulation molecule for osteoclasts is induced in patients with rheumatoid arthritis. Arthritis Rheum.58, 3041–3050 (2008). ArticleCAS Google Scholar
Ohno, H. et al. The orally-active and selective c-Fms tyrosine kinase inhibitor Ki20227 inhibits disease progression in a collagen-induced arthritis mouse model. Eur. J. Immunol.38, 283–291 (2008). ArticleCASPubMed Google Scholar
Cohen, S. B. et al. Denosumab treatment effects on structural damage, bone mineral density, and bone turnover in rheumatoid arthritis: a twelve-month, multicenter, randomized, double-blind, placebo-controlled, phase II clinical trial. Arthritis Rheum.58, 1299–1309 (2008). ArticleCASPubMed Google Scholar
Visser, H., le Cessie, S., Vos, K., Breedveld, F. C. & Hazes, J. M. How to diagnose rheumatoid arthritis early: a prediction model for persistent (erosive) arthritis. Arthritis Rheum.46, 357–365 (2002). ArticlePubMed Google Scholar
Kastbom, A., Strandberg, G., Lindroos, A. & Skogh, T. Anti-CCP antibody test predicts the disease course during 3 years in early rheumatoid arthritis (the Swedish TIRA project). Ann. Rheum. Dis.63, 1085–1089 (2004). ArticleCASPubMedPubMed Central Google Scholar
Meyer, O. et al. Anticitrullinated protein/peptide antibody assays in early rheumatoid arthritis for predicting five year radiographic damage. Ann. Rheum. Dis.62, 120–126 (2003). ArticleCASPubMedPubMed Central Google Scholar
Shi, J. et al. Autoantibodies recognizing carbamylated proteins are present in sera of patients with rheumatoid arthritis and predict joint damage. Proc. Natl Acad. Sci. USA108, 17372–17377 (2011). ArticlePubMedPubMed Central Google Scholar
Harre, U. et al. Induction of osteoclastogenesis and bone loss by human autoantibodies against citrullinated vimentin. J. Clin. Invest.122, 1791–1802 (2012). ArticleCASPubMedPubMed Central Google Scholar
Wu, Y., Humphrey, M. B. & Nakamura, M. C. Osteoclasts—the innate immune cells of the bone. Autoimmunity41, 183–194 (2008). ArticleCASPubMed Google Scholar
Ji, D. et al. Inhibition of RANK expression and osteoclastogenesis by TLRs and IFN-γ in human osteoclast precursors. J. Immunol.183, 7223–7233 (2009). ArticleCASPubMed Google Scholar
Sato, K. et al. TH17 functions as an osteoclastogenic helper T cell subset that links T cell activation and bone destruction. J. Exp. Med.203, 2673–2682 (2006). ArticleCASPubMedPubMed Central Google Scholar
Zaiss, M. M. et al. Regulatory T cells protect from local and systemic bone destruction in arthritis. J. Immunol.184, 7238–7246 (2010). ArticlePubMed Google Scholar
Zaiss, M. M. et al. Increased bone density and resistance to ovariectomy-induced bone loss in FoxP3-transgenic mice based on impaired osteoclast differentiation. Arthritis Rheum.62, 2328–2338 (2010). ArticleCASPubMed Google Scholar
Axmann, R. et al. CTLA-4 directly inhibits osteoclast formation. Ann. Rheum. Dis.67, 1603–1609 (2008). ArticleCASPubMed Google Scholar
Zaiss, M. M. et al. TREG cells suppress osteoclast formation: a new link between the immune system and bone. Arthritis Rheum.56, 4104–4112 (2007). ArticleCASPubMed Google Scholar
Bakker, M. F. et al. Utrecht Rheumatoid Arthritis Cohort Study Group. Low-dose prednisone inclusion in a methotrexate-based, tight control strategy for early rheumatoid arthritis: a randomized trial. Ann. Intern. Med.156, 329–339 (2012). ArticlePubMed Google Scholar
Grigor, C. et al. Effect of a treatment strategy of tight control for rheumatoid arthritis (the TICORA study): a single-blind randomised controlled trial. Lancet364, 263–269 (2004). ArticlePubMed Google Scholar
Lam, J. et al. TNF-α induces osteoclastogenesis by direct stimulation of macrophages exposed to permissive levels of RANK ligand. J. Clin. Invest.106, 1481–1488 (2000). ArticleCASPubMedPubMed Central Google Scholar
Boyce, B. F. et al. Effects of interleukin-1 on bone turnover in normal mice. Endocrinology125, 1142–1150 (1989). ArticleCASPubMed Google Scholar
Ishimi, Y. M. C. et al. IL-6 is produced by osteoblasts and induces bone resorption. J. Immunol.145, 3297–3303 (1990). CASPubMed Google Scholar
Axmann, R. et al. Inhibition of interleukin-6 receptor directly blocks osteoclast formation in vitro and in vivo. Arthritis Rheum.60, 2747–2756 (2009). ArticleCASPubMed Google Scholar
Jansen, L. M., van der Horst-Bruinsma, I. E., van Schaardenburg, D., Bezemer, P. D. & Dijkmans, B. A. Predictors of radiographic joint damage in patients with early rheumatoid arthritis. Ann. Rheum. Dis.60, 924–927 (2001). ArticleCASPubMedPubMed Central Google Scholar
Kraan, M. C. et al. Asymptomatic synovitis precedes clinically manifest arthritis. Arthritis Rheum.41, 1481–1488 (1998). ArticleCASPubMed Google Scholar
Van de Sande, M. G. et al. Different stages of rheumatoid arthritis: features of the synovium in the preclinical phase. Ann. Rheum. Dis.70, 772–777 (2011). ArticleCASPubMed Google Scholar
Rich, E., Moreland, L. W. & Alarcón, G.S. Paucity of radiographic progression in rheumatoid arthritis treated with methotrexate as the first disease modifying antirheumatic drug. J. Rheumatol.26, 259–261 (1999). CASPubMed Google Scholar
Schett, G., Stach, C., Zwerina, J., Voll, R. & Manger, B. How antirheumatic drugs protect joints from damage in rheumatoid arthritis. Arthritis Rheum.58, 2936–2948 (2008). ArticleCASPubMed Google Scholar
Cohen, G. et al. Radiological damage in patients with rheumatoid arthritis on sustained remission. Ann. Rheum. Dis.66, 358–363 (2007). ArticleCASPubMed Google Scholar
Molenaar, E. T. et al. Progression of radiologic damage in patients with rheumatoid arthritis in clinical remission. Arthritis Rheum.50, 36–42 (2004). ArticlePubMed Google Scholar
Brown, A. K. et al. An explanation for the apparent dissociation between clinical remission and continued structural deterioration in rheumatoid arthritis. Arthritis Rheum.58, 2958–2967 (2008). ArticleCASPubMed Google Scholar
Vis, M. et al. Evaluation of bone mineral density, bone metabolism, osteoprotegerin and receptor activator of the NFκB ligand serum levels during treatment with infliximab in patients with rheumatoid arthritis. Ann. Rheum. Dis.65, 1495–1499 (2006). ArticleCASPubMedPubMed Central Google Scholar
van Vollenhoven, R. F. et al. Tofacitinib or adalimumab versus placebo in rheumatoid arthritis. N. Engl. J. Med.367, 508–519 (2012). ArticleCASPubMed Google Scholar
Fleischmann, R. et al. Placebo-controlled trial of tofacitinib monotherapy in rheumatoid arthritis. N. Engl. J. Med.367, 495–507 (2012). ArticleCASPubMed Google Scholar
Weinblatt, M. E. et al. An oral spleen tyrosine kinase (Syk) inhibitor for rheumatoid arthritis. N. Engl. J. Med.363, 1303–1312 (2010). ArticleCASPubMed Google Scholar
Mócsai, A. et al. The immunomodulatory adapter proteins DAP12 and Fc receptor γ-chain (FcRγ) regulate development of functional osteoclasts through the Syk tyrosine kinase. Proc. Natl Acad. Sci. USA101, 6158–6163 (2004). ArticleCASPubMedPubMed Central Google Scholar
McInnes, I. B. & Schett, G. The pathogenesis of rheumatoid arthritis. N. Engl. J. Med.365, 2205–2219 (2011). ArticleCASPubMed Google Scholar
Jiang, Y. et al. A multicenter, double-blind, dose-ranging, randomized, placebo-controlled study of recombinant human interleukin-1 receptor antagonist in patients with rheumatoid arthritis: radiologic progression and correlation of Genant and Larsen scores. Arthritis Rheum.43, 1001–1009 (2000). ArticleCASPubMed Google Scholar
Fossiez, F. et al. T cell interleukin-17 induces stromal cells to produce proinflammatory and hematopoietic cytokines. J. Exp. Med.183, 2593–2603 (1996). ArticleCASPubMed Google Scholar
Jovanovic, D. V. et al. IL-17 stimulates the production and expression of proinflammatory cytokines, IL-β and TNF-α, by human macrophages. J. Immunol.160, 3513–3521 (1998). CASPubMed Google Scholar
Chabaud, M. et al. Human interleukin-17: a T cell-derived proinflammatory cytokine produced by the rheumatoid synovium. Arthritis Rheum.42, 963–970 (1999). ArticleCASPubMed Google Scholar
Miossec, P., Korn, T. & Kuchroo, V. K. Interleukin-17 and type 17 helper T cells. N. Engl. J. Med.361, 888–889 (2009). ArticleCASPubMed Google Scholar
Kotake, S. et al. IL-17 in synovial fluids from patients with rheumatoid arthritis is a potent stimulator of osteoclastogenesis. J. Clin. Invest.103, 1345–1352 (1999). ArticleCASPubMedPubMed Central Google Scholar
Sato, K. et al. TH17 functions as an osteoclastogenic helper T cell subset that links T cell activation and bone destruction. J. Exp. Med.203, 2673–2682 (2006). ArticleCASPubMedPubMed Central Google Scholar
Zwerina, K. et al. Anti IL-17A therapy inhibits bone loss in TNF-α-mediated murine arthritis by modulation of the T-cell balance. Eur. J. Immunol.42, 413–423 (2012). ArticleCASPubMed Google Scholar
Ogata, Y. et al. A novel role of IL-15 in the development of osteoclasts: inability to replace its activity with IL-2. J. Immunol.162, 2754–2760 (1999). CASPubMed Google Scholar
Knevel, R. et al. Genetic variants in IL15 associate with progression of joint destruction in rheumatoid arthritis: a multicohort study. Ann. Rheum. Dis.71 (Suppl. 1), A56–A57 (2012). Google Scholar
Zaiss, M. M. et al. IL-33 shifts the balance from osteoclast to alternatively activated macrophage differentiation and protects from TNFα-mediated bone loss. J. Immunol.186, 6097–6105 (2011). ArticleCASPubMed Google Scholar
Quinn, J. M. et al. IL-23 inhibits osteoclastogenesis indirectly through lymphocytes and is required for the maintenance of bone mass in mice. J. Immunol.181, 5720–5729 (2008). ArticleCASPubMed Google Scholar
Lukas, C., van der Heijde, D., Fatenejad, S. & Landewé, R. Repair of erosions occurs almost exclusively in damaged joints without swelling. Ann. Rheum. Dis.69, 851–855 (2010). ArticlePubMed Google Scholar
Møller Døhn, U. et al. Erosive progression is minimal, but erosion healing rare, in patients with rheumatoid arthritis treated with adalimumab. A 1-year investigator-initiated follow-up study using high-resolution computed tomography as the primary outcome measure. Ann. Rheum. Dis.68, 1585–1590 (2009). ArticleCASPubMed Google Scholar
Finzel, S. et al. Interleukin-6 receptor blockade induces limited repair of bone erosions in rheumatoid arthritis: a micro CT study. Ann. Rheum. Dis.http://dx.doi.org/10.1136/annrheumdis-2011-201075.
Finzel, S. et al. Repair of bone erosions in rheumatoid arthritis treated with tumour necrosis factor inhibitors is based on bone apposition at the base of the erosion. Ann. Rheum. Dis.70, 1587–1593 (2011). ArticleCASPubMed Google Scholar
Walsh, N. C. et al. Osteoblast function is compromised at sites of focal bone erosion in inflammatory arthritis. J. Bone Miner. Res.24, 1572–1585 (2009). ArticleCASPubMed Google Scholar
Diarra D, Stolina M, Polzer K. et al. Dickkopf-1 is a master regulator of joint remodeling. Nat. Med.13, 156–163 (2007). ArticleCASPubMed Google Scholar
Matzelle, M. M. et al. Resolution of inflammation induces osteoblast function and regulates the Wnt signaling pathway. Arthritis Rheum.64, 1540–1550 (2012). ArticleCASPubMedPubMed Central Google Scholar
Redlich, K. et al. Repair of local bone erosions and reversal of systemic bone loss upon therapy with anti-tumor necrosis factor in combination with osteoprotegerin or parathyroid hormone in tumor necrosis factor-mediated arthritis. Am. J. Pathol.164, 543–555 (2004). ArticleCASPubMedPubMed Central Google Scholar
Poole, K. E. et al. Sclerostin is a delayed secreted product of osteocytes that inhibits bone formation. FASEB J.19, 1842–1844 (2005). ArticleCASPubMed Google Scholar
Semënov, M., Tamai, K. & He, X. SOST is a ligand for LRP5/LRP6 and a Wnt signaling inhibitor. J. Biol. Chem.280, 26770–26775 (2005). ArticleCASPubMed Google Scholar