Role of peripheral nerve fibres in acute and chronic inflammation in arthritis (original) (raw)
Kolodkin, A. L. & Tessier-Lavigne, M. Mechanisms and molecules of neuronal wiring: a primer. Cold Spring Harb. Perspect. Biol.3, a001727 (2011). ArticlePubMedPubMed CentralCAS Google Scholar
Nance, D. M. & Sanders, V. M. Autonomic innervation and regulation of the immune system (1987–2007). Brain Behav. Immun.21, 736–745 (2007). ArticleCASPubMedPubMed Central Google Scholar
Straub, R. H., Cutolo, M., Buttgereit, F. & Pongratz, G. Energy regulation and neuroendocrine–immune control in chronic inflammatory diseases. J. Intern. Med.267, 543–560 (2010). ArticleCASPubMed Google Scholar
Millan, M. J. The induction of pain: an integrative review. Prog. Neurobiol.57, 1–164 (1999). ArticleCASPubMed Google Scholar
Liu, T., Gao, Y. J. & Ji, R. R. Emerging role of Toll-like receptors in the control of pain and itch. Neurosci. Bull.28, 131–144 (2012). ArticleCASPubMedPubMed Central Google Scholar
Carolan, E. J. & Casale, T. B. Effects of neuropeptides on neutrophil migration through noncellular and endothelial barriers. J. Allergy Clin. Immunol.92, 589–598 (1993). ArticleCASPubMed Google Scholar
Saban, M. R., Saban, R., Bjorling, D. & Haak-Frendscho, M. Involvement of leukotrienes, TNF-α, and the LFA-1/ICAM-1 interaction in substance P-induced granulocyte infiltration. J. Leukoc. Biol.61, 445–451 (1997). ArticleCASPubMed Google Scholar
Hood, V. C., Cruwys, S. C., Urban, L. & Kidd, B. L. Differential role of neurokinin receptors in human lymphocyte and monocyte chemotaxis. Regul. Pept.96, 17–21 (2000). ArticleCASPubMed Google Scholar
Smith, C. H., Barker, J. N., Morris, R. W., MacDonald, D. M. & Lee, T. H. Neuropeptides induce rapid expression of endothelial cell adhesion molecules and elicit granulocytic infiltration in human skin. J. Immunol.151, 3274–3282 (1993). CASPubMed Google Scholar
Birklein, F. & Schmelz, M. Neuropeptides, neurogenic inflammation and complex regional pain syndrome (CRPS). Neurosci. Lett.437, 199–202 (2008). ArticleCASPubMed Google Scholar
Straub, R. H. Evolutionary medicine and chronic inflammatory state—known and new concepts in pathophysiology. J. Mol. Med. (Berl.)90, 523–534 (2012). Article Google Scholar
Besedovsky, H. O. & del Rey, A. Immune–neuro–endocrine interactions: facts and hypotheses. Endocr. Rev.17, 64–102 (1996). ArticleCASPubMed Google Scholar
Dhabhar, F. S., Miller, A. H., Stein, M., McEwen, B. S. & Spencer, R. L. Diurnal and acute stress-induced changes in distribution of peripheral blood leukocyte subpopulations. Brain Behav. Immun.8, 66–79 (1994). ArticleCASPubMed Google Scholar
Dhabhar, F. S. & McEwen, B. S. Acute stress enhances while chronic stress suppresses cell-mediated immunity in vivo: a potential role for leukocyte trafficking. Brain Behav. Immun.11, 286–306 (1997). ArticleCASPubMed Google Scholar
Benschop, R. J., Rodriguez-Feuerhahn, M. & Schedlowski, M. Catecholamine-induced leukocytosis: early observations, current research, and future directions. Brain Behav. Immun.10, 77–91 (1996). ArticleCASPubMed Google Scholar
Schramm, L. P. Spinal sympathetic interneurons: their identification and roles after spinal cord injury. Prog. Brain Res.152, 27–37 (2006). ArticlePubMed Google Scholar
Maestroni, G. J. Short exposure of maturing, bone marrow-derived dendritic cells to norepinephrine: impact on kinetics of cytokine production and Th development. J. Neuroimmunol.129, 106–114 (2002). ArticleCASPubMed Google Scholar
Maestroni, G. J. Dendritic cell migration controlled by α1b-adrenergic receptors. J. Immunol.165, 6743–6747 (2000). ArticleCASPubMed Google Scholar
Straub, R. H. et al. Neurotransmitters of the sympathetic nerve terminal are powerful chemoattractants for monocytes. J. Leukoc. Biol.67, 553–558 (2000). ArticleCASPubMed Google Scholar
Chen, Y., Michaelis, M., Janig, W. & Devor, M. Adrenoreceptor subtype mediating sympathetic-sensory coupling in injured sensory neurons. J. Neurophysiol.76, 3721–3730 (1996). ArticleCASPubMed Google Scholar
Gonzales, R., Goldyne, M. E., Taiwo, Y. O. & Levine, J. D. Production of hyperalgesic prostaglandins by sympathetic postganglionic neurons. J. Neurochem.53, 1595–1598 (1989). ArticleCASPubMed Google Scholar
Spiegel, A. et al. Catecholaminergic neurotransmitters regulate migration and repopulation of immature human CD34+ cells through Wnt signaling. Nat. Immunol.8, 1123–1131 (2007). ArticleCASPubMed Google Scholar
Speidl, W. S. et al. Catecholamines potentiate LPS-induced expression of MMP-1 and MMP-9 in human monocytes and in the human monocytic cell line U937: possible implications for peri-operative plaque instability. FASEB J.18, 603–605 (2004). ArticleCASPubMed Google Scholar
Wang, H. et al. Nicotinic acetylcholine receptor α7 subunit is an essential regulator of inflammation. Nature421, 384–388 (2003). ArticleCASPubMed Google Scholar
Vida, G. et al. β2-adrenoreceptors of regulatory lymphocytes are essential for vagal neuromodulation of the innate immune system. FASEB J.25, 4476–4485 (2011). ArticleCASPubMedPubMed Central Google Scholar
Goldstein, R. S. et al. Cholinergic anti-inflammatory pathway activity and high mobility group box-1 (HMGB1) serum levels in patients with rheumatoid arthritis. Mol. Med.13, 210–215 (2007). ArticleCASPubMedPubMed Central Google Scholar
Borovikova, L. V. et al. Vagus nerve stimulation attenuates the systemic inflammatory response to endotoxin. Nature405, 458–462 (2000). ArticleCASPubMed Google Scholar
Rosas-Ballina, M. et al. Splenic nerve is required for cholinergic antiinflammatory pathway control of TNF in endotoxemia. Proc. Natl Acad. Sci. USA105, 11008–11013 (2008). ArticleCASPubMedPubMed Central Google Scholar
Saeed, R. W. et al. Cholinergic stimulation blocks endothelial cell activation and leukocyte recruitment during inflammation. J. Exp. Med.201, 1113–1123 (2005). ArticleCASPubMedPubMed Central Google Scholar
Miller, L. E., Justen, H. P., Scholmerich, J. & Straub, R. H. The loss of sympathetic nerve fibers in the synovial tissue of patients with rheumatoid arthritis is accompanied by increased norepinephrine release from synovial macrophages. FASEB J.14, 2097–2107 (2000). ArticleCASPubMed Google Scholar
Lorton, D., Lubahn, C., Felten, S. Y. & Bellinger, D. Norepinephrine content in primary and secondary lymphoid organs is altered in rats with adjuvant-induced arthritis. Mech. Ageing Dev.94, 145–163 (1997). ArticleCASPubMed Google Scholar
Ruff, M. R., Wahl, S. M. & Pert, C. B. Substance P receptor-mediated chemotaxis of human monocytes. Peptides6 (Suppl. 2), 107–111 (1985). ArticleCASPubMed Google Scholar
Chalothorn, D., Zhang, H., Clayton, J. A., Thomas, S. A. & Faber, J. E. Catecholamines augment collateral vessel growth and angiogenesis in hindlimb ischemia. Am. J. Physiol. Heart Circ. Physiol.289, H947–H959 (2005). ArticleCASPubMed Google Scholar
Castellani, M. L. et al. Stimulation of CCL2 (MCP-1) and CCL2 mRNA by substance P in LAD2 human mast cells. Transl. Res.154, 27–33 (2009). ArticleCASPubMed Google Scholar
Castellani, M. L. et al. Neuropeptide substance P induces mRNA expression and secretion of CXCL8 chemokine, and HDC in human umbilical cord blood mast cells. Clin. Invest. Med.31, E362–E372 (2008). ArticleCASPubMed Google Scholar
Raap, T. et al. Neurotransmitter modulation of interleukin 6 (IL-6) and IL-8 secretion of synovial fibroblasts in patients with rheumatoid arthritis compared to osteoarthritis. J. Rheumatol.27, 2558–2565 (2000). CASPubMed Google Scholar
Serra, M. C., Calzetti, F., Ceska, M. & Cassatella, M. A. Effect of substance P on superoxide anion and IL-8 production by human PMNL. Immunology82, 63–69 (1994). CASPubMedPubMed Central Google Scholar
Kavelaars, A., van de, P. M., Zijlstra, J. & Heijnen, C. J. β2-adrenergic activation enhances interleukin-8 production by human monocytes. J. Neuroimmunol.77, 211–216 (1997). ArticleCASPubMed Google Scholar
McHale, N. G., Allen, J. M. & Iggulden, H. L. Mechanism of α-adrenergic excitation in bovine lymphatic smooth muscle. Am. J. Physiol.252, H873–H878 (1987). CASPubMed Google Scholar
Allen, J. M., Iggulden, H. L. & McHale, N. G. β-adrenergic inhibition of bovine mesenteric lymphatics. J. Physiol.374, 401–411 (1986). ArticleCASPubMedPubMed Central Google Scholar
Maestroni, G. J. & Mazzola, P. Langerhans cells β2-adrenoceptors: role in migration, cytokine production, Th priming and contact hypersensitivity. J. Neuroimmunol.144, 91–99 (2003). ArticleCASPubMed Google Scholar
Ackerman, K. D., Bellinger, D. L., Felten, S. Y. & Felten, D. L. in Psychoneuroimmunology (eds Ader, R., Felten, D. L. & Cohen, N.) 71–125 (Academic Press, New York, 1991). Book Google Scholar
Bellinger, D. L. et al. Sympathetic nervous system and lymphocyte proliferation in the Fischer 344 rat spleen: a longitudinal study. Neuroimmunomodulation.15, 260–271 (2008). ArticleCASPubMed Google Scholar
Kohm, A. P., Tang, Y., Sanders, V. M. & Jones, S. B. Activation of antigen-specific CD4+ TH2 cells and B cells in vivo increases norepinephrine release in the spleen and bone marrow. J. Immunol.165, 725–733 (2000). ArticleCASPubMed Google Scholar
Sitkovsky, M. V. Use of the A2A adenosine receptor as a physiological immunosuppressor and to engineer inflammation in vivo. Biochem. Pharmacol.65, 493–501 (2003). ArticleCASPubMed Google Scholar
Sanders, V. M. & Straub, R. H. Norepinephrine, the β-adrenergic receptor, and immunity. Brain Behav. Immun.16, 290–332 (2002). ArticleCASPubMed Google Scholar
Pongratz, G. et al. The level of IgE produced by a B cell is regulated by norepinephrine in a p38 MAPK- and CD23-dependent manner. J. Immunol.177, 2926–2938 (2006). ArticleCASPubMed Google Scholar
Lajevic, M. D., Suleiman, S., Cohen, R. L. & Chambers, D. A. Activation of p38 mitogen-activated protein kinase by norepinephrine in T-lineage cells. Immunology132, 197–208 (2011). ArticleCASPubMedPubMed Central Google Scholar
McAlees, J. W. & Sanders, V. M. Hematopoietic protein tyrosine phosphatase mediates β2-adrenergic receptor-induced regulation of p38 mitogen-activated protein kinase in B lymphocytes. Mol. Cell Biol.29, 675–686 (2009). ArticleCASPubMed Google Scholar
Shenoy, S. K. & Lefkowitz, R. J. β-arrestin-mediated receptor trafficking and signal transduction. Trends Pharmacol. Sci.32, 521–533 (2011). ArticleCASPubMedPubMed Central Google Scholar
Reynolds, M. L. & Fitzgerald, M. Long-term sensory hyperinnervation following neonatal skin wounds. J. Comp. Neurol.358, 487–498 (1995). ArticleCASPubMed Google Scholar
Lorton, D. et al. Changes in the density and distribution of sympathetic nerves in spleens from Lewis rats with adjuvant-induced arthritis suggest that an injury and sprouting response occurs. J. Comp Neurol.489, 260–273 (2005). ArticlePubMed Google Scholar
Straub, R. H., Rauch, L., Fassold, A., Lowin, T. & Pongratz, G. Neuronally released sympathetic neurotransmitters stimulate splenic interferon-gamma secretion from T cells in early type II collagen-induced arthritis. Arthritis Rheum.58, 3450–3460 (2008). ArticleCASPubMed Google Scholar
Mei, Q., Mundinger, T. O., Lernmark, A. & Taborsky, G. J. Jr. Early, selective, and marked loss of sympathetic nerves from the islets of BioBreeder diabetic rats. Diabetes51, 2997–3002 (2002). ArticleCASPubMed Google Scholar
Lorton, D. et al. Differences in the injury/sprouting response of splenic noradrenergic nerves in Lewis rats with adjuvant-induced arthritis compared with rats treated with 6-hydroxydopamine. Brain Behav. Immun.23, 276–285 (2009). ArticleCASPubMed Google Scholar
Straub, R. H., Lowin, T., Klatt, S., Wolff, C. & Rauch, L. Increased density of sympathetic nerve fibers in metabolically activated fat tissue surrounding human synovium and mouse lymph nodes in arthritis. Arthritis Rheum.63, 3234–3242 (2011). ArticleCASPubMed Google Scholar
Spengler, R. N., Chensue, S. W., Giacherio, D. A., Blenk, N. & Kunkel, S. L. Endogenous norepinephrine regulates tumor necrosis factor-α production from macrophages in vitro. J. Immunol.152, 3024–3031 (1994). CASPubMed Google Scholar
Flierl, M. A. et al. Upregulation of phagocyte-derived catecholamines augments the acute inflammatory response. PLoS ONE4, e4414 (2009). ArticlePubMedPubMed CentralCAS Google Scholar
Capellino, S. et al. Catecholamine-producing cells in the synovial tissue during arthritis: modulation of sympathetic neurotransmitters as new therapeutic target. Ann. Rheum Dis.69, 1853–1860 (2010). ArticleCASPubMed Google Scholar
Wahle, M. et al. Disease activity related catecholamine response of lymphocytes from patients with rheumatoid arthritis. Ann. NY Acad. Sci.876, 287–296 (1999). ArticleCASPubMed Google Scholar
Baerwald, C. G. et al. Reduced catecholamine response of lymphocytes from patients with rheumatoid arthritis. Immunobiology200, 77–91 (1999). ArticleCASPubMed Google Scholar
Heijnen, C. J. et al. Functional α1-adrenergic receptors on leukocytes of patients with polyarticular juvenile rheumatoid arthritis. J. Neuroimmunol.71, 223–226 (1996). ArticleCASPubMed Google Scholar
Rouppe, v.d., V, Kavelaars, A., van de, P. M. & Heijnen, C. J. Neuroendocrine mediators up-regulate α1b- and α1d-adrenergic receptor subtypes in human monocytes. J. Neuroimmunol.95, 165–173 (1999). Article Google Scholar
Aloe, L. et al. The synovium of transgenic arthritic mice expressing human tumor necrosis factor contains a high level of nerve growth factor. Growth Factors9, 149–155 (1993). ArticleCASPubMed Google Scholar
Levi-Montalcini, R. Effects of mouse tumor transplantation on the nervous system. Ann. NY Acad. Sci.55, 330–344 (1952). ArticleCASPubMed Google Scholar
Miller, L. E. et al. Increased prevalence of semaphorin 3C, a repellent of sympathetic nerve fibers, in the synovial tissue of patients with rheumatoid arthritis. Arthritis Rheum.50, 1156–1163 (2004). ArticleCASPubMed Google Scholar
Fassold, A. et al. Soluble neuropilin-2, a nerve repellent receptor, is increased in rheumatoid arthritis synovium and aggravates sympathetic fiber repulsion and arthritis. Arthritis Rheum.60, 2892–2901 (2009). ArticleCASPubMed Google Scholar
McAlees, J. W. et al. Epigenetic regulation of β2-adrenergic receptor expression in TH1 and TH2 cells. Brain Behav. Immun.25, 408–415 (2011). ArticleCASPubMed Google Scholar
Kin, N. W. & Sanders, V. M. It takes nerve to tell T and B cells what to do. J. Leukoc. Biol.79, 1093–1104 (2006). ArticleCASPubMed Google Scholar
Bhowmick, S. et al. The sympathetic nervous system modulates CD4+FOXP3+ regulatory T cells via a TGF-β-dependent mechanism. J. Leukoc. Biol.86, 1275–1283 (2009). ArticleCASPubMedPubMed Central Google Scholar
Grebe, K. M. et al. Sympathetic nervous system control of anti-influenza CD8+ T cell responses. Proc. Natl Acad. Sci. USA106, 5300–5305 (2009). ArticleCASPubMedPubMed Central Google Scholar
Härle, P., Pongratz, G., Albrecht, J., Tarner, I. H. & Straub, R. H. An early sympathetic nervous system influence exacerbates collagen-induced arthritis via CD4+CD25+ cells. Arthritis Rheum.58, 2347–2355 (2008). ArticlePubMedCAS Google Scholar
Payan, D. G., Brewster, D. R. & Goetzl, E. J. Specific stimulation of human T lymphocytes by substance P. J. Immunol.131, 1613–1615 (1983). CASPubMed Google Scholar
Laurenzi, M. A., Persson, M. A., Dalsgaard, C. J. & Ringden, O. Stimulation of human B lymphocyte differentiation by the neuropeptides substance P and neurokinin A. Scand. J. Immunol.30, 695–701 (1989). ArticleCASPubMed Google Scholar
Karimi, K., Bienenstock, J., Wang, L. & Forsythe, P. The vagus nerve modulates CD4+ T cell activity. Brain Behav. Immun.24, 316–323 (2010). ArticleCASPubMed Google Scholar
McInnes, I. B. & O'Dell, J. R. State-of-the-art: rheumatoid arthritis. Ann. Rheum. Dis.69, 1898–1906 (2010). ArticleCASPubMed Google Scholar
Pongratz, G. & Fleck, M. Anti citrullinated protein antibodies and mechanism of action of common disease modifying drugs—insights in pathomechanisms of autoimmunity. Curr. Pharm. Des.18, 4526–4536 (2012). ArticleCASPubMed Google Scholar
Chavele, K. M. & Ehrenstein, M. R. Regulatory T-cells in systemic lupus erythematosus and rheumatoid arthritis. FEBS Lett.585, 3603–3610 (2011). ArticleCASPubMed Google Scholar
Levine, J. D., Coderre, T. J., Helms, C. & Basbaum, A. I. β2-adrenergic mechanisms in experimental arthritis. Proc. Natl Acad. Sci. USA85, 4553–4556 (1988). ArticleCASPubMedPubMed Central Google Scholar
Lorton, D., Lubahn, C., Klein, N., Schaller, J. & Bellinger, D. L. Dual role for noradrenergic innervation of lymphoid tissue and arthritic joints in adjuvant-induced arthritis. Brain Behav. Immun.13, 315–334 (1999). ArticleCASPubMed Google Scholar
Härle, P., Möbius, D., Carr, D. J., Schölmerich, J. & Straub, R. H. An opposing time-dependent immune-modulating effect of the sympathetic nervous system conferred by altering the cytokine profile in the local lymph nodes and spleen of mice with type II collagen-induced arthritis. Arthritis Rheum.52, 1305–1313 (2005). ArticlePubMedCAS Google Scholar
Kohm, A. P., Mozaffarian, A. & Sanders, V. M. B cell receptor- and β2-adrenergic receptor-induced regulation of B7-2 (CD86) expression in B cells. J. Immunol.168, 6314–6322 (2002). ArticleCASPubMed Google Scholar
Pongratz, G., Melzer, M. & Straub, R. H. The sympathetic nervous system stimulates anti-inflammatory B cells in collagen-type II-induced arthritis. Ann. Rheum. Dis.71, 432–439 (2012). ArticleCASPubMed Google Scholar
Lombardi, M. S. et al. Adjuvant arthritis induces down-regulation of G protein-coupled receptor kinases in the immune system. J. Immunol.166, 1635–1640 (2001). ArticleCASPubMed Google Scholar
Lorton, D. et al. Local application of capsaicin into the draining lymph nodes attenuates expression of adjuvant-induced arthritis. Neuroimmunomodulation7, 115–125 (2000). ArticleCASPubMed Google Scholar
Uematsu, T., Sakai, A., Ito, H. & Suzuki, H. Intra-articular administration of tachykinin NK receptor antagonists reduces hyperalgesia and cartilage destruction in the inflammatory joint in rats with adjuvant-induced arthritis. Eur. J. Pharmacol.668, 163–168 (2011). ArticleCASPubMed Google Scholar
Leroy, V., Mauser, P., Gao, Z. & Peet, N. P. Neurokinin receptor antagonists. Expert Opin. Investig. Drugs9, 735–746 (2000). ArticleCASPubMed Google Scholar
Waldburger, J. M., Boyle, D. L., Pavlov, V. A., Tracey, K. J. & Firestein, G. S. Acetylcholine regulation of synoviocyte cytokine expression by the α7 nicotinic receptor. Arthritis Rheum.58, 3439–3449 (2008). ArticleCASPubMedPubMed Central Google Scholar
van Maanen, M. A. et al. Stimulation of nicotinic acetylcholine receptors attenuates collagen-induced arthritis in mice. Arthritis Rheum.60, 114–122 (2009). ArticleCASPubMed Google Scholar
van Maanen, M. A., Stoof, S. P., LaRosa, G. J., Vervoordeldonk, M. J. & Tak, P. P. Role of the cholinergic nervous system in rheumatoid arthritis: aggravation of arthritis in nicotinic acetylcholine receptor α7 subunit gene knockout mice. Ann. Rheum Dis.69, 1717–1723 (2010). ArticleCASPubMed Google Scholar
Westman, M., Saha, S., Morshed, M. & Lampa, J. Lack of acetylcholine nicotine α 7 receptor suppresses development of collagen-induced arthritis and adaptive immunity. Clin. Exp. Immunol.162, 62–67 (2010). ArticleCASPubMedPubMed Central Google Scholar
Straub, R. H. et al. Anti-inflammatory role of sympathetic nerves in chronic intestinal inflammation. Gut57, 911–921 (2008). ArticleCASPubMed Google Scholar
Naukkarinen, A., Nickoloff, B. J. & Farber, E. M. Quantification of cutaneous sensory nerves and their substance P content in psoriasis. J. Invest. Dermatol.92, 126–129 (1989). ArticleCASPubMed Google Scholar
Dekkers, J. C., Geenen, R., Godaert, G. L., Bijlsma, J. W. & van Doornen, L. J. Elevated sympathetic nervous system activity in patients with recently diagnosed rheumatoid arthritis with active disease. Clin. Exp. Rheumatol.22, 63–70 (2004). CASPubMed Google Scholar
Keyszer, G., Langer, T., Kornhuber, M., Taute, B. & Horneff, G. Neurovascular mechanisms as a possible cause of remission of rheumatoid arthritis in hemiparetic limbs. Ann. Rheum. Dis.63, 1349–1351 (2004). ArticleCASPubMedPubMed Central Google Scholar